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Abstract

Social and natural sciences employ a number of different measures of diversity. The
presents paper surveys those depending on the distribution of abundances among a
given set of categories. Characteristic properties of the measures are generalized and a
unifying notation is derived. It is argued that such unification enables scientists and de-
cision makers to measure distribution based diversity in a new, more flexible manner,
and represents a useful complement to models of generalized feature based diversity,
such as Nehring and Puppe’s (2002) theory of diversity.
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1 Introduction

The measurement of diversity is, by itself, a very “diverse” issue. Approaches to
quantify this phenomenon vary much and the contexts to which diversity mea-
sures are applied are manifold (Junge, 1994). It is not uncommon to observe an
increasing diversity according to one popular measure and a decreasing one ce-
teris paribus according to another 1 . This clearly shows that the choice between
measures is all but arbitrary and characteristic properties of a specific diversity
index must be discussed very carefully. Unfortunately there is not much consen-
sus in the properties which diversity measures should satisfy in a given situa-
tion. Especially normative discussions between the social and natural sciences
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1 For a numeric example see Tóthmérész (1998), 149.
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have revealed a fundamentally different understanding of diversity, which may
originate in different philosophies (Baumgärtner, 2007). But even within a sin-
gle science, people obviously think differently about what diversity is and how
it should be measured. An intrinsic subjectivity of diversity explains why a mul-
titude of diversity measures is likely to continue to exist and why there can be
no “true” best–of–all measure satisfying everything for everybody (cf. Hoffmann
and Hoffmann 2008). The remaining question is: How can we account for indi-
vidual requirements in the choice of available measures?

The most obvious but most laborious way is to analyze each of the available in-
dices qualitatively and to judge whether the characteristic properties satisfy the
given needs. Regarding the large number of available indices this approach is
not very promising. Much more efficient is the reverse way, namely to start with
some basic requirement which is imposed on an appropriate generalized model
of diversity in order to narrow down admissible choices. Nehring and Puppe
(2002), for example, provide a general theory of diversity in terms of the qual-
itative disparity of attributes realized by n given objects. In subsequent papers
the authors show that different properties imposed on their model lead to more
specific measures (Nehring and Puppe, 2003, 2004). In this way the so–called
“multi–attribute model” can be applied quite flexibly, according to individual
perceptions of what diversity should be. However, diversity measures are also
required to be distribution based sometimes, i.e. they must depend on the dis-
tribution of some quantity over the n given objects (e.g. Pielou 1975) 2 . While
the multi–attribute approach seems to establish as the most general model of
disparity based diversity, a unifying model of distribution based diversity just as
general and flexible is still missing.

The present paper tries to complement Nehring and Puppe’s (2002) theory and
focuses on the generalized measurement of distribution based diversity. First
it introduces the reader to the general concept of distribution based measures
and gives some example applications from different sciences (Section 2). In the
preceding Section 3 commonly used models of distribution based diversity are
surveyed, which are then unified in Section 4. It turns out, that this “new” gen-
eralized diversity measure exists in information theory, ready to use, for more
than thirty years (Sharma and Mittal, 1975). Nevertheless, the “re–discovered”
Sharma–Mittal formalism not only recovers all surveyed measures by simple pa-
rameter variation but also can be made more specific according to very individ-
ual requirements. Section 5 concludes and critically gives an outlook.

2 Note that ecologists also use attribute based diversity measures (e.g. Faith 1994) and
economists sometimes use distribution based diversity measures (e.g. Beran 1999). This
is, however, not the normal case. In economics distribution based measures are much
more often used as measures of inequality (Atkinson, 1983) or concentration (Hannah
and Kay, 1977). As we will see later many developments in the measurement of distri-
bution based diversity can also be traced back to statistical mechanics and information
theory.
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2 The basic concept of distribution based measures

A distribution based measure is an average quantity of n given categories which
is defined in terms of:

(1) the categories: Of what do we want to measure an average quantity?
(2) the elementary quantity: What kind of quantity of each category is to be

averaged?
(3) the average: How is the desired quantity finally calculated?

All three questions can be answered very differently. In fact, the class of distri-
bution based measures ranges across a large number of disciplines and applica-
tions. In this section the basic notation is introduced and some economic as well
as non–economic answers to the above questions are presented.

2.1 Defining the categories

2.1.1 Notation

Let Z denote a set of some given and well–defined individuals such as the set of
living objects in an ecosystem or the set of dollars representing the national in-
come of some country. Formally, the set of n categories is a partition on Z such
that Z =

⋃n
i=1 z i and z i ∩ z j =∅ for all i �= j . Let h : 2Z →�, hi �→ h(z i ) = #z i then

a = (hi )i=1...n and p = a/#Z denote the discrete distribution of absolute and rel-
ative abundances among the categories, respectively. Further let�+ = (0,∞) and
let � be the set of convex sets on �n

+ then � ⊂� is the n–unit simplex of reals
such that for all p ∈ � , 0 < pi ≤ 1 and

∑
i pi = 1. Two different distributions on

different sets of individuals are written p ,q ∈� , where p×q =
�

pi qj

�
i=1...n ,j=1...m

is the joint distribution.

2.1.2 Examples

In industrial economics the categories are often defined as the firms of an indus-
try each producing a share pi of overall output Z and an average of all pi is then
taken as an indicator of the “concentration” in that industry (e.g. Hannah and
Kay 1977). Using households as categories, each receiving a certain share of the
overall income, slightly different averages are also used to measure (income) “in-
equality” (e.g. Atkinson 1983). Ecologist, on the other hand, usually define cate-
gories as biological species of which a relative abundance pi of individuals can
be observed in an ecosystem or a geographical region. In this case the “evenness”
of individuals among species is considered as an indicator of “ecological diver-
sity” (Ricotta, 2003). Similar diversity categories include but are not limited to a
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society’s social groups (Harrison and Peng, 2006), a county’s types of television
channels (Aslama et al., 2004), an urban district’s dwelling types (Les and Ma-
her, 1998), a firm’s businesses (Pitts and Hopkins, 1982), or a portfolio’s financial
assets (Woerheide and Persson, 1993), for which an average elementary quan-
tity is often used as a measure for social–, TV–programme–, housing–, firm–, or
portfolio–“diversity”, respectively. These examples illustrate that the definition
of categories is much influenced by the individual measurement context and
can not be generally defined. For the sake of interdisciplinarity and generality
we stay with the formal representation above and leave the question “Of what?
(do we measure an average quantity)” intentionally open.

2.2 Defining the elementary quantity

Given a proper set of categories the average raw share pi often does not describe
precisely enough what is meant to be measured. These cases require some con-
tinuous and strictly monotonic transformation vi �→ τ�pi

�
which determines

the classes’ elementary quantity according to the most important characteristics
of the phenonmenon under consideration.

2.2.1 Examples

Economic inequality and concentration measures, for example, use different
definitions of shares. While a concentration share is usually defined as the out-
put share pi of firm i , the (income) inequality share is defined as the ratio of
absolute individual income and the arithmetic mean of all incomes such that
v ieq

i �→ τieq
�

pi
�
= npi . Another example can be found in ecological statistics

where pi is employed as a variable of the “rarity” of a species i in a set of species
(Patil and Taillie, 1982). Clearly, the value of pi can be no reasonable rarity in-
dicator due to the inverse behaviour of a classes relative abundance and what
is commonly known as “rarity”. Transformation v een

i �→ τeen
�

pi
�
= 1/pi , also

known as the elementary equivalent number (of equal sized classes) is more ap-
propriate. A third example has established in classical information theory. Here,
pi is used as the probability of an event i of a discrete random variable having n
possible outcomes. The elementary information is defined as the minimum “ef-
fort”, measured in the number of binary digits, which is necessary to transmit the
observed variable’s realization from a source to a recipient (Rényi, 1966). It is de-
fined as v loa

i �→ τloa
�

pi
�

:= c ln
�

1/pi
�

, c �= 0 3 . The choice of transformation τloa

is motivated by the assumption that the “information obtained from the hap-
pening of two independent events is the sum of the informations yielded by the

3 From the perspective of information theory the choice c = 1/ ln(2) is most common to
have “bits” as measurement unit.
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two single events” (Aczél and Daróczy 1975, p. 3). This so–called log–additivity
can be characterized using one of four well–known functional equations 4 .

2.2.2 The Cauchy equations

Proposition 1 For non–constant and continuous functions f and x , y ∈
(0,∞); c �= 0

f (x + y ) = f (x )+ f (y ) ⇔ f (x ) = c x (lia) (1)

f (x y ) = f (x )+ f (y ) ⇔ f (x ) = c ln (x ) (loa) (2)

f (x + y ) = f (x ) f (y ) ⇔ f (x ) = e c x (emu) (3)

f (x y ) = f (x ) f (y ) ⇔ f (x ) = x c (pmu) (4)

Proof of Proposition 1. These are classics derived from works of Cauchy (1821)
and solutions can be found in every standard textbook on functional equations
such as Aczél (1966). Aczél et al. (2000) provide a summary of proofs.

Functions satisfying (1), (2), (3), (4) are called lin–additive (“lia”), log–additive
(“loa”), exp–multiplicative (“emu”) and pow–multiplicative (“pmu”), respec-
tively. The elementary information v loa

i , for example, can be characterized by
log–additivity (2) under restricted domain.

Corollary 2 (Elementary information) Let p ,q ∈ (0, 1] and f be a continuous
and non–constant function, then for c �= 0

f (pq ) = f (p )+ f (q )⇔ f (p ) = c ln

�
1

p

	
. (5)

Proof of Corollary 2. Let p = exp(−x ) and q = exp(−y ) in (5) then g (x ) :=
f (exp(−x )) gives g (x + y ) = g (x ) + g (y ) having the most general non–constant

solution g (x ) = c x . Thus f (p ) = c x = c ln



1
p

�
.

Log–additivity of shares is, however, not generally desirable. The sense and non–
sense of some characteristic property clearly depends on the given application
context and the phenomenon under consideration. To give an economic coun-
terexample, Cowell (1980), p. 149 emphasizes for the measurement of income
inequality that “there is no compelling reason why [log–additivity] should hold”.
This implies that the standard logarithm is no resonable transformation of in-
come shares.

4 In the following we are only interested in the most general non–constant and contin-
uous solutions of a functional equation. For convenience we may omit the words non–
constant and continuous.
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Table 1
Degree–deformed logarithms, exponentials and linear functions in two equivalent rep-
resentations.

Name Degree δ deformation Degree d = δc deformation

log–dfm. lin. lin
log
δ (x ) =

⎧⎨⎩
log

�
δ
c x+1

�
δ

,δ �= 0

x ,δ= 0
lin

log
d (x ) =

⎧⎨⎩
ln(d x+1)

d , d �= 0

x , d = 0

exp–dfm. lin. linexp
δ (x ) =

⎧⎨⎩ c exp(δx )−1
δ

,δ �= 0

x ,δ= 0
linexp

d (x ) =

⎧⎨⎩
e d x−1

d , d �= 0

x , d = 0

δ–dfm. log. logδ (x ) =

⎧⎨⎩ c xδ−1
δ

,δ �= 0

log (x ) ,δ= 0
logd (x ) =

⎧⎨⎩
x c d−1

d , d �= 0

log (x ) , d = 0

δ–dfm. exp. expδ (x ) =

⎧⎨⎩
�
δ
c x +1

� 1
δ ,δ �= 0

exp (x ) ,δ= 0
expd (x ) =

⎧⎨⎩ (d x +1)
1

c d , d �= 0

exp (x ) , d = 0

2.2.3 Generalized deformed transformations

In order to meet a larger range of individual requirements we have to use
more general classes of continuous and strictly monotonic (and not necessar-
ily log–additive) transformations. A promising way is to consider parameter–
deformed functions that can be characterized by some functional equation sim-
ilar to the one in Corollary 2. Here our focus is on deformed linear and loga-
rithmic/exponential functions, which will also prove to be useful for generating
mean values in subsequent sections of the present paper.

Let the common Napier logaritm be written log(x ) := c ln (x ) where ln (x ) de-
notes the natural logarithm and c := 1/ ln (b ) such that b = exp (1/c ) , b ∈�+\{1}
for all c �= 0 is the basis of the Napier logarithm. Similarly exp (x ) := e

x
c is in-

verse of the Napier Logarithm where e is the Euler Number. Then linear, loga-
rithmic and exponential functions can be deformed by degree δ as depicted in
the second column of Table 1. These functions will play a major role through-
out this work. We shall further define d := δ/c for a nicer representation of
some properties to be discussed. This equivalent notation is given in the right
column of Table 1. Note that all degree zero deformations are limits of the cor-
responding deformation function for δ → 0 (or d → 0). Further we can eas-

ily see that linlog
δ (x ) =

�
linexp
δ

�−1
(x ), logδ (x ) = exp−1

δ (x ) , log
�

expδ (x )
�
=linlog

δ (x )
and logδ

�
exp(x )

�
=linexp

δ (x ). Deformed linear functions are characterized by a
Cauchy–type functional equation, called non–lin–additivity of degree d .
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Proposition 3 (Non–lin–additivity of degree d ) Let x , y ∈ (0,∞) and f be a con-
tinuous and non–constant function, then

f (x + y ) = f (x )+ f (y )+d f (x ) f (y )⇔ f (x ) = linexp
d (c x ) = linexp

δ (c x ). (6)

Proof of Proposition 3. Necessity is easy to check. For sufficiency let d �= 0
and g (x ) := d f (x ) + 1. Then the non–lin–additivity condition is equivalent to
the Cauchy exponential equation g (x + y ) = g (x )g (y ) which has the most gen-
eral solution g (x ) = e δx , δ �= 0 given by (3). By resubstitution one obtains
f (x ) =

�
e c d x −1

�
/d =linexp

d (c x ); c , d �= 0. For d = 0 we have lin–additivity
f (x + y ) = f (x ) + f (y ) and then by (1) the most general solution is f (x ) = c x =
limd→0linexp

d (c x ), c �= 0.

Compared to deformed linear functions deformed logarithms are more often
applied and have a longer history. Euler (1779) already considered the function
logE

θ ,ϑ(x ) = −�x−θ −x−ϑ
�
/ (θ −ϑ) and analyzed the case ϑ = 0 and θ = ϑ + ε,

ε→ 0. The first case reduces to logE
θ (x ) =

�
1−x−θ

�
/θ , θ �= 0 and the latter to the

partial derivative logE
θ ,ε(x ) =−∂ �x−θ �/∂ θ = x−θ ((x ε −1)/ε) . The crutial feature

of both functions is that they limit to the natural logarithm as θ → 0. Proposi-
tion 1 shows that the Napier logarithm is characterized by log–additivity, thus
logE

θ cannot be log–additive for θ �= 0. Indeed, this function belongs to a family
recently studied by Naudts (2002) and other physicists. Here is shown that the
Euler function is characterized by a property called non–log–additivity of degree
d .

Proposition 4 (Non–log–additivity of degree d ) Let x , y ∈ (0,∞) and f be a con-
tinuous and non–constant function, then

f (x y ) = f (x )+ f (y )+d f (x ) f (y )⇔ f (x ) = logd (x ) = logδ (x ) . (7)

Proof of Proposition 4. Necessity is easy to check. For sufficiency let d �= 0 and
g (x ) := d f (x ) + 1. Then the non–log–additivity condition is equivalent to the
Cauchy power equation g (x y ) = g (x )g (y ) which has the most general solution
g (x ) = xδ, δ �= 0 given by (4). By resubstitution one obtains f (x ) =

�
x c d −1

�
/d =

logd (x ), d �= 0. For d = 0 we have log–additivity f (x y ) = f (x )+ f (y ) and then by
(2) the most general solution is f (x ) = c ln(x ) = log (x ) = limd→0 logd (x ) , c �= 0.

The algebraic properties of deformed logarithms are different from those of the
common Napier logarithm. Two of them worth noting are

logδ
�
x y
�
= logδ (x )+ logδ(y )x

δ (8)

logδ

�
1

x

	
=− logδ(x )x

−δ. (9)
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We also may restrict the domain as we did for elementary information in Propo-
sition 2.

Corollary 5 (Non–log–additive quantity) Let p ,q ∈ (0, 1] and f be a continuous
and non–constant function, then

f (pq ) = f (p )+ f (q )+d f (p ) f (q )⇔ f (p ) = logδ
�

1/p
�

. (10)

Proof of Corollary 5. Let p = e−x and q = e−y in (10) then g (x ) :=
f (e−x ) gives g (x + y ) = g (x ) + g (y ) + d g (x )g (y ) which has the most gen-
eral non–constant solution g (x ) =linexp

δ (c x ) by Proposition 6. Thus f (p ) =
g (x ) =linexp

δ (c x ) =linexp
δ (c ln

�
1/p

�
) = logδ

�
1/p

�
.

2.2.4 Examples

In many practical applications the deformation parameter of degree–deformed
functions is normalized for the sake of a more straightforward interpretation of
its actual value. Most of these applications use one of the following cases

θ =−δ (11)

β = 1−δ (12)

ζ= 1+δ. (13)

For example, the initial form logδ (x ) is concave only for δ≤ 1. If concavity needs
to be maintained for increasing deformation degree we may use substitution
(11) which gives Euler’s function logE

θ (x ) =
�

1−x−θ
�
/θ . In non–extensive statis-

tical mechanics, pioneered by physicist Tsallis (1988), non–concavity is consid-
ered as a serious drawback (Tsallis, 2004). Therefore it seems more convenient
to use (12), i.e. τT

β (x ) := logβ (x ) =
�
x 1−β −1

�
/
�

1−β� because this deformation
function is concave for all β ≥ 0 and has the log–additivity limit at β = 1 instead
of δ = 0. The same concavity parameter normalization can be applied to stan-
dard economic decision theory where a parameter deformation of the decision
maker’s utility function u (x ) can be used to model different risk attitudes 5 . How-
ever, turning the economist’s perspective back to the transformation of shares pi

we can also recall Cowell’s (1980) former remark on economic inequality mea-
sures. In particular, use (13) and set c = 1/ζ then logCS

ζ (x ) :=
�
x ζ−1−1

�
/ (ζ (ζ−1))

5 Moreover, it can be shown that decision makers have a constant relative risk aversion
(CRRA) ηu (x ) := −x u ′′ (x )/u ′ (x ) if and only if u (x ) ∝ logδ(x ) and a constant absolute
risk aversion (CARA) ηu (x )/x if and only if u (x ) ∝ logδ

�
exp(x )

�
=linexp

δ (x ). Necessity
is easy to check. For sufficiency one can use the proof technique of Keeney and Raiffa
(1993), p.177. The concepts of absolute and relative risk aversion were introduced by
Pratt (1964).
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is again a deformed (natural) logarithm with limζ→1τ
CS
ζ (x ) = ln(x ). To see the ma-

jor benefit of this function we transform the income shares in Theil’s (1967) clas-
sic distribution based inequality measure H CS

1

�
p
�
= 1/n

∑n
i=1 npi ln(npi ) using

τCS
ζ (x ) instead of ln(x ). Then one directly obtains the most general class of Theil–

decomposable inequality measures H CS
ζ

�
p
�
= (nζ (ζ−1))−1

∑n
i=1


�
npi

�ζ−1
�

,

which was axiomatically characterized by Cowell and Kuga (1981) and Shorrocks
(1980) 6 . In other words, sacrificing log–additivity in the underlying transforma-
tion of income shares allows to maintain Theil–decomposability in distribution
based inequality measurement. In economic concentration measurement, on
the other hand, still other properties appear to be more desirable than Theil–
decomposability. The logarithmic character of the family H CS

ζ is “neutralized”

by taking the according exponential such that



logCS
ζ

�−1 �
H CS
ζ

�
p
��
= nH HK

ζ

�
p
�

where H HK
ζ

�
p
�
=
�∑n

i=1 pζi
� 1
ζ−1 is the most common family of concentration in-

dices characterized by Chakravarty and Eichhorn (1991) and intuitively used as
(inverted) numbers equivalent by Hannah and Kay (1977). Still another well–
known family being affected by deformed logarithms is the “equally distributed

equivalent” H A
ζ

�
p
�
= 1−
logA

ζ

�−1 �
H CS
ζ

�
p
��

discussed by Atkinson (1970), with

logA
ζ(x ) = logCS

1−ζ(1/x ).

We see that deformed logarithms can be used to directly link economic
inequality–, concentration– and “equally distributed equivalent”–measures.
Similar findings will also help to unify different families of diversity measures
in Section 3.

2.3 Defining the average

The third dimension defining distribution based measures is the operator ag-
gregating n elementary quantities into a single number. As for the definition
of elementary quantities this definition should be specified according to some
desirable characteristic. Most importantly it should maintain the characteristic
properties of the elementary quantity under consideration.

In accordance with Bullen (2003) we give the following basic definition.

Definition 1 (Mean value function) Let u , v ∈�n , ū = (c , . . . , c ) and 0̄= (0, . . . , 0).
A mapping M : �n→� is called a mean (value function), written shortly M (u ) =
〈u 〉, if it satisfies

(1) 〈ū 〉= u (reflexivity, idempotency)
(2) 〈u 〉< 〈v 〉 if u i ≤ vi for all i and u i < vi for some i (strict monotonicity)

6 See these papers for details on Theil–decomposability.
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(3) limv→0̄ 〈u + v 〉= 〈u 〉 (continuity)

Note that reflexivity and strict monotonicity imply Cauchy’s (1821) internality
property mini u i ≤ 〈u 〉 ≤ maxi u i , which is usually accepted as a natural re-
quirement for mean values. Bonferroni (1924) proposed to functionally “gen-
erate” means using the equation w1φ(u 1) +w2φ(u 2) = (w1 +w2)φ(〈(u 1, u 2)〉wφ ),
where w is an arbitrary non–negative weight and φ is a continuous and strictly
monotonic function defined over a real interval, called generating function 7 .
〈(u 1, u 2)〉wφ satisfies the requirements of Definition 1 most immediately due to
a characterizion by Aczél (1966), p. 242. For equal weights w1 = w2 = w , we
get the symmetric mean 〈(u 1, u 2)〉wφ = φ−1 ��φ(u 1)+φ(u 2)

�
/2
�

characterized by
Aczél (1948). All standard means, namely the arithmetic, harmonic, geomet-
ric, quadratic, power and exponential mean, are generated by the functions
φ(x ) = x ,x−1, log(x ),x 2,x c , e c x , c �= 0, respectively. Letω denote weights not nec-
essarily equal and satisfying ωi ∈ [0, 1],

∑
iωi = 1 then generalizing the Bonfer-

roni equation to the n–case gives the quasilinear mean of u 8

〈u 〉ωφ :=φ−1

�
n∑

i=1

ωiφ(u i )

�
. (14)

Lemma 6 (Hardy et al. (1934)) For constants a �= 0 and b

φ̃(x ) = aφ(x )+b⇔〈u 〉ω
φ̃
= 〈u 〉ωφ . (15)

This implies that a specific quasilinear mean can always be generated by a
continuum of functions. Because of its general nature the quasilinear mean
can serve as appropriate aggregation operator in generalized distribution based
measurements.

3 Distribution based diversity

The preceding section illustrated that a number of well–known quantities, such
as information, physical entropy, economic inequality or concentration are
measured using distribution based concepts, which are specified by a set of cat-
egories, an elementary quantity and an aggregation operator, respectively. Par-
ticularly from the classical “ecological” point of view diversity is also an average

7 As a tribute to Kolmogorov (1930) and Nagumo (1930) for their seminal contributions
to the characterization of functionally generated means, φ is also called Kolmogorov
Nagumo-function (KN-function).
8 For an axiomatic characterization of this class of mean value functions see Wang and
Jiang (2005).
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quantity of some properly defined set of categories. Therefore, we define such
measure as the quasilinear mean 〈v 〉ωφ .

The main characteristic of all distribution based diversity measures is to com-
prise some “preference” for evenness. A set of classes is said to be maximally
diversified whenever all classes share the same elementary quantity and there
should be minimal diversity whenever the overall quantity is accumulated in a
single class. Formally, let p̌ = (1, 0 . . . , 0) and p̄ = (n−1, . . . , n−1) then a distribution
based diversity measure V (p ) should satisfy

V (p̌ )≤ V (p )≤ V (p̄ ). (16)

From the theory of majorization it is known that (16) is satisfied if V is symmet-
ric (i.e. invariant under permutations of the variables) and concave or quasi–
concave (Marshall and Olkin, 1979). Symmetry of 〈u 〉ωφ is given by self–weighting
ωi = pi (cf. Aczél and Daróczy 1963b) and, thus,

V (p ) := 〈v 〉φ =φ−1

�
n∑

i=1

piφ(τ
�

pi
�
)

�
(17)

can be considered as a proper basic family of measures 9 . Alternatively, (16) is
satisfied whenever V is strictly concave in the sense of Schur (1923). Schur him-
self gave a straightworward derivative criterion, which is used for the definition
of distribution based diversity measures until today (e.g. Kreutz-Delgado and
Rao 1998).

Lemma 7 (Schur–condition, Schur (1923)) Let f :� →� be differentiable such
that f pi

�
p
�
= ∂ f

�
p
�
/∂ pi exists for all i then f is strictly Schur–concave on� iff

f is symmetric and �
f p1(p )− f p2(p )

��
p1−p2

�
< 0 (18)

for any two p1, p2 of p ∈� .

Proposition 8 (Schur–concavity of V ) Let τ (x ) be a transformation of shares
andφ

�
y
�

a mean generating function, both being twice differentiable. Further let
φ̃ (x ) :=φ (τ (x )) and ηφ̃ (x ) =−x φ̃

′′
(x )/φ̃

′
(x ) then V (p ) is strictly Schur–concave

if and only if one of the conditions in Table 2 holds (line–by–line).

Proof of Proposition 8. Define g (x ) = φ̃ (x )+x φ̃
′
(x ) . Then the Schur–condition

(18) is equivalent to�
φ−1

�′
∑n

i=1
piφ(τ

�
pi
�
)
� · �g

�
p1
�− g

�
p2
�� · �p1−p2

�
< 0. (19)

For convenience we can assume p1 − p2 > 0 and omit the case p1 − p2 < 0 (or
vice versa) because the sign of

�
g
�

p1
�− g

�
p2
���

p1−p2
�

only depends on the

9 The concavity of 〈v 〉φ clearly depends onφ and τ and will be discussed individually.
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Table 2
Conditions for strict Schur–concavity of V .

φ
�

y
�

φ̃ (x ) ηφ̃ (x )

strictly increasing strictly decreasing, concave ηφ̃ (x )≤ 0

strictly decreasing strictly increasing, convex ηφ̃ (x )≤ 0

strictly decreasing strictly increasing, concave 0≤ηφ̃ (x )< 2

strictly decreasing strictly decreasing, convex 0≤ηφ̃ (x )< 2

strictly increasing strictly increasing, concave ηφ̃ (x )> 2

strictly increasing strictly decreasing, convex ηφ̃ (x )> 2

sign of g ′ (x ) and not on the one of
�

p1−p2
�

. Further, for continuous and strictly

monotonic functions f ′ (·)� 0⇔ �
f −1

�′ (·)� 0, thus
�
φ−1

�′
(·) can be replaced by

φ′ (·). Then (19) simplifies to

φ′

∑n

i=1
piφ(τ

�
pi
�
)
�

︸ ︷︷ ︸
A

· �g
�

p1
�− g

�
p2
��︸ ︷︷ ︸

B

< 0. (20)

Since φ is strictly monotonic, A �= 0 and (20) is statisfied if and only if A or B is
(exclusively) negative. So we need to derive conditions for the two casesφ′ (·)> 0,
g ′ (x )< 0 andφ′ (·)< 0, g ′ (x )> 0, or explicitly

φ′ (·)> 0, g ′ (x ) = 2φ̃
′
(x )+x φ̃

′′
(x )< 0 (21)

φ′ (·)< 0, g ′ (x ) = 2φ̃
′
(x )+x φ̃

′′
(x )> 0 (22)

Note that φ̃
′
(x ) �= 0 because φ and τ are strictly monotonic by defintion. Now,

assume φ′ (·) > 0 then (21) is clearly satisfied if φ̃
′
(x ) < 0,φ̃

′′
(x ) ≤ 0 which im-

plies ηφ̃ (x )≤ 0. For the remaining possibilities φ̃
′
(x )< 0,φ̃

′′
(x )≥ 0 and φ̃

′
(x )>

0,φ̃
′′
(x ) ≤ 0 (21) is satisfied only if −2φ̃

′
(x ) > x φ̃

′′
(x ) and 2φ̃

′
(x ) < −x φ̃

′′
(x ),

which is equivalent to ηφ̃ (x ) > 2, respectively. Consequently, the only cases
which satisfy (21) are

φ̃
′
(x )< 0 φ̃

′′
(x )≤ 0 ηφ̃ (x )≤ 0

φ̃
′
(x )< 0 φ̃

′′
(x )≥ 0 ηφ̃ (x )> 2

φ̃
′
(x )> 0 φ̃

′′
(x )≤ 0 ηφ̃ (x )> 2

12



and similarly, for (22),φ′ (·)< 0:

φ̃
′
(x )> 0 φ̃

′′
(x )≥ 0 ηφ̃ (x )≤ 0

φ̃
′
(x )< 0 φ̃

′′
(x )≥ 0 ηφ̃ (x )≥ 0 and ηφ̃ (x )< 2

φ̃
′
(x )> 0 φ̃

′′
(x )≤ 0 ηφ̃ (x )≥ 0 and ηφ̃ (x )< 2

Lemma 9 (Equivalent representations of 〈v 〉φ) Every continuous, monotonic
transformation g of a self–weighted quasilinear mean 〈v 〉φ is a self–weighted
quasilinear mean. In particular,

g
�〈v 〉φ�= �g (v )

�
φ̂ (23)

where φ̂
�

y
�
=φ

�
g −1

�
y
��

, and

〈v 〉φ = τ
��

p
�
φ̃

�
(24)

where φ̃(x ) =φ (τ (x )).

Proof of Lemma 9. Let φ̂
�

y
�
=φ

�
g −1

�
y
��

then φ̂
−1
(z ) = g

�
φ−1(z )

�
which must

be a generating function because g is invertible by supposition. Then

g
�〈v 〉φ�= g

�
φ−1

�
n∑

i=1

piφ(τ
�

pi
�
))

��
= φ̂

−1

�
n∑

i=1

pi φ̂
�

g
�
τ
�

pi
����

=
�

g (v )
�
φ̂ .

The case (24) is proved analogously.

3.1 Measures generated by linear functions

Let us first consider linear generating functions

φlin(x ) := a x +b , a �= 0, (25)

and the elementary quantities

v een
i �→ τeen �pi

�
= c

1

pi
(26)

v loa
i �→ τloa �pi

�
= log

�
1

pi

	
(27)

v n-loa
i �→ τn-loa �pi

�
= logδ

�
1

pi

	
. (28)

13



3.1.1 Linear mean of numbers equivalent quantities

The linear mean of v een
i gives

〈v een〉φlin = n . (29)

This nominal number of categories (“richness”) is easy to grasp and especially
in the ecological sciences the species richness of a habitat is still a very com-
mon diversity indicator (e.g. Tilman 1996). Another feature is its range from the
minimum value of 1 in the 1–species case and to a maximum value of n in the
n–species case, which is often interpreted as species–equivalent diversity value.
We will come back to this property later on.

3.1.2 Linear mean of log–additive quantities

For the log–additive elementary quantity (27) we have

V S(p ) :=
�

v loa
�
φlin =

n∑
i=1

pi v loa
i =

n∑
i=1

pi log

�
1

pi

	
(30)

usually called “Shannon–Wiener index” in ecological diversity measurement
(e.g. Pielou 1975; Magurran 2004). There is a plethora of very different interpre-
tations on this index due to different definitions of categories, but V S serves ex-
plicitly as a diversity measure much more often in the ecological sciences than
anywhere else. Note that V S(p ) is maximal at log (n ) which is usually refered to
as first information measure due to Hartley (1928).

Proposition 10 V S(p ) is log–additive and concave for all p ∈� .

Proof of Proposition 10. Log–additivity of V S(p ) is common knowledge in in-
formation theory (see e.g. Shannon 1948). As h(x ) = x−x is concave in (0, 1],
g (x ) =

∑
f (h(x )) is concave in (0, 1] for all concave f (Hardy et al., 1934). Al-

ternatively, let �V denote the Hessian of a continuous and twice differentiable
function V : � → � then a necessary and sufficient condition for V to be con-
cave is p (−�V )p ′ ≥ 0 (Roberts and Varberg 1973, p. 103 and Debreu 1952). Here
we have p (−�V S )p ′ =

∑n
i=1 pi = 1> 0.

14



3.1.3 Linear mean of non–log–additive quantities

Now let the elementary quantity be non–log–additive, i.e. quantity (28). The lin-
ear mean of this quantity is for c �= 0

�
v n-loa

�
φlin =

n∑
i=1

pi v n-loa
i =

n∑
i=1

pi logδ

�
1

pi

	
=

⎧⎪⎨⎪⎩
c
δ

�
n∑

i=1

p 1−δ
i −1

�
, δ �= 0

V S(p ) , δ= 0

. (31)

Obviously this measure must be maximal at logδ (n ), which can be called the
degree–deformed Hartley–measure. Again, parameter substitutions may result
in more convenient forms of (31). Without explicit reference Patil and Taillie
(1982) use (11) and the Euler function logE

θ (x ) , c = 1 as underlying transfor-
mation of shares. They extensively discuss V PT

θ (p ) :=
∑n

i=1 pi logE
θ (x )

�
1/pi

�
as

generalized diversity measure, which is, indeed, applied to the measurement of
ecological diversity until today (e.g. Keylock 2005). An earlier reference was given
by information theorists Havrda and Charvát (1967). However, this measure be-
came most popular with the development of non–extensive statistical mechan-
ics in the late 1980s (Tsallis, 1988). Here parameter substitution (12) and notation

V T
β (p ) :=

n∑
i=1

pi logT
β

�
1

pi

	
=

⎧⎪⎨⎪⎩
c

1−β

�
n∑

i=1

pβi −1

�
, β �= 1

V S(p ) , β = 1

(32)

is preferred which we will refer to as Tsallis diversity 10 .

Proposition 11 V T
β (p ) is non–log–additive for all β and concave for β ≥ 0.

Proof of Proposition 11. We show that
�

v n-loa
�
φlin is non–log–additive

for all δ, thus, V T
β (p ) must be non–log additive for all β . Let v n-loa

p×q =�
logδ

�
p−1

i q−1
j

��
i=1...n , j=1...m

then using (8) we have for all δ

10 In Henri Theil’s view of economic inequality measurement V T
β can be interpreted

as decomposability–preserving generalized income equality (diversity) measure. More
specifically, Theil (1967), p. 91 assumes that inequality is maximum equality minus
equality, or formally, for the Shannon–Index as underlying equality measure H Th(p ) =
ln(n )−V S(p ), c = 1. Since V T

β is equivalent to V S having degree–deformed income shares

it is quite meaningful to observe that H CS
β

�
p
�
= logT

β (n ) − V T
β (p ), c = βn 1−β ,β �= 0.

This illustrates that the underlying equality measure in the most general class of Theil–
decomposable inequality measures is a linear mean of an elementary quantity being
characterized by non–log–additivity (7).
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�
v n-loa

p×q

�
φlin
=

n∑
i=1

m∑
j=1

pi qj logδ

�
1

pi

1

qj

�
=

n∑
i=1

m∑
j=1

pi qj

�
logδ

�
1

pi

	
+ logδ

�
1

qj

�
p−δi

�

=
n∑

i=1

pi logδ

�
1

pi

	 m∑
j=1

qj +
m∑

j=1

qj logδ

�
1

qj

� n∑
i=1

p 1−δ
i

=
n∑

i=1

pi logδ

�
1

pi

	
+

m∑
j=1

qj logδ

�
1

qj

��
c

δ

n∑
i=1

pi c
p−δi −1

δ
+1

�

=
�

v n-loa
p

�
φlin
+
�

v n-loa
q

�
φlin

�
d
�

v n-loa
p

�
φlin
+1

 
=
�

v n-loa
p

�
φlin
+
�

v n-loa
q

�
φlin
+d

�
v n-loa

p

�
φlin

�
v n-loa

q

�
φlin

.

Concavity: For p ∈� we have p (−�V T
β )p ′ =β

∑n
i=1 pβi ≥ 0 for all β ≥ 0.

Conclusion 1 (Linear means) Linear means 〈v 〉φlin maintain numbers equiva-
lence, log–additivity and non–log–additivity of the elementary quantity v .

3.2 Measures generated by non–linear functions

A natural question arising from the previous section is whether Conclusion 1, or
parts of it, hold only for linear functions. The objective is to find the most gen-
eral classes of generating functions φ maintaining numbers equivalence, log–
additivity and non–log–additivity, respectively. As we have seen before, these
properties characterize deformed linear or logarithmic elementary quantities.
In fact, the only way to obtain a more general class of measures, satisfying these
properties is to generalize the mean generating function. This deformation has
other consequences on the final measure than deforming transformation func-
tions τ. For that reason we introduce a new parameter γ and call it the de-
formation degree of the mean generating function or, according to most of the
present literature, the order. To stay consistent with parameter substitution (12)
we should also define

α= 1−γ. (33)

We start with log–additive quantities (27) this time.

16



3.2.1 Non–linear mean of log–additive quantities

Definition 2 (Rényi-generating function) Let a �= 0 and b be arbitrary con-
stants, then

φR
γ (x ) :=

⎧⎨⎩ a exp
�
γx
�
+b , γ �= 0

a x +b , γ= 0
. (34)

Note thatφR
γ (x ) =linexp

γ (x ) for a =−b = c
γ

, γ �= 0.

Proposition 12 (Log–additivity-preserving means) Let vi be log–additive, then

〈v 〉φ is log–additive ⇔ φ (x ) =φR
γ (x ).

Proof of Proposition 12. Rényi (1961) already proved this for conditional (rel-
ative) information measures and incomplete distributions. Here I use a related
prove technique for the sufficiency part which can also be found in Hardy et al.
(1934).

(1) Necessity: Let γ �= 0 then
�

v loa
p×q

�
φR
γ

= 1
γ

log

∑n

i=1

∑m
j=1 p 1−γ

i q 1−γ
j

�
=

1
γ

log
�∑n

i=1 p 1−γ
i

�
+ 1
γ

log

∑m

j=1 q 1−γ
j

�
which is the log–additivity condition

for
�

v loa
�
φR
γ
. As limγ→0

�
v loa

�
φR
γ
= V S

�
p
�

log–additivity is given by Proposi-

tion 10.
(2) Sufficiency: Let 〈v 〉φ be log–additive then

φ−1

⎛⎜⎝ n∑
i=1

m∑
j=1

pi qjφ



log



p−1
i q−1

j

��⎞⎟⎠
=φ−1

�
n∑

i=1

piφ
�

log
�

p−1
i

���
+φ−1

⎛⎜⎝ m∑
j=1

qjφ



log



q−1
j

��⎞⎟⎠ .

Recalling Lemma 9 we define φ̃ (x ) := φ
�− log (x )

�
viz. φ−1 (z ) =

− log


φ̃
−1
(z )
�

. Then the log–additivity condition for qj := 1
m

, m ≥ 1

− log

⎛⎜⎝φ̃−1

⎛⎜⎝ n∑
i=1

m∑
j=1

pi qj φ̃

�
pi

1

m

	⎞⎟⎠
⎞⎟⎠

=− log

�
φ̃
−1

�
n∑

i=1

pi φ̃
�

pi
���− log

⎛⎜⎝φ̃−1

⎛⎜⎝ m∑
j=1

1

m
φ̃

�
1

m

	⎞⎟⎠
⎞⎟⎠
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which is equivalent to the multiplicativity condition

φ̃
−1

�
n∑

i=1

pi φ̃

�
pi

1

m

	�
= φ̃

−1

�
n∑

i=1

pi φ̃
�

pi
�� · 1

m
.

Resubstitution of φ̃
−1
(z ) = exp

�−φ−1 (z )
�

gives

φ−1

�
n∑

i=1

piφ
�

log
�

p−1
i

�
+ y

��
=φ−1

�
n∑

i=1

piφ
�

log
�

p−1
i

���
+ y (35)

where y = log (m ) is a constant. Now let φy (x ) := φ
�
x + y

�
viz.

φ−1 (z ) = φy (z ) + y then (35) becomes φ−1
y

�∑n
i=1 piφy

�
log

�
p−1

i

���
=

φ−1
�∑n

i=1 piφ
�

log
�

p−1
i

���
which is true, by Lemma 6, if and only if for con-

stants a
�

y
�

and b
�

y
�

depending on m

φy (x ) =φ
�
x + y

�
= a

�
y
�
φ (x )+b

�
y
�

. (36)

In order to solve the functional equation (36) we need to note that the role
of x as a variable and the one of y as a constant can be interchanged since
the beginning of the proof without changing solutions. Neither does the as-
sumption b

�
y
�
= φ

�
y
�

as we can set—again by Lemma 6—the root and
the slope of φ without changing the resulting mean value. Under these
assumptions (36) can be written as

�
a
�

y
�−1

�
/φ

�
y
�
= (a (x )−1)/φ (x )

where one of the terms on the left or right side is a constant. If we de-
fine d := (a (x )−1)/φ (x ) then we can substitute a

�
y
�
= dφ

�
y
�
+ 1 into

(36) and obtain the non–lin–aditivity condition φ
�
x + y

�
= φ (x ) +φ

�
y
�
+

dφ (x )φ
�

y
�

which has the most general solution linexp
γ (x ) by Proposition 3.

Finally applying Lemma 6 givesφ (x ) =φR
γ (x ).

Explicitly, we have

�
v loa

�
φR
γ

=


φR
γ

�−1
�

n∑
i=1

piφ
R
γ

�
log

�
1

pi

		�

=

⎧⎪⎨⎪⎩
1
γ

log

�
n∑

i=1

p 1−γ
i

�
, γ �= 0

V S(p ) , γ= 0

(37)

To obtain the notation proposed by Rényi (1961) we can apply substitution (33)
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and call

V R
α (p ) :=

⎧⎪⎨⎪⎩
1

1−α log

�
n∑

i=1

pαi

�
, α �= 1

V S(p ) , α= 1

(38)

the Rényi diversity. Log–additivity may (or may not) be a reason why V R
α became

“by far the most widely used class of diversity–based rankings of ecosystems
in biology” (Gravel 2006, p. 19). However, general log–additivity comes at some
“cost” in terms of lost properties, which can—depending on some deliberative
normative discourse—be more severe. To give an example, the concavity of V R

α

is only given for a very limited parameter space 11 .

Proposition 13 For all p ∈� and n ≥ 2, V R
α

�
p
�

is concave only for α ∈ [0, 1] and
it is neither concave nor convex for all α> 2.

Proof of Proposition 13. Case 1: For α = 1 we have V S
�

p
�

which was shown to
be strictly concave. For all α �= 1 we have p (−�V R

α )p ′ = α/ (1−α)≥ 0 iff α ∈ [0, 1).
For case 2 (and other cases) see Ben-Bassat and Raviv (1978), p. 326.

Using Lemma 9, (37) can be rewritten as
�

v loa
�
φR
γ
= τ

��
p
�
φ̂

�
=

τ


φ̂
−1

∑n

i=1 pi φ̂
−1 �

pi
���

where φ̂ (x ) = φR
γ (τ (x )) = a exp

�
γ log

�
1
x

��
+ b =

a x−γ + b = logγ (1/x ) for a = −b = c
γ

, γ �= 0. Then φ̂
−1
(x ) = 1/expγ (x ), thus,�

v loa
�
φR
γ
= log



expγ


∑n
i=1 pi logγ



1

pi

���
=linlog

γ

��
v n-loa

�
φlin

�
or equivalently�

v n-loa
�
φlin =linexp

γ


�
v loa

�
φR
γ

�
. Rényi and Tsallis diversity are monotone trans-

formations of each other, where the transformation is a degree deformed
linearity.

3.2.2 Non–linear mean of numbers equivalent quantities

Despite its intuitive range and general simplicity, the nominal number of classes
(29) does not account for a classes relative quantity pi . In this paragraph we de-
rive more general numbers equivalent measures which do. First we need to de-
fine numbers equivalence of measures depending on p .

Definition 3 (Numbers–equivalent 〈v 〉φ) A distribution based measure 〈v 〉φ is
called numbers–equivalent, written 〈v 〉ne

φ , if

1≤ 〈v 〉φ ≤ n (39)

11 Note, however, that V R
δ is still quasi–concave for all non–negative δ and therefore (16)

is satisfied.
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and
〈v 〉φ = 1 for all p̌ and 〈v 〉φ = n for all p̄ . (40)

Proposition 14 (Numbers–equivalent 〈v 〉φ) Let 〈v 〉φ be Schur–concave, then

τ (x ) =
1

x
⇒〈v 〉φ = 〈v 〉ne

φ (41)

Proof of Proposition 14. The first equation of (40) is equivalent to
φ−1

�∑n
i=1

1
n
φ
�
τ
�

1
n

���
= n ⇔ τ

�
1
n

�
= n ⇔ τ (x ) = 1

x
and the second to

φ−1
�∑n

i=1 1φ (τ (1))
�
= 1⇔ τ (1) = 1⇐ τ (x ) = 1

x
. Together with Schur–Concavity

this implies inequality (39), which proves (41).

Proposition 14 implies that forφ (x ) = φ̂
�

g (x )
�

�
g (v )

�
φ̂ = φ̂

−1

�
n∑

i=1

pi φ̂
�

g
�
τ
�

pi
����

= g

�
φ−1

�
n∑

i=1

piφ
�
τ
�

pi
����

= g
�〈v 〉φ�

is numbers equivalent if g (τ (x )) = 1/x viz. g
�

y
�
= 1/τ−1

�
y
�

. For example the
Tsallis diversity (31) employs τ (x ) = logδ (1/x ) as transformation of shares, thus,
g
��

v n-loa
�
φlin

�
= expδ

��
v n-loa

�
φlin

�
must be numbers equivalent. Similarly, Rényi

diversity (37) is a quasilinear mean of log–additive shares and therefore can be
made numbers equivalent by g

�
y
�
= 1/ log−1 (1/x ) = exp (x ). The more obvious

way to derive numbers equivalents more general than the nominal number (29)
is an order γ generalization rather than a δ–deformation of τ (x ) = 1/x . For ex-
ample, when non–log–additivity (7) is imposed on the generating function we
can define the following generating function.

Definition 4 (Hill generating function) Let a �= 0 and b be arbitrary constants,
then

φH
γ (x ) :=

⎧⎨⎩ a x γ+b , γ �= 0

a log(x )+b , γ= 0
(42)

Note that φH
γ (x ) = logγ(x ) for a = −b = c

γ
, γ �= 0. The self–weighted, numbers–

equivalent power mean is explicitly written

〈v een〉φH
γ
=


φH
γ

�−1
�

n∑
i=1

piφ
H
γ

�
1

pi

	�

=

⎧⎪⎪⎨⎪⎪⎩
c

�
n∑

i=1
p 1−γ

i

� 1
γ

, γ �= 0

c exp
�

V S(p )
�
= c

n∏
i=1

p−pi

i , γ= 0

. (43)
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As usual we may substitue (33) and call

V H
α (p ) :=

⎧⎪⎨⎪⎩ c

�
n∑

i=1
pαi

� 1
1−α

, α �= 1

c exp
�

V S(p )
�

, α= 1

(44)

Hill numbers or Hill diversity due to the work of Hill (1973) on ecological diver-
sity measurement. The straightforward interpretation of this class as the num-
bers equivalent made it also appealing to many other disciplines, such as the
measurement of industrial concentration (Hannah and Kay, 1977) or party frag-
mentation in a parliament (Laakso and Taagepera, 1979). However, V H

γ (p ) can
only be characterized by properties stronger than numbers equivalence.

Definition 5 (Replication) Let p =
�

p1, p2, . . . , pn
�

then

m p :=

⎛⎜⎜⎜⎝p1

m
, . . . ,

p1

m︸ ︷︷ ︸
m times

,
p2

m
, . . . ,

p2

m︸ ︷︷ ︸
m times

, . . . ,
pn

m
, . . . ,

pn

m︸ ︷︷ ︸
m times

⎞⎟⎟⎟⎠
is called the m –fold replication of p . Similarly we will write m v for replicated τ–
transformed shares.

Definition 6 (Replication–homogeneity) 〈v 〉φ is called replication–
homogenous if

m 〈v 〉φ = 〈m v 〉φ . (45)

Replication–homogeneity has numerous intuitive interpretations. In ecological
diversity measurement, for example, a 2–fold replicated species–abundance re-
lation should be exactly twice as diverse as the original one (Hill 1973, p. 430). In
fact, this requirement is sufficient to characterize V H

α among all 〈v 〉φ .

Proposition 15 (Replication–homogenous means)

m 〈v 〉φ = 〈m v 〉φ⇔〈v 〉φ = V H
γ (p ).

Proof of Proposition 15. Necessity is easy to check. For sufficiency I adopt again
the proof technique of Hardy et al. (1934). From replication–homogeneity of
non–numbers equivalent means follows

m

φ−1
�∑n

i=1 piφ
�

pi
�� = 1

φ−1
�

m p1

m
φ
�

p1

m

�
+m p2

m
φ
�

p2

m

�
+ . . .+m pn

m
φ
�

pn

m

��
⇔ �

p
�
φ =

�
p
�
φ̃ (46)
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where φ̃ (x ) :=φ
�

x
m

�
such thatφ−1 (z ) = 1

m
φ̃
−1
(z ). Then (46) is true by Lemma 6

if and only if for two constants, depending on m

φ̃ (x ) =φ
� x

m

 
= a (m )φ (x )+b (m )

⇔ φ̂ �y m
�
= a (m ) φ̂

�
y
�
+b (m ) (47)

with y = 1/x and φ̂
�

y
�
=φ

�
1/y

�
. As in the proof of Proposition 12 we can inter-

change the constant and the variable and assume φ̂ (1) = 0 viz. φ̂ (m ) = b (m )
without changing the solutions of (47), such that d := (a (m )−1)/φ̂ (m ) =�

a
�

y
�−1

�
/φ̂

�
y
�

. Resubstituting a (m ) = d φ̂ (m ) + 1 into (47) gives φ̂
�

y m
�
=

φ̂
�

y
�
+ φ̂ (m ) + d φ̂ (m ) φ̂

�
y
�

, which has the most general solution φ̂
�

y
�
=

logγ
�

y
�

by Proposition 4. Finally with φ̂
�

y
�
=φ

�
1/y

�
and y = 1/x we obtain

φ (x ) = logγ (x ) =

⎧⎨⎩ c xγ−1
γ

, γ �= 0

log (x ) , γ= 0

=φH
γ (x ) for a =−b =

c

γ
,γ �= 0

Another characterization becomes obvious with the following Lemma.

Lemma 16 Let g (x ) = exp (x ) then

〈v 〉φ is log–additive⇔ g
�〈v 〉φ� is pow–multiplicative.

Proof of Lemma 16.

�
vp×q

�
φ
=
�

vp

�
φ
+
�

vq

�
φ

⇔ exp

�

vp×q

�
φ

�
= exp


�
vp

�
φ

�
exp


�
vq

�
φ

�
⇔ g


�
vp×q

�
φ

�
= g


�
vp

�
φ

�
g

�

vq

�
φ

�

Since V R
γ is already characterized as the most general log–additive 〈v 〉φ by Prop-

sition 12, V H
γ must be the most general pow–multiplicative 〈v 〉φ 12 .

12 See Aczél and Daróczy (1963a) for similar findings.
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3.2.3 Non–linear mean of non–log–additive quantities

Finally we need to derive the most general class of mean generating functionsφ
maintaining non–log–additivity of v . To this end, a reformulation of Lemma 16
is useful.

Lemma 17 Let c �= 0, g (x ) = logδ
�

exp (x )
�
=linexp

δ (x ) then

〈v 〉φ is log–additive⇔ g
�〈v 〉φ� is non–log–additive of degree d .

Proof of Lemma 17. Let 〈v 〉φ be log–additive and c ,δ �= 0 then

�
vp×q

�
φ
=
�

vp

�
φ
+
�

vq

�
φ

⇔ exp


δ
�
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�
φ

�
= exp



δ
�
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φ

�
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δ
�

vq

�
φ

�
⇔ exp



δ
�
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�
φ

�
= exp



δ
�

vp

�
φ

�
+exp



δ
�

vq

�
φ

�
+
(

exp


δ
�

vp

�
φ

�−1
)(

exp


δ
�

vq

�
φ

�−1
)−1

⇔ c
exp



δ〈vp×q〉φ�−1

δ
= c

exp


δ〈vp〉φ�−1

δ
+ c

exp


δ〈vq〉φ�−1

δ

+δ
c

c

(
exp



δ〈vp〉φ�−1

)
δ

· c
(

exp


δ〈vq〉φ�−1

)
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⇔ g

�

vp×q

�
φ

�
= g


�
vp

�
φ

�
+ g


�
vq

�
φ

�
+d g


�
vp

�
φ

�
g

�

vq

�
φ

�

which is the non–log–additivity condition for the function g (〈v 〉φ) =linexp
δ

�〈v 〉φ�.
In the δ → 0 limit g is linear and non–log–additivity reduces back to log–
additivity.

Example 18 (Gaussian Entropy) The Shannon–Index V S
�

p
�

is log–additive
due to Proposition 10. Thus, by Lemma 17 V G

�
p
�

:= linexp
δ

�
V S

�
p
��
=

logδ
�

exp
�

V S
�

p
���

must be non–log–additive. This index is well–known in
physics as “(non–extensive) Gaussian entropy” (Frank, 2004). For an equivalent
quasilinear representation of V G we can make use of Lemma 9 such that V G

�
p
�
=�

v n-lad
�
φG andφG(x ) = a linlog

δ

�
y
�
+b , a �= 0.

Given example 18, the following generalization appears natural.

Proposition 19 (Non–log–additivity–preserving means) Let τ be non–log–
additive of degree d , then 〈v 〉φ is non–log–additive of degree d if and only if
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φSM (x ) = aφ∗ (x )+b , a �= 0 where

φ∗ (x ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
δ
c

x +1
� γ
δ ;δ �= γ �= 0

log
�
δ
c

x +1
�

;δ �= 0;γ= 0

exp
�
γx
�

;δ= 0;γ �= 0

x ;δ= γ

. (48)

Proof of Proposition 19. A proof is given in Hoffmann (2008). Here I shall
present a more simple alternative. We know that the Rényi diversity

�
v loa

�
φR
γ

is

the most general log–additive 〈v 〉φ . Thus, by Lemma 17

V SM
γ,δ (p ) = linexp

δ

��
v loa

�
φR
γ

 
(49)

= logδ

〈v een〉φH

γ

�
= logδ



expγ


�
v n-loa

�
φlin

��
is the most general non–log–additive 〈v 〉φ . The remaining task is to find a φ̃ such
that (49) can be written as 〈v 〉φ̃ . Again, we recall Lemma 9 and obtain

V SM
γ,δ (p ) =

�
v n-loa

�
φ̃

where g (x ) =linexp
δ (x ) ,φ (x ) =φ

R
γ (x )

!=linexp
γ (x ) , τ (x ) = log (1/x ) such that

φ̃ (z ) =φ
�

g −1 (z )
�
= linexp

γ



linlog
δ (z )

�
= logγ

�
expδ (z )

�

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

logγ
�

expδ (z )
�
= c (

δ
c z+1)

γ
δ −1

γ
;δ �= γ �= 0

linlog
δ (z ) =

log( δc z+1)
δ

;δ �= 0;γ= 0

linexp
γ (z ) = c

exp(γz)−1

γ
;δ= 0;γ �= 0

z ;δ= γ

τ̃ (x ) = g (τ (x )) = linexp
δ

�
log (1/x )

�
= logδ (1/x ) .

Finally, applying (15) gives the solution (48). Note that the δ = 0;γ �= 0 case re-
covers non–additivity of degree zero, i.e. log–additivity.

4 A unification and comparison framework

In the preceding section different commonly used families of distribution based
diversity measures were characterized and related to each other. Now all these
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Table 3
Examples of popular distribution based diversity index–families included in the
Sharma–Mittal function.

α β Meanφ (x ) Quantity τ
�

pi
�

Measure

�= 1 �= 1 log1−α
�

exp1−β (x )
�

log1−β
�

1/pi
�

V SM
α,β (Sharma–Mittal)

= 1 �= 1 lin
log
1−β (x ) log1−β

�
1/pi

�
V G
β (Gauss)

�= 1 = 1 linexp
1−α (x ) log

�
1/pi

�
V R
α (Rényi)

=β �= 1 x log1−β
�

1/pi
�

V T
β (Tsallis)

=β = 1 x log
�

1/pi
�

V S (Shannon)

�= 0 = 0 log1−α
�

x
c +1

�
c

pi
− c V H

α (p )− c (Hill)

= 0 = 0 x c
pi
− c c n − c (Richness)

= 0 �= 0 x log1−β
�

1/pi
�

logβ (n ) (Dfm. Hartley)

= 0 = 1 exp (x ) log
�

1/pi
�

log (n ) (Hartley)

families (including their respective indices) should be unified within a single
consistent framework. Recalling the generalization methods discussed so far,
it seems obvious to derive a two–parameter notation, where δ represents the
degree of non–additivity of the quantity and γ the deformation degree in the
mean generating process. Whenever δ = 0 all γ–deformed means should be
log–additive and δ �= 0 indicates the degree of non–additivity of a specific γ–
deformed mean. If γ = 0 the mean is either linear or logarithmic, depending on
whether we use the deformed linearity or logarithm, and finally for δ = γ we
do not distinguish between deformation of the quantity and of the aggregation
operator. In fact, all these cases are unified by

�
v n-loa

�
φSM as

V SM
γ,δ

�
p
�

:=
�

v n-loa
�
φSM =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
δ

��∑n
i=1 p 1−γ

i

� δ
γ −1

	
;δ �= γ �= 0

c
δ

�
exp

�
δV S

�
p
��−1

�
;γ= 0; δ �= 0

c
γ

ln
�∑n

i=1 p 1−γ
i

�
;γ �= 0; δ= 0

c
δ

�∑n
i=1 p 1−δ

i −1
�

;γ=δ �= 0

c
∑n

i=1 pi ln



1
pi

�
;γ=δ= 0

.

This two parameter generalization was introduced to information theory by
Sharma and Mittal (1975, 1977). In the present context we call it the diversity
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of order γ and degree δ, or simply Sharma–Mittal diversity 13 . A number of well–
known measures can be identified with a specific parameter tuple. Having ap-
plied substitutions (12) and (33) some discrete points in the α–β–parameter
space and the corresponding measure can be recovered as listed in Table 3. As we
have seen in the preceding sections most of these can be characterized by some
Cauchy–type functional equation. The continuity of a characterizing property
represented by a continuous parameter may help finding an adequate “degree”
to which a desirable property should be satisfied. The key–property considered
here is non–additivity up to some degree. Of course other properties may also
be analyzed. Assume, for example, that concavity is a necessary condition in
some diversity measurement context, such as stochastic portfolio theory (Fern-
holz 2002, 62 pp.). Then we do not need to check each of the known indices for
concavity, but, instead we can also try to determine the α–β–parameter space
for concavity which may directly provide an admissible family of distribution
based measures. As an illustration and for the sake of completeness the follow-
ing proposition is given (cf. Figure 1).

Proposition 20 (Concavity of V SM
α,β ) V SM

α,β is strictly concave for all β > 1 −
(1−α)/α.

Proof of Proposition 20. Let p ∈ � and r = 1 . . . n − 1 be the vertical and

s = 1 . . . n − 1 the horizontal index of the Hessian �V SM
α,β . Further define y

�
p
�

:=∑n
r=1 p a

r , z
�

p
�

:=− α
(1−α)2 y

�
p
� 1−β

1−α−2, a=αβ −α2 and b= (α−1)2 then
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α,β =⎛⎜⎜⎜⎜⎜⎜⎜⎝

z
�

p
�

pα−2
1

�
ap a

1 +by
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apα2 +by
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. . . az
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...
...
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p
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pα−2
n

�
apαn +by

�
p
��

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

p

−�V SM

α,β

�
p ′ = α(1−2α+αβ )

(α−1)2︸ ︷︷ ︸
>0

�
n∑

i=1

pαi

� 1−β
1−α

︸ ︷︷ ︸
>0

!
> 0

⇔α(1−2α+αβ )> 0

⇔β > 2α−1

α
= 1− 1−α

α

13 In information theory this measure is also called information of order a and rank b
(Aczél, 1984).
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Figure 1. Well–known distribution–based measures in the Sharma–Mittal parameter
space. The black lines and dots represent the measures as a function of their parame-
ter.

(a) Unrestricted parameter–space.
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(b) Concavity–parameter–space.
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5 Conclusion and outlook

The preceding sections summarized mathematical characterizations for popu-
lar index–families being used in diversity measurement and provided a unifica-
tion which recovers all of these families by parameter variation. As old as the uni-
fication formalism is, as unknown it seems to be in applied diversity theory. This
is not very reasonable because a consistent comparison framework can signifi-
cantly simplify the rational choice of measures under some individual require-
ments. It must be emphasized, however, that the Sharma–Mittal model does not
constitute a good or admissible diversity meansure per se. Contexts in which dis-
tribution based measures are generally useless can be found easliy 14 . In this pa-
per, I advocate the Sharma–Mittal measure only for its strictly formal feature to
unify popular, existing measures (be they “good” or “bad”) and to express their
varying qualitative differences in terms of varying numeric values.

The Sharma–Mittal formalism clearly provides helpful insights to a large vari-
ety of diversity measures. Nevertheless its qualitative scope is still limited and
partial. To put it differently, some properties may be important in some con-
text for which there is no single point in the α–β–parameter space. These cases
need generalizations different from deforming functions in the way it was dis-
cussed here. Abe (1997), for example, presents a β–deformed logarithm having

14 See Weitzman (1992) or Nehring and Puppe (2002).
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the β ↔ 1/β invariance property. His resulting entropy recovers Shannon en-
tropy for β → 1 like most other generalizations. More recently, Kaniadakis and
Scarfone (2002) introduced the κ–deformed–logarithm lnκ(x ) = (x κ−x−κ)/2κ,
limκ→0 lnκ(x ) = ln(x ) which has the property lnκ(1/x ) = − lnκ(x ) known from
the Napier logarithm. Kaniadakis et al. (2005) further extend the κ–deformed–
logarithm to the κ−r –deformed logarithm lnκ,r (x ) = x r lnκ(x ). Their two param-
eter Shannon generalization Hκ,r

�
p
�
= −∑pi lnκ,r (pi ) is equivalent to an en-

tropy measure first introduced in physics by Borges and Roditi (1998) and also
known as entropy of type (a ,b ) (Sharma and Taneja, 1975) or entropy of degree
(a ,b ) (Aczél, 1984) 15 . Tsallis entropy and Abe entropy are prominent special
cases of these generalizations. However, analyzing these approaches in greater
detail would quickly go beyond the scope of this paper and remains to future
research.
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