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In recent years, innovative ride-sharing services have gained
significant attention. Such services require dynamic deci-
sions on the acceptance of arriving trip requests and vehi-
cle routing to ensure the fulfillment of requests. Decision
support for acceptance and routingmust bemade under un-
certainty of future requests. In this paper, we highlight that
state-of-the-art approaches focus on anticipatory decision-
making for either acceptance or routing decisions. Our aim
is to evaluate the potential of different levels of anticipation
in ride-sharing services. Up to now, it is unclear how the
value of information differs between none, partial, or fully
anticipatory decision-making processes. To this end, we de-
fine and solve variants of the underlying dial-a-ride prob-
lem, which differ in the information available about future
requests. Using a large neighborhood search, our experi-
mental results demonstrate that ride-sharing services can
highly benefit from anticipatory decision-making, while the
favorable level of anticipation depends on particular char-
acteristics of the service, esp. the demand-to-service ratio.
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1 | INTRODUCTION

Worldwide increasing congestion in urban traffic networks and the associated air pollution have led to a growing
interest in innovative shared mobility solutions. Among these are recently launched on-demand ride-sharing services
like UberPool [1], which promise to improve the efficiency of traditional taxi services by bundling travelers on the way
from their origin to their destination. This increased level of efficiency allows, on the one hand, lower fares compared
to individual taxi services and, on the other hand, a more convenient travel experience compared to traditional local
public transport through smaller transport cabins and direct trips. For on-demand ride-sharing services, successful
bundling of requests is crucial to ensure their profitability. This poses a great challenge to operators, since requests
arrive stochastically and decisions have to be made dynamically. Dynamic fleet management, which controls both the
demand to be fulfilled as well as the allocation of the vehicle resources, is a key factor for the successful operation.

Dynamic fleet management comprises (1) acceptance, (2) routing and (3) execution of trip requests. In the ac-
ceptance step, requests are submitted by travelers – often via a mobile application – within digitized and automated
booking processes, and travelers expect instant request confirmations. It must be ensured that all accepted requests
can be fulfilled with respect to the given vehicle resources. Operators can also reject requests in favor of potential
future requests. The following routing step addresses the optimized utilization of the fleet. This includes an efficient
dispatching of vehicles in order to fulfill the current, already accepted and potentially future requests. Since accepted
requests must be fulfilled at short notice, routing tries to include new requests in route plans that are currently exe-
cuted. In the execution step, the fulfillment of accepted requests according to the incumbent route plan is carried out.
The fulfillment is currently accomplished by drivers who are informed about their routes via mobile devices. In the
future, automated fulfillment with fleets of autonomous vehicles is expected to improve the cost-efficiency of such
services.

The three-step request fulfillment process involves two tasks of decision-making: acceptance and routing. Since
requests arrive stochastically, decision support for acceptance and routing has to be made under uncertainty of future
demand. In order to overcome the uncertainty, future requests can be anticipated. However, most contributions in dy-
namic routing do not anticipate future requests at all or establish anticipation for only one already challenging decision
task, namely acceptance or routing. Focusing on either acceptance or routing implies that the anticipated information
about the future demand is only partially explored, though. It is therefore unclear to what extent anticipation can
contribute to increase the efficiency of the dynamic fleet management of ride-sharing services, especially how the
value of information derived from anticipatory decision-making can contribute to the improvement of acceptance and
routing decisions.

The aim of this paper is to evaluate the potential of anticipatory acceptance and/or routing for dynamic fleet
management of ride-sharing services. To this end, we define different levels of anticipation – none, partial, or fully
anticipatory –, review the related literature, and carry out a comprehensive computational study to analyze how the
different levels of anticipation affect the performance metrics of a typical urban ride-sharing service as well as the
service quality perceived by travelers. To this end, we model variants of the dynamic dial-a-ride problem (DDARP)
representing acceptance and routing decisions faced by a ride-sharing service. The problem variants are solved by
a large neighborhood search (LNS) under the objective of maximizing the acceptance rate defined by the number of
incoming requests divided through the number accepted requests. The computational study investigates real trip data
from the Yellow Caps operating in New York City, USA.

The paper is organized as follows. Section §2 provides a review of related literature on decision support for dy-
namic fleet management and anticipatory decision-making in the scope of the DDARP. In Section §3, the DDARP
under consideration is presented and modeled as Markov decision process. Based on this problem description, Sec-
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tion §4 differentiates the levels of anticipatory decision support. Section §5 covers the approaches to evaluate the
potential of the different levels of anticipation as well as the presentation of the LNS. In Section §6, the computational
experiments are presented including study design and computational results. Finally, Section §7 provides a conclusion
and outlines future research directions.

2 | RELATED LITERATURE

In this section, we give an overview of the related research on the DDARP, in particular with regard to how acceptance
and routing decisions are made. For a comprehensive literature review on the dial-a-ride problem in general we refer
toMolenbruch et al. [2] and Ho et al. [3]. For an overview of the research on related dynamic vehicle routing problems
(DVRP), see Psaraftis et al. [4] and Ritzinger et al. [5].

The first studies on fleet management of a ride-sharing service were conducted by Dial [6] and Madsen et al. [7]
in 1995. Dial [6] decompose the problem into a set of travelling salesman problems, while Madsen et al. [7] suggest
an insertion heuristic in order to solve the DDARP. These first contributions limit the problem to the routing decision
since they assume that all incoming requests must be fulfilled. Routing is optimized re-actively after a new request has
been received, and there is no anticipation of future demand. The algorithm proposed inMa et al. [8] enables DDARPs
to be solved for large-scale ride-sharing systems. The idea is to decompose the problem by means of a grid-based
service area.

Many papers consider re-active acceptance and routingwithout anticipation of future demand. For this purpose, a
static problem is solved and updated for each incoming request by applyingwell-known solutionmethods. Acceptance
is made by means of a so-called feasibility check, which ensures that an incoming request can be integrated into
the incumbent route plan. In case of acceptance follows a routing decision by re-optimizing the feasible route plan.
Such a two-step procedure is proposed by Attanasio et al. [9] applying a parallel Tabu Search (TS) for both steps,
by Coslovich et al. [10] through a two-stage insertion heuristic, by Beaudry et al. [11] through an insertion heuristic
for the feasibility check and a TS for re-optimizing the route plan, and by Berbeglia et al. [12] proposing constraint
programming for the feasibility check, extended in Berbeglia et al. [13] to the two-step procedure by a combination
of TS and constraint programming. Constraint programming guarantees that a feasible solution can always be found,
while the other heuristic approaches reject requests more likely if a feasible route plan is more difficult to be found.

There is only a small number of papers which consider anticipatory request acceptance in the DDARP. Corre-
sponding policies accept requests if they are feasible and favourable with respect to the expected cumulative reward.
The idea of actively rejecting unfavourable requests for a DDARPwas first discussed in Horn [14], yet dismissed due to
the potential unfairness towards requests with certain characteristics. Potential discrimination of particular requests
is therefore one aspect that will be examined in our evaluation of the levels of anticipation. Further steps towards an-
ticipatory acceptance were made by Xiang et al. [15] and Hosni et al. [16]. The policies proposed by these two papers
include the pro-active rejection of unfavorable requests, yet without consideration of future demand. In both cases,
the incremental costs caused by an incoming request are calculated in order to reject unprofitable requests, which
are those whose costs exceed a certain threshold. Xiang et al. [15] implements acceptance by an insertion heuristic,
and the subsequent routing decision through re-optimization by local search. Hosni et al. [16] introduces, in contrast,
a model-based approach that integrates each incoming request into the incumbent route plan at minimal incremental
costs.

More sophisticated policies that enable anticipatory acceptance are proposed for the commonDVRP. For example,
Azi et al. [17] introduce request acceptance based on a multiple-scenario approach for the planning of same-day
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deliveries. They evaluate the favourability of a request based on a set of solutions generated through an adaptive
large neighbourhood search (ALNS), taking into account pending and sampled expected future requests. A further
example for an extensive anticipation of request acceptance is the value function approximation presented in Ulmer
et al. [18] for the single vehicle case. In these examples, it is shown that anticipatory acceptance can be beneficial
with regard to a DVRP; we will evaluate this in detail for DDARPs.

The counterpart to anticipatory acceptance is anticipatory routing. Anticipatory routing has often been consid-
ered already in DDARP solution approaches. A first ideawas presented in Horn [14]. In this case, anticipation is limited
to the relocation of idle vehicles to areas with an expected high future demand. More sophisticated anticipatory rout-
ing policies were introduced in Ichoua et al. [19], Schilde et al. [20] and Alonso-Mora et al. [21]. Here, anticipatory
routing considers future demand through dummy requests. Ichoua et al. [19] generates an initial route plan on the
basis of the dummy requests by means of a TS, which is updated with each newly accepted request. Request accep-
tance is carried out through a simple feasibility check. Based on a variable neighborhood search, Schilde et al. [20]
adapt a multiple scenario approach originally proposed by Bent and van Hentenryck [22] for the DVRP. Furthermore,
in Schilde et al. [20] it is assumed that all requests must be fulfilled; request acceptance is therefore not considered.

Alonso-Mora et al. [21] integrate acceptance and routing in a two-stage process, which was first introduced in
Alonso-Mora et al. [23] and then extended by incorporating the expected future demand. In the first step, all feasible
combinations of anticipated and unfulfilled requests are determined independently of the available fleet, resulting in
a set of all possible routes. Based on this set, in the second step, an assignment problem is solved in order to match
each vehicle with a route. Since not all requests can necessarily be covered, request acceptance is made indirectly by
solving the allocation problem. Alonso-Mora et al. [21] present a case study for the DDVRP using real taxi trip data
from Manhattan, which serves as inspiration for our case study. These articles demonstrate that the incorporation
of future demand can increase the performance of the service under consideration. However, anticipatory routing
depends on the implementation of request acceptance. By examining acceptance and routing decisions separately,
we will provide an in-depth analysis of what characteristics justify what level of anticipation.

3 | PROBLEM FORMULATION

In this section, we define the components of the DDARP under consideration. Then, we model the stochastic and
dynamic problem of request acceptance and routing as Markov decision process.

3.1 | Problem components

Let L be a set of locations in the service area of a ride-sharing service. For each location l ∈ L, it is assumed that a
(deterministic) service time pr for boarding or alighting of travelers is known, as well as for all pairs of locations (i , j ) ∈
L, a (deterministic) travel time of ci ,j is defined. The considered ride-sharing service faces a demand represented by
trip requests r ∈ R. Each request is characterized by its receiving time t r , its origin or ∈ L, its destination dr ∈ L,
as well as its time window [br , er ], which defines the earliest pick-up time br and latest drop-off time er . We assume
that the earliest pick-up time br corresponds to the receiving time of the request t r . This means that travelers must
be ready for departure at the time when they pose their request, which excludes pre-bookings. The latest drop-off
time er is defined by addition of earliest pickup time br , direct travel time cor ,dr , and a parameter α , which defines
the maximum arrival delay tolerated by travelers. Arrival delays arise from waiting time to be picked up as well as
detours caused through the bundling of requests. Detours include both additional travel time to reach the origin or
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destination of other travelers on the way to the destination and the service time required by them for boarding or
alighting. In order to satisfy the demand, a fleet of identical vehicles V is available. We assume that the capacity of
a vehicle is not constraining, i.e. passenger seats are never fully occupied due to tight time windows for the request
fulfillment.

3.2 | Markov decision process

The considered decision process consists of a series of decision epochs k ∈ K , covering a temporally limited planning
horizon of a DDARP. At the beginning of the planning horizon, the service is in an initial state s0. For this state,
we assume that the vehicles v ∈ V are waiting in idle mode at an initial location lv ∈ L. Furthermore, a degree
of dynamism of one is considered, so that in the initial state s0 no trips are pending for fulfillment. Each decision
epoch k ∈ K is triggered by a stochastically incoming request rk ∈ R leading to a pre-decision state sk . The pre-
decision state reflects all decision-relevant characteristics such as the activities of the vehicle and pending requests.
Formally, the pre-decision state sk is defined by the time t r at which the service operator has received the new
request rk . Furthermore, it contains the state of the resources described through the tuple (l v

k
, Ov

k
) , where l v

k
∈ L

specifies the current vehicle locations and Ov
k
⊂ R the set of accepted requests currently being executed for each

vehicle. Finally, it represents the demand described through the tuple (rk ,Uk ) , where rk refers to the new request
and Uk ⊂ R to the set of accepted requests pending for fulfillment. These three parts result in the state definition
sk = (t r , (l vk , O

v
k
), (rk ,Uk )) .

Based on the pre-decision state sk , an action Aπ (sk ) is performed by a policy π ∈ Π. Each action consists of
two hierarchically dependent decisions. The first decision is whether to accept or reject the new request rk . This
acceptance decision is represented by the binary decision variable xk ∈ {0, 1}, where xk = 1 represents acceptance
and xk = 0 represents the rejection of a request. Within the decision-making process, the acceptance decision xk
therefore controls the demands to be fulfilled. The second decision is the selection of a feasible route plan. Routing
controls the vehicle resources in order to fulfill the requested trips efficiently. A route plan is considered feasible if all
accepted requests have been assigned to a vehicle subject to the following constraints:
i) For all pending accepted requests r ∈ Uk and the new request rk , in case of xk = 1, the pick-up at origin or is

planned before the drop-off at destination dr for the same vehicle v ∈ V.
ii) For all currently executed requests r ∈ Ov

k
, the drop-off at destination dr is planned for unchanged vehicle v ∈ V.

iii) For all origins, the planned pick-up zo is later or at the same time as the corresponding earliest pick-up time br .
iv) For all destinations, the planned drop-off zd is earlier or at the same time as the corresponding latest drop-off

time er .
Let yk ∈ Fx be the routing decision variable, with Fx as a finite set of all feasible route plans under consideration

of decision xk . The acceptance decision xk requires that the set of all route plans Fx must not be empty. The execution
of action Aπ (Sk ) leads to a deterministic transition from the pre-decision state sk to a post-decision state s a

k
= (yk ) .

This state consists of the selected feasible route plan yk which serves for the routing of the vehicles until the next
decision epoch k +1. This is triggered by the stochastic transitionWk+1, which reflects that the operator has received
the next request rk+1 ∈ R.

The objective is to find an optimal policy π∗ ∈ Π that maximizes the expected cumulative reward vπ (s0) =
maxπÅ{∑K

k=0 Bk (sk ,A
π (sk ),Wk+1) |s0 } over all decision epochs k ∈ K . Let Bk be the partial reward for one decision

epoch k ∈ K and let the value of Bk be equal to the acceptance decision xk , so that the cumulative reward vπ (s0)
corresponds to the acceptance rate defined by the number of received requests divided by the number of accepted
and thus fulfilled requests.
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4 | LEVELS OF ANTICIPATION

The key challenge of the formulated problem is the uncertainty of future demand during the decision epochs k ∈ K
caused by the stochastic nature of the requests r ∈ R. This uncertainty means that the decisions are made based on
incomplete information and thus the cumulative reward vπ (s0) is uncertain, too. In order to handle the uncertainty,
future demands and their implications on the decision-making process can be anticipated. We define anticipation
in the context of decision-making processes as the consideration of future stochasticity (e.g. via historical data or
forecasts) in order to maximize the expected cumulative reward. In contrast, decision making that maximizes partial
rewards based on confirmed information only is referred to asmyopic. In the following, we will discuss different levels
of anticipation in the context of the previously formulated problem to identify their inherent potential for dynamic
fleet management. The distinction between anticipatory and myopic leads to the four levels of anticipation shown in
Table 1.

With respect to the given problem, each decision epoch k ∈ K includes the request acceptance decision xk
and the routing decision yk . We can make both decisions individually in an anticipatory or myopic way. For request
acceptance xk , in case of a myopic decision, a request is simply accepted when there is a vehicle available, since this
will increase the immediate reward by Bk . In this case, acceptance only depends on the routing decisions made in
the previous epochs. In the literature, this is known as feasibility check, which determines whether a feasible route
plan can be found. This feasibility check is as well the basis for an anticipatory acceptance decision, but here, request
acceptance is more complex since it comprises the proactive rejection of a current request in favor of potential future
ones. This kind of rejection occurs when the expected resource savings result in a higher number of accepted requests
over the planning horizon, maximizing the expected cumulative reward vπ (S0) .

Regarding the routing decision yk , the myopic variant corresponds to the selection of the route plan with the
minimum resource utilization, i.e. the solution of a DARP associated with the pre-decision state sk . The anticipatory
variant implies that future demand will be considered in routing. However, the extent to which future demand is
taken into account may differ significantly: this can range from anticipatory relocation of idle vehicles (e.g. Pureza and
Laporte [24]) to sophisticated anticipatory routing that actively incorporates future demands into the fulfillment of
requests (e.g. Ferrucci et al. [25]).

TABLE 1 Levels of anticipation

Acceptance decision

Ro
ut
in
g
de

ci
sio

n

Request acceptance
if feasible

Request acceptance
if feasible & favorable

Routing considers
accepted requests

None Anticipatory Anticipatory Acceptance

Routing considers
accepted & future requests

Anticipatory Routing Fully Anticipatory

Each policy π ∈ Π can be assigned to one of four anticipation levels presented in Table 1. None Anticipatory
includes all policies that do not support anticipation in any form. Instead, both acceptance and routing decisions
are made in a myopic manner. Reasons for the deployment of such a policy could be an unpredictable environment
or insufficient amount of historical data. Moreover, the higher technical and computational effort for anticipatory
approaches could favor the use of purely myopic policies. However, the main argument against such policies is the
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risk of very unfortunate decision-making caused by insufficient information.

Anticipatory Acceptance and Anticipatory Routing address policies that anticipate only with respect to one decision.
In particular, a policy of the level Anticipatory Acceptance restricts anticipation to the acceptance decision xk . These
policies improve acceptance decisions by assessing the long-term value of a request under consideration of future
demand. By focusing on the less complex decision xk , this kind of policy reduces the challenge of anticipatory decision
making. Nevertheless, these policies require reliable information on future demand for a successful implementation.
The focus of Anticipatory Acceptance policies is the acceptance of the most favorable requests that require a relatively
small use of resources (e.g. requests which can be bundledmore easily). However, every anticipatory policy carries the
risk of unfortunate anticipatory decisions. For example, if the future demand is overestimated, too many requests may
be rejected, so that the given vehicle resources are not fully utilized in the end. Moreover, anticipatory acceptance can
bear drawbacks in terms of business considerations. For example, incomprehensible rejections as well as rejections
perceived as proactive may lead to a dissatisfaction of travelers. Furthermore, the continuous rejection of certain
trip requests identified as unfavorable may prevent such trips from being requested, irrespectively of whether the
assessment might change over time.

In contrast, Anticipatory Routing limits anticipation to the routing decision yk . Policies of this kind generally focus
on the efficient current and future utilization of the fleet through the consideration of future demand. There are
simple and more comprehensive policies according to requirements and capabilities of the service under investigation.
In general, Anticipatory Routing has to deal with the complexity of the routing decision, which is already challenging
without anticipation, esp. for large problem instances. In order to enable anticipatory routing during the fulfillment of
requests, a policy requires precise temporal and spatial information on future demand. For instance, idle vehicles can
be relocated in favor of future demand and anticipated requests can be considered in order to bundle more efficiently.
However, misguided anticipation at this level can lead to an inefficient utilization of resources, e.g. by allocating
vehicles to anticipated requests that never realize. From a business perspective, this may cause dissatisfaction among
travelers through unnecessary detours or longer waiting times.

Finally, Fully Anticipatory includes policies that make anticipatory decisions with respect to both, acceptance and
routing. While being the most computationally challenging techniques, they naturally show the largest potential of
dynamic fleet management.

5 | EVALUATION FRAMEWORK

This section describes our framework to evaluate the impact of the different levels of anticipation in dynamic fleet
management of ride-sharing services. We first discuss how request acceptance and routing decisions are made to
enable the evaluation of the anticipation levels and address then how we employ an established LNS to conduct the
computational evaluation.

5.1 | Evaluation approaches

The four presented levels of anticipation are evaluated by solving variants of the DDARP that differ in the level of
information available for the acceptance decision xk as well as the routing decision yk . In the following, the problem
variants as well as the policies applied are discussed for each level.

None Anticipatory: For this level, as a benchmark, the presented problem is solved in a myopic manner. In particu-
lar, the corresponding policy solves the DDARP through a feasibility check and re-optimization following ideas of the
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none-anticipatory approaches presented in Section 2. The feasibility check for the acceptance decision xk is made
by an insertion heuristic, checking whether an incoming request rk ∈ R can be inserted into the incumbent route
plan yk−1, where y0 refers to the initial empty route plan. If the insertion is successful, the request will be accepted.
The route plan obtained by a successful check is then re-optimized in the scope of the routing decision yk . For this
purpose, a static DARP is solved for all accepted requests under the objective of minimizing the total travel time. Note
that for both acceptance and routing decisions already fulfilled requests as well as locations approached by a vehicle
cannot be rescheduled. This means that vehicles are not diverted on their way to a location l ∈ L, which decreases
flexibility of planning, but also computational effort. Moreover, it allows drivers and travelers to be reliably informed
about the next stop, avoiding frequent diversions of vehicles.

Anticipatory Acceptance: In order to evaluate the potential of Anticipatory Acceptance, it is assumed that complete
information on future demand is available for the acceptance decision xk . This decision is made for each incoming
request rk ∈ R in a two-step procedure. First, a feasibility check is carried out by an insertion heuristic (as in none
anticipatory). If the feasibility check has been successful, the favorability of the request is investigated in the second
step. To identify favorable requests, a static team orienteering problem (TOP) with equal scores for each considered
request is solved. The TOP is a well-known variant of the static vehicle routing problem, in which only the most prof-
itable locations are visited. The objective is to find the optimal set of visited locations which maximizes the operator’s
benefit [26]. As input for the TOP serve all requests of the incumbent route plan yk−1, the current request rk as well
as all expected future requests. All requests have equal scores, representing that the route plan found maximizes the
number of scheduled requests. All requests of the incumbent route plan yk−1 must be covered, and the TOP identifies
favorable requests among the current and all future requests. In the end, a request rk is accepted if it is contained
in the best route plan found. After the acceptance decision has been made, a new route plan yk is determined by
solving a static DARP without taking future requests into account, following the idea of None Anticipatory.

Anticipatory Routing: Here, the decisions on request acceptance xk are made dynamically by carrying out a fea-
sibility check for each incoming request rk ∈ R through an insertion heuristic, similar to the procedure of None
Anticipatory. However, it is assumed that all request related time windows [br , er ] refer to the fulfillment on a subse-
quent day, so that an incumbent route plan yk−1 can still be rescheduled flexibly. This enables a dynamic acceptance
decision xk without information on future demand combined with a routing decision yk with complete information
regarding all requests to be fulfilled. After a successful feasibility check, no further re-optimization of the route plan
is performed, yet a final routing decision yk is investigated once all decisions on request acceptance have been made.
The finale route plan to be executed is then determined for the set of accepted requests by solving the resulting static
DARP.

Fully Anticipatory: We assume that perfect information on future demand is given, allowing all dynamic decisions
to be made in advance. For this purpose, the problem is solved as a static TOP with the same score for each request
r ∈ R. This results in a route plan that maximizes the number of covered requests such that the requests to be
accepted and the routes to be taken can be optimized accordingly.

5.2 | Large Neighborhood Search

In the following, we describe the LNS applied for the evaluation of the impact of the different anticipation levels. We
apply the same heuristic for all levels and decisions to ensure the comparability of the computational experiments.
The developed LNS is based on the ALNS proposed by Ropke and Pisinger [27]. It was chosen because it has been
applied over years to a variety of complex vehicle routing problems and has achieved consistently good results in
short run times, which is important especially for request acceptance.
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5.2.1 | Overview

The basic idea of a LNS in general is to destroy and repair solutions iteratively [28]. For the problem at hand, a
solutionw is represented by a route plan nw and a set of unplanned trip requestsmw ∈ R, whose fulfillment is not yet
considered in route plan nw . A route plan nw consists of a plan for each vehicle v ∈ V, which specifies the sequence
of the locations l ∈ L to be visited as well as their planned arrival times zv

l
. The LNS aims to maximize the number of

planned request fulfillments |nw | and/or to minimize the required total travel time c (nw ) .

1 Function LNS(w0)
2 w = w0

3 wbest = w0

4 while termination criterion is not met do
5 wnew = w
6 remove requests from nwnew to mwnew
7 insert requests from mwnew into nwnew
8 if (wnew is accepted) then
9 w = wnew

10 if (wnew is an improvement towbest ) then
11 wbest = wnew

12 end
13 end
14 end
15 return wbest

The search is initialized with a solution w0 as input, which is saved as incumbent solution w and best known
solution wbest (line 2 and 3). Next, the iterative search for a better solution is performed until a termination criterion
is met. As termination criterion, a maximum number of iterations β is defined as well as further criteria depending on
the respective purpose of the search. Each iteration of the LNS begins with the creation of a new solution (line 5 to 7).
For this purpose, the incumbent solutionw is saved as basis of the new solutionwnew . Afterwards,wnew is destroyed
through an operator that moves between γ1 and γ2 percent of the requests from the route plan nwnew to the set of
unplanned requests mwnew . If, in this dynamic environment, the origin or has been visited already, the corresponding
destination dr is no longer removable. The exact number of requests to be removed is determined in each iteration
by a random value q with {q ∈ Î | (γ1 × |nwnew |) ≤ q ≤ (γ2 × |nwnew |) }. In the next step, a repair operator inserts
as many requests from the set of unplanned requests mwnew into the route plan nwnew as feasible. For both destroy
and repair, in contrast to a classical ALNS, the particular operator is selected randomly for each iteration. This is a
consequence of the implementation of the LNS in a dynamic environment, where multiple searches are performed
over a few iterations so that automatic adaptation of the operator selection during the search is neither feasible nor
advantageous. Removal operators correspond to those used in Ropke and Pisinger [27]. We summarize them as
follows.

Random-Removal: This operator randomly selects the requests to be removed and thus provides a maximum
diversification in terms of the set of selected requests.
Worst-Removal: The aim of this operator is to remove requests that are not placed well. For this purpose, all
requests of a route plan are sorted in descending order in a list according to the travel time that could be saved
if the request was removed. In order to avoid the repeated removal of similar sets of requests, “noise” is applied
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when selecting a request for removal. Following Ropke and Pisinger [27], we use the formula qδ1 × |l i s t | to
determine the list position of the next request to be removed. In this formula, q stands for a random value with
{q ∈ Ñ |0 ≤ q ≤ 1} and δ1 for the parameter that controls the degree of noise.
Shaw-Removal: Originally introduced by Shaw [29], this operator removes similar requests, since they can be
shuffled around more easily so that improved route plans can be found more likely. In particular, first, a request
is randomly selected. All other requests are then sorted in ascending order according to their similarity to the
selected request and removed corresponding to the sorting. The similarity between two requests r1 and r2 is
calculated by the distances between origins car1 ,ar2 and destinations cdr1 ,dr2 as well as between their planned
arrival times ∆(zar1 , zar2 ) +∆(zdr2 , zdr2 ) . Before the geographically and temporally values are added up, they are
min-max normalized.

For the subsequent insertion of the removed requests, there is a wide range of operators. We only discuss the
most promising Regret-2 operators, one with and one without noise.

Regret-2-Insertion: The Regret-Insertion heuristic was first proposed by Potvin and Rousseau [30] for the vehicle
routing problem with time windows. The idea is to insert requests at the position where the regret would be
greatest if the best found insertion position was no longer feasible. The regret is calculated for the Regret-2
variant by the difference between the most and the second most cost-effective feasible insertion position. The
costs correspond to the additional travel time which would result if the request was inserted in the position of the
route plan. In case that only one feasible insertion position can be found, the difference to the maximum integer
value is calculated instead. For each selection of the next request to be inserted in the route plan, the regret value
of each unplanned request r ∈ mwnew is calculated and sorted accordingly in descending order. For the operator
without noise, the request with the highest regret value is inserted into the most cost-effective feasible position.
For the operator with noise, the selection of the next request to be inserted is made in the same way as described
for the Worst-Removal operator. The degree of noise is controlled in this case by the parameter δ2.

A new generated solutionwnew is accepted if the number of planned requests |nwnew | remains equal or increases
compared to the incumbent solution w (see line 8). Since mostly fully utilized services are investigated which often
shiw limited routing flexibility, this acceptance criterion has the advantage of allowing a maximum diversification with
respect to the overall travel time and prevents a deterioration of the number of planned requests. After accepting
and saving snew as incumbent solution s , it is checked whether it is an improvement compared to the best known
solution sbest (line 10 to 12). This is the case if the number of planned requests |nwnew | is increased or remains equal
by a decreased total travel time c (nwnew ) . After evaluating the new solution wnew , the next iteration is performed
until the search is terminated, and the best known solution wbest is returned (line 15).

5.2.2 | Implementation

In the following, we briefly describe how the LNS is implemented according to the different levels of anticipation
described in Section 5.1.

None Anticipatory: Here, the LNS is applied as an insertion heuristic for the feasibility check of the acceptance
decision and for re-optimization of the routing decision. For the insertion heuristic, the initial solution w0 is provided
with the set of unplanned requests mw0 including the new request rk ∈ R. The route plan nw0 only covers locations
l ∈ L whose planned arrival times zv

l
plus service time p l are greater or equal to the time of request t rk . The first
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location of each plan contained in nw0 thus represents the current respectively next location of a vehicle and cannot
be rescheduled. Based on this input, the LNS searches for a solutionwnew where all requests are inserted in the route
plan nwnew . The search is terminated when either such a solution could be found or a maximum of β iterations has
been performed. Note that in case of an unsuccessful feasibility check, the returned solution is discarded, while the
initial solution w0 is reused as initial solution for the feasibility check of the next request rk+1. In case of a successful
feasibility check, the found solution is used as initial solution for the re-optimization performed by the LNS under the
objective of minimizing the total travel time in β iterations.

Anticipatory Acceptance: This level requires as well a feasibility check for the acceptance decision and a re-
optimization for the routing decision, and generally follows the ideas of None Anticipatory. However, for solving the
TOP in the additional favourability check of the acceptance decision, the initial solutionw0 consists of the same route
plan as in case of the feasibility check. Then, the set of unplanned requests mw0 contains, besides the new request
rk , all trips to be requested in the following decision epochs. Based on this input, the LNS maximizes the number
of planned requests |nw |. For the acceptance of a new solution wnew as best solution wbest , an additional criterion
is applied, which evaluates if all requests planned in the initial route plan nw0 are as well contained in nwnew . The
search terminates after either finding a solution wnew where all in the search considered requests could be inserted
in the route plan or after β iterations have been performed. Once the search has been terminated, it is examined
whether the candidate request rk is contained in the returned route plan nwbest , which represents that it has passed
the favourability check.

Anticipatory Routing: In this case, the LNS is primarily used to solve the feasibility check for the acceptance
decisions. The feasibility check is initialized with a solutionw0 that consists of an empty route plan nw0 or a route plan
that results from the last successful feasibility check and a set of unplanned requests mw0 including the new request
rk ∈ R. After completion of all feasibility checks, the LNS is applied in the final routing decision to minimize the travel
time of the solution returned by the last successful feasibility check.

Fully Anticipatory: Here, the LNS is applied to solve the TOP. The initial solution w0 consists of an empty route
plan nw0 , and the set of unplanned requests mw0 includes all trip requests r ∈ R . The solution w is then optimized in
β iterations with respect to the number of planned requests |nw | and the total travel time c (nw ) .

6 | COMPUTATIONAL EVALUATION

In this section, we analyze the potential of anticipation for the quality of service and the performance of ride-sharing
services. We introduce our instances, justify the parameterization of the LNS, and present the results of the compu-
tational study.

6.1 | Experimental design

The potential of different anticipation levels is evaluated in a case study based on taxi trip data collected in the urban
area of New York City, USA. This data set is provided by the City of New York and contains a total of 165,114,361
million trips fulfilled by the Yellow Cap taxi fleet in the year 2014 [31]. Each record contains the start and end time
of the trip, the distance traveled as well as the origin and destination locations in terms of geographical coordinates.
Figure 1 shows the temporal distributions of the trips. In order to simplify the data handling and to ensure consistent
trip patterns, we only include weekday trips from January 2014 that operate in the evening peak (between 17:30 and
20:30) in the area of Manhattan. Furthermore, only trips with a distance greater than zero are considered.
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F IGURE 1 Pick-up time distribution

Given the taxi trip data, we derive the characteristics for our ride-sharing service as follows. First, potential
initial vehicle locations have to be determined. For this purpose, 40 locations were randomly sampled from the set
of locations where a trip ends at 17:30. Second, potential trip requests including origins and destinations have to be
defined. To this end, of all included trips, 180 were randomly sampled. Thus, we assume one incoming request per
minute on average. A constant set of trip requests is used in all experiments in order to enable trip-specific evaluations
across all anticipation levels. All selected locations are visualized in Figure 2, indicating that there is a centrally located
area in Manhattan with a higher demand density. Next, free flow travel times between all locations were computed
using GraphHopper [32]. Free flow travel times are varied by a factor ε to account for longer travel times during
congestion.

(a) Initial vehicle locations (b) Origins (c) Destinations

F IGURE 2 Location distributions

We create 110 problem instances as follows: 10 instances are used for the parameter tuning of the LNS and 100
for our computational study. These instances differ in the receiving times of each request aswell as in the initial vehicle
locations. Moreover, a baseline scenario is defined for all instances as follows: a fleet of 10 vehicles, a planning horizon
from 17:30 to 20:30 (180 minutes), a travel time time factor ε = 3, and a maximum arrival delay for each request of
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15 minutes.
In our analysis, we are interested in the following variants of the baseline scenario. First, we vary the fleet size to

analyze different levels of demand coverage. Second, we analyze the impact of temporally varying demand density. To
this end, the length of the planning horizon is varied, and receiving times of requests are adjusted to the corresponding
time frame under investigation, whereby 19:00 always marks the middle of the planning horizon. Third, we analyze
geographically varying demand densities by adjusting the travel time factor. Fourth, we examine the impact of the
fulfillment time window by varying the allowed maximum arrival delay.

TABLE 2 Values for the sensitivity analysis

Sensitivity analysis Varying characteristic Values

Demand Coverage Fleet size 2 6 10 14 18

Temporal Demand Density Planning horizon 36 min 108 min 180 min 252 min 324 min

Geographical Demand Density Factor on travel time 0.6 1.8 3 4.2 5.4

Fulfillment Time Window Maximum arrival delay 3 min 9 min 15 min 21 min 27 min

For each analysis, four variations of the base value are considered, representing a decrease of 40% and 80% as
well as an increase of 40% and 80% of its parameters (see Table 2). With these parameter intervals, we can cover a
wide range of the possible objective function values and at the same time create deep insights into where and when
what level of anticipation is beneficial.

6.2 | Parameter tuning

The parameter tuning of the LNS is based on the Demand Coverage sensitivity analysis. This represents a compromise
between parameter tuning for a particular scenario and all scenarios. The 10 instances generated for parameter tuning
are solved five times, each time with an adapted fleet size. For insertion and re-optimization in the scope of None
Anticipatory and Anticipatory Acceptance the tuning of the parameters is based on None Anticipatory. For Anticipatory
Routing, a separated tuning is performed, since considerably more requests have to be handled during an insertion
and the final re-optimization due to the postponed fulfillment. Regarding the TOP, the parameter tuning is based on
Fully Anticipatory. The resulting values are mostly applied to solve the TOP as favorability check within Anticipatory
Acceptance. However, the number of required iterations β and thus the computational effort is determined separately.

The number of iterations as termination criterion has a particularly impact on the solution quality and the comput-
ing time. We define a reasonable maximum number of iterations β as follows. We begin with an overly large number
and then check the last iteration yielding a new best solution. The final number of iterations is then determined by
rounding up to the next number divisible by 100 resp. 1000. The results of this procedure are summarized in Table 3.
At the beginning, the percentage of trips removed per iteration is set to γ1 = 0.3 and γ2 = 0.4 following Ropke and
Pisinger [27], and the noise for the operators is set to a medium level of δ1 = 4 and δ2 = 4.

From the table it can be observed that the values vary considerably, which is due to the different number of
replannable requests and the differences between single and repeated execution. Overall, a reasonable value of
β could be determined for most of the cases. An exception is the TOP in case of Anticipatory Acceptance. Here,
improvements are still found for all fleet sizes close to the last iteration. A further increase of the number of iterations
was omitted, since the tested β values already induce significant computational effort. However, since this check is
simply intended to determine whether a trip is favorable, i.e. whether it can be easily integrated together with current
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TABLE 3 Number of iterations β

Anticipation Level Case Final β Test β � Last successful iteration per fleet size

2 6 10 14 18

None Anticipatory Insertion 100 1000 1 2 5 5 11

Re-optimization 200 1000 0 1 8 24 126

Anticipatory Acceptance TOP 3000 3000 2895 2995 2995 2996 2999

Anticipatory Routing Insertion 1000 2000 260 531 728 910 719

Re-optimization 10000 10000 3 1245 6283 9713 9778

Fully Anticipatory TOP 30000 40000 4770 15195 15288 27235 15306

and future requests, there is no need to focus on exceptional solution quality.

Further parameter values are determined by the acceptance rate calculated across all instances. The first parame-
ter values are γ1 and γ2, which control the minimum andmaximum percentage of requests to be removed per iteration.
To determine these two parameters, values between γ1 = 0.1, γ2 = 0.2 and γ1 = 0.7, γ2 = 0.8 were tested for the same
LNS cases as before. It turns out that in cases with a high number of replannable requests, lower values and thus
smaller changes in the solution are advantageous. The acceptance rate for these cases differs up to 4%. In the oppo-
site case, with only a few replannable requests, higher values are slightly advantageous, however, the differences are
small. Based on these results, for the insertion and re-optimization in the case of None Anticipatory and Anticipatory
Acceptance, γ1 = 0.7, γ2 = 0.8 is applied. For both TOP as well as the insertion and re-optimization of Anticipatory
Routing, we set γ1 = 0.1, γ2 = 0.2. Regarding the noise parameters δ1 and δ2, which are applied in the Worst-Removal
and the Regret-2 operator, no noise (δ1 |δ2 = 0), medium noise (δ1 |δ2 = 4) and a high degree of noise (δ1 |δ2 = 8) are
examined separately. However, a significant influence on the acceptance rate could not be determined. Since the
results were best for all examined cases when using a medium noise (δ1 |δ2 = 4), this value is selected for the further
experiments. The detailed results of the tuning of γ1, γ2, δ1 and δ2 are reported in the appendix.

6.3 | Computational results

First, we analyze acceptance rates for different levels of anticipation. Then, further metrics that describe the opera-
tional performance of the ride-sharing service are discussed. This provides insights into the nature of such services and
contributes to a better understanding of the context-related effects of anticipatory decision-making. Last, we investi-
gate the effect of the anticipation levels on the service quality perceived by travelers through a detailed trip-specific
evaluation. We will discuss the results of all four sensitivity analysis presented in Table 2 with regard to their impact
on acceptance rates. For further investigations, we focus on Demand Coverage and leave detailed results for Temporal
Demand Density, Geographical Demand Density and Fulfillment Time Window for the appendix, since the findings are
structurally similar.

6.3.1 | Acceptance rates

We begin with analyzing the potential of anticipation with respect to achievable acceptance rates. We particularly
analyze the value of information on future demand in acceptance and routing decisions. Results are presented in
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Figure 3, which shows the acceptance rate on the Y-axis and the fleet size on the X-axis. The acceptance rates are
calculated based on the 100 instances solved 5 times with the varying fleet sizes for each of the four anticipation
levels. The different levels of anticipation are separated by color. The points represent the numeric results and the
trend is highlighted by connecting lines. Additionally, the standard deviations of the acceptance rates are illustrated
by a lighter color range around the lines.
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F IGURE 3 Demand Coverage: Acceptance rate with standard deviation

Generally, with increasing fleet size, achievable acceptance rates increase as well. As expected, None Anticipatory
leads to the smallest acceptance rates, while Fully Anticipatory creates the best acceptance rates with a gap of about
10− 20%. Hence, there is significant potential for anticipation. Interestingly, for smaller fleet sizes, Anticipatory Accep-
tance yields better results, while for larger fleet sizes, Anticipatory Routing can create significantly higher acceptance
rates. The standard deviations increase with increasing fleet sizes. They are negligible for Fully Anticipatory.

We now analyze the results of further sensitivity analyses (see Figure 4). We begin with (a) Temporal Demand
Density, where we manipulate the demand through temporal variation of the booking period. Generally, results are
similar to those obtained for the Demand Coverage analysis. For the same fleet size, a relatively larger booking period
allows to accommodate more requests, with a high potential of anticipatory routing for a large temporal spread of
requests and a high potential of anticipatory acceptance for a small temporal spread of requests. For (b) Geographical
Demand Density, instead of the time of the booking period, the travel time factor ε is used to vary the geographical
density of the service area. As expected, when the relative travel times become larger and the area of operation
becomes more “stretched” out, the acceptance rates decrease. The acceptance rate of Fully Anticipatory is about
20% higher than for None Anticipatory. Anticipation via either routing or acceptance can improve this by about 5%
only. Here, a high geographical density diminishes the benefits of anticipatory acceptance and increases those of
anticipatory routing. However, when the geographical density decreases, unfavorable requests from remote regions
may automatically be infeasible to fulfill.
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F IGURE 4 Acceptance rates per sensitivity analysis

Finally, we analyze for (c) Fulfillment Time Window how a variation of the maximum delay, consisting of waiting
time and detour, effects the potential of the anticipation. As expected, acceptance rates increase for all anticipation
levels with an increasing maximum delay. However, the gap between None Anticipatory and Full Anticipatory is very
large for small maximum delays. In contrast, Anticipatory Routing yields quite stable results for all maximum arrival
delays. The value of information about future demand is higher for acceptance when the maximum delay is higher
and for routing when the maximum delay value is lower.

Above findings demonstrate that anticipatory decision-making has great potential to increase the acceptance rate
of dynamic ride-sharing services. It is clear that the potential of both, anticipatory acceptance and routing, evolve dif-
ferently in response to modification of the service under consideration. The value of information on future demand is
particularly high for acceptance decisions, when (1) insufficient resources (due to small fleet size or dense temporal de-
mand) require a significant proportion of requests to be rejected, and (2), when a sufficiently large and heterogeneous
pool of potentially acceptable demand (due to moderate geographic demand density and sufficiently wide fulfillment
time windows) enables the selection of more favorable requests. For the routing decision, the fulfillment time window
analysis shows the importance of information on future demand for tight fulfillment time windows, while the others
highlight the dependency on a sufficiently high acceptance rate. Hence, with only a few accepted requests, the trips
to be fulfilled are so unfavorable that an increase in performance through Anticipatory Routing is barely achievable.
Overall, the results imply that the potential of policies from Anticipatory Acceptance and Anticipatory Routing vary
greatly depending on the nature of the ride-sharing service.

6.3.2 | Operational performance

The aim of this subsection is to gain further insights into how anticipation impacts further performance metrics of a
ride-sharing service. The following metrics are considered:

• The average travel time per fulfilled request, defined as the total travel time divided by the total number of
fulfilled requests.

• The pooling rate, which measures the percentage of travelers who shared a part of their ride with at least one
other traveler.
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• The percentage share of each vehicle mode, defined by the total time all vehicles have spent in the mode
divided by the total time spent by the entire fleet. The considered modes are:

1. Shared Travel Time: Time a vehicle transports more than one traveler,

2. Single Travel Time: Time a vehicle transports exactly one traveler,

3. Unoccupied Travel Time: Time a vehicle drives without a traveler, i.e. empty trips,

4. Boarding and Alighting Time: Time required for pick-up or drop-off of travelers,

5. Idle Time: Time a vehicle waits at a location for a traveler or the next assigned request.

The first metric examined is the average travel time per fulfilled request in minutes, plotted in Figure 5 against the
varying fleet size. None Anticipatory creates constantly high average travel times per request evenwith increasing fleet
size. Again, Fully Anticipatory is the counterpart, with travel time savings of 3 to 10minutes on average, highlighting the
potential of anticipation for ride-sharing services. Anticipatory Acceptance works almost as well as Fully Anticipatory;
only for the largest fleet size, Anticipatory Routing becomes more efficient. Hence, the reduction of the average travel
time per fulfillment is mainly rooted in anticipatory acceptance decisions.
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F IGURE 5 Demand Coverage: Average travel time per fulfilled request and pooling rate

The secondmetric of interest is the pooling rate shown in Figure 5. None Anticipatory and Fully Anticipatory define
lower and upper bounds with a gap of 60%. Anticipatory Routing is the key for a good pooling rate; with increasing
fleet size, it almost becomes as effective as Fully Anticipatory. However, if the fleet size is small, there is a similarly
high potential for improving the pooling rate through anticipatory acceptance.

So far, we have seen that the effectiveness of anticipatory acceptance and anticipatory routing can vary quite
a bit. Anticipatory Acceptance tends to achieve a reduced average travel time per fulfillment by accepting a set of
favorable requests, while Anticipatory Routing tends to offer higher pooling rates through more successful bundling
of travelers. Finally, we examine the proportion of all modes a vehicle can have for the different levels of anticipation
(see Figure 6). For all levels of anticipation and fleet sizes, a rather stable proportion of Unoccupied Travel Time as well
as the relatively large share of single travel time is obvious. Interesting differences can be observed with respect to
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the Shared Travel Time and Idle Time. For Shared Travel Time, again, Anticipatory Routing is the key. Interestingly, even
with Fully Anticipatory, only about 25% of the total fleet time is used for the simultaneous transport of more than
one traveler. However, this is a significantly increased proportion compared to None Anticipatory. Major differences
are also apparent for the Idle Time. Especially for Anticipatory Routing and Fully Anticipatory, lower idle times can
be observed. The lower idle times for anticipatory routing are rooted in proactively relocations in favor of future
demands. In contrast, the share of the idle times is highest for Anticipatory Acceptance. Here, the higher idle times
arise as anticipatory acceptance may have vehicles wait longer in idle mode instead of accepting an unfavorable
request. Overall, these results show different strategies regarding the handling of idle time, whereby the combination
of both strategies appears to be the most promising.
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F IGURE 6 Demand Coverage: Time share per vehicle mode

6.3.3 | Quality of service per trip

Now we examine the impact of anticipatory decision-making on the quality of service experienced by travelers. Ser-
vice quality metrics are derived for each of the trips and summarized per anticipation level. The first step is to in-
vestigate whether different service quality levels can be observed and if the trip-specific quality of service varies per
anticipation level. We analyze the following metrics:

• The acceptance probability for each trip, represented by the number of times the trip is requested per the
number of times the request is accepted.

• The average waiting time per trip, based on the difference between the time of the request and the time the
corresponding traveler is picked-up.
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• The average detour duration per trip, defined as the average difference between the direct travel time of the
trip and the actual time between executed pick-up and drop-off.

The results are shown in Figure 7 by means of density plots. With regard to acceptance probability, there are
clear differences in the distributions. For None Anticipatory and Anticipatory Routing the diversification is relatively
low, with a high density at about 50%. Distributions for Anticipatory Acceptance and Fully Anticipatory are very flat.
This shows that the probability of being accepted is quite dissimilar among the trips regardless of the circumstances of
their request, indicating that the acceptance probability depends on trip inherent characteristics. Interestingly, these
characteristics seem to have relatively minor influence on whether it is feasible to accept a trip.
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F IGURE 7 Quality of service per trip

The average waiting time for each trip is relatively constant per anticipation level, but the levels differ quite a
bit from each other. Anticipatory Routing shows again its higher potential to transport travelers at shorter notice. For
Anticipatory Acceptance, probably the rejection of requests with longer detours leads to shorter average waiting times.

As seen for the analysis of acceptance probability, the average detour duration per trip also follows different
distributions. What is particularly surprising is the shape of the distributions, which shows, especially for Anticipatory
Routing and Fully Anticipatory, that the average detour duration varies depending on the trip. The opposite order of
the distribution peaks, compared to those of the average waiting time, results from the jointly limitation of both via
the maximum delay parameter. The shorter waiting times achieved by anticipatory decision-making are thus partly
offset by longer detours.

In the following, trip characteristics are further investigated to find correlations between acceptance probabil-
ity and detour duration. To this end, we consider the location of the origin and destination as well as the distance
between them. For a DVRP, Soeffker et al. [33] have already shown that anticipatory acceptance discriminates the pe-
ripheral regions of the operating area, i.e. the locations there have a lower probability of acceptance. For Anticipatory
Acceptance, Figure 8 illustrates this correlation separately for origin and destination of all trips, using a color scale that
reflects the the acceptance probability. The blue dots indicate trips with a very low acceptance probability and red
ones those with a very high acceptance probability. A preference for the regional center and the discrimination of up-
per and lower periphery is evident, indicating that, for anticipatory acceptance, there is a positive correlation between
the acceptance probability of a trip and the geographical centrality of its origin and destination. In contrast, the anal-
ysis of average detour duration for Anticipatory Acceptance and Anticipatory Routing did not reveal any recognizable
discrimination patterns, though.
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(a) Trip origins (b) Trip destinations

F IGURE 8 Anticipatory Acceptance: Acceptance probability depending on the locations of the trips

As a further characteristic, we examine the trip distance in the light of acceptance probability and detour duration.
Results are shown in Figure 9. It becomes evident that there is a distinct negative correlation in case of Anticipatory
Acceptance. Implicitly, anticipatory acceptance utilizes the trip distance as a further criterion to assess trips. For the
average detour per trip, a positive correlation with trip distance is noticeable for both cases. This correlation, however,
is much more pronounced for Anticipatory Routing. Hence, anticipatory routing penalizes long-distance trips, yet in a
way that limits the usability of the ride-sharing service for such trips not as strict as Anticipatory Acceptance does.
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In summary, anticipatory acceptance and routing have very different impact on the quality of ride-sharing ser-
vices as experienced by travelers. For anticipatory acceptance, the quality depends significantly on the nature of the
requested trip. A ride-sharing service applying such a policy would be very suited for short trips in the center of the
service area. However, as their requests would be rejected frequently, travelers requesting trips with other character-
istics are likely to switch to other mobility services. In contrast, for anticipatory routing, the service would be much
more balanced in terms of the acceptance probability. Yet, the increasing average detour in proportion to the distance
traveled could diminish the perceived quality of service, even if this may seem fair to the traveler. Finally, it should be
noted that a fully anticipatory policy would not only incorporate the potentials as shown in the previous sections but
also the unequal quality of service depending on the characteristics of the trip.

7 | CONCLUSION

In our paper, we investigated the value of anticipatory decision-making for dynamic fleet management of ride-sharing
services. To this end, we defined four levels of anticipation, – none, anticipatory acceptance, anticipatory routing, and
fully anticipatory –, which differ by how they consider information on future demand in the acceptance and/or routing
decisions. The evaluation of these levels was accomplished in a comprehensive computational study. The results
were analysed with regard to the impact of the anticipation levels from an operator’s perspective as well as with their
consequences for travelers. Overall, our results demonstrated a great potential for anticipatory decision-making in
dynamic fleet management. Potential benefits range from increased acceptance and pooling rates to decreased travel
and idle times. The advantages of anticipatory decision-making for service operators, however, go hand in hand with
a varying quality of service perceived by travelers. In particular, acceptance probability and detour duration depend
considerably on the nature of the requested trip.

A particular contribution of our paper is the differentiation of anticipation levels according to anticipatory routing
and acceptance. This created insights about whether the value of information on future demand can be attributed to
either acceptance or routing decisions or a reasonable combination of them. This is important since computational
effort differs a lot for corresponding policies. For request acceptance, anticipation is especially beneficial if there is a
sufficient surplus of demand. Anticipatory acceptance works well when there is a decent subset of favorable requests
that can be selected from a larger pool of feasible requests. Furthermore, anticipatory acceptance can increase the
acceptance rate primarily through a significant decrease of average travel time per fulfilled request. The acceptance
probability is highly correlated with the nature of the requested trip, leading to an acceptance of short trips that are
centrally located in the service area.

Anticipatory routing is primarily associated with the acceptance rate and the promised fulfillment time window.
Due to consideration of expected requests, anticipatory routing shows a rather stable performance despite increas-
ingly narrow fulfillment time windows. However, the ability to anticipate unfavorable future requests can only be
beneficial if the acceptance decision has a minor impact. Therefore, the value of information on future demand in-
creases with an increasing acceptance rate. In particular, the performance improvement through anticipatory routing
can be traced back to a much more successful bundling of requests. The consequence for travelers is that the detour
duration increases proportionally to the distance of the trip.

Our paper offers operators of ride-sharing services an orientation on which level of anticipation decision-making
could be implemented. For instance, anticipatory acceptance could bemore suitable for large services or services with
few regular travelers, where the satisfaction of individual travelers is negligible. Furthermore, it could be implemented
in order to efficiently manage a temporary demand surplus at special occasions. Anticipatory routing would be particu-
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larly suitable for services that undergo few changes and rely instead on the transport of a rather fixed base of travelers.
Besides, it can be limited to less ambitious anticipatory policies, e.g. the relocation of idle vehicles. Furthermore, we
contribute to research on dynamic fleet management, in particular with regard to the DDARP, by providing a more
differentiated view on acceptance and routing decisions and their implications towards anticipatory decision-making.
We believe that this can be the basis for the development and benchmarking of new anticipatory approaches that
incorporate a comprehensive view of acceptance and routing decisions.

In the future, a comprehensive classification of the anticipatory approaches known for the DVRP could provide a
better understanding of what types of anticipation are reasonable for dynamic fleet management. This would require
a further differentiation of the presented levels, for example, by determining whether information on future demand
should actively be incorporated by stochastic and dynamic solution approaches. Furthermore, in our study, only
theoretical potentials were evaluated. An intuitive next step would be to investigate the realizability of the identified
potentials on the basis of selected state-of-the-art approaches implementing anticipatory decisions for acceptance
and/or routing. A first step in this direction could be the development of a fully anticipatory approach for the large-
scale dynamic fleet management of ride-sharing services.
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Appendix

TABLE 4 Percentage of requests removed per iteration

γ1 − γ2
Fully Anticipatory Anticipatory Routing None Anticipatory

TOP
Insertion &

final re-optimization
Insertion &

re-optimization

10% - 20% 64.4% 54.0% 44.4%

30% - 40% 63.9% 53.3% 44.5%

50% - 60% 61.8% 51.5% 44.5%

70% - 80% 61.4% 50.5% 44.6%

TABLE 5 Noise value Regret-2 Insertion

Values

Fully Anticipatory Anticipatory Routing None Anticipatory

TOP
Insertion &

final re-optimization
Insertion &

re-optimization

δ1 = 0 64.2% 53.8% 44.6%

δ1 = 4 64.4% 54.0% 44.7%

δ1 = 8 64.3% 53.6% 44.6%

TABLE 6 Noise value Worst-Removal

Values

Fully Anticipatory Anticipatory Routing None Anticipatory

TOP
Insertion &

final re-optimization
Insertion &

re-optimization

δ2 = 0 64.3% 53.7% 44.6%

δ2 = 4 64.4% 54.0% 44.7%

δ2 = 8 64.4% 53.8% 44.6%
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F IGURE 14 Geographical Demand Density: Quality of service per trip
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