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Sebastian Henn∗, Sören Koch∗, Karl Doerner†,
Christine Strauss†, Gerhard Wäscher∗
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Abstract

In manual order picking systems, order pickers walk or drive through a distribution warehouse in

order to collect items which are requested by (internal or external) customers. In order to perform

these operations efficiently, it is usually required that customer orders are combined into (more sub-

stantial) picking orders of limited size. The Order Batching Problem considered in this paper deals

with the question of how a given set of customer orders should be combined such that the total length

of all tours is minimized which are necessary to collect all items. The authors introduce two meta-

heuristic approaches for the solution of this problem; the first one is based on Iterated Local Search,

the second one on Ant Colony Optimization. In a series of extensive numerical experiments, the

newly developed approaches are benchmarked against classic solution methods. It is demonstrated

that the proposed methods are not only superior to existing methods, but provide solutions which

may allow for operating distribution warehouses significantly more efficient.
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1 Introduction

Order picking is a warehouse function dealing with the retrieval of articles (items) from their storage

location in order to satisfy a given demand specified by (internal or external) customer orders (cf.

Petersen and Schmenner 1999, p. 481). Order picking arises because incoming articles are received

and stored in (large-volume) unit loads while customers order small volumes (less-than-unit loads)

of different articles. As a warehouse function, order picking is critical to each supply chain, since

underperformance results in an unsatisfactory customer service (long processing and delivery times,

incorrect shipments) and high costs (labor cost, cost of additional and/or emergency shipments).

Both aspects may have a negative impact on the competitiveness of the total supply chain. Like

many other repetitive material-handling activities, order picking is still a function, which involves

the employment of human operators at a large scale. Even though there have been different attempts

to automate the picking process, manual order picking systems are still prevalent in practice. Such

manual order picking systems can be differentiated into two categories: Picker-to-parts systems, in

which order pickers drive or walk through the warehouse and collect the requested items; and parts-

to-picker systems, in which automated storage and retrieval systems deliver the items to stationary

order pickers (cf. Wäscher 2004, p. 324). With respect to systems of the first kind, three planning

problems can be distinguished on the operative level (cf. Caron, Marchet, and Perego 1998, p. 1),

namely the assignment of articles to storage locations (storage location), the grouping of several

customer orders into picking orders (order batching), and the routing of order pickers through the

warehouse (picker routing). This paper focuses on order batching, which has been proven to be

pivotal for the efficiency of warehouse operations (cf. de Koster, Roodbergen, and van Voorden

1999, p. 232), and for which predominantly traditional (constructive) heuristics have been suggested

in the past. The aim of this article is to examine, whether modern heuristics can lead to substantially

improved solutions in order batching. We focus on two metaheuristics, which have demonstrated to

provide excellent results for other combinatorial optimization problems. The first one is a variant of

Iterated Local Search, the second one is a population-based approach, namely a variant of ant colony

optimization - the Rank-Based Ant System.

The remainder of the paper is organized as follows: In Section 2 the Order Batching Problem will

be defined and a mathematical formulation will be given. Section 3 contains a literature review

of solution approaches for the Order Batching Problem. In the following two sections the new

metaheuristics will be presented, Iterated Local Search in Section 4, and Rank-Based Ant System in

Section 5. Extensive numerical experiments have been carried out to evaluate the performance of the

metaheuristics. The design of these experiments (including the description of warehouse parameters,

algorithm parameters, and problem classes) will be presented in Section 6. A comprehensive analysis

of the test results will be given in Section 7. The paper will conclude with a summary and an outlook

on further research opportunities in Section 8.
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2 Order Batching Problem

2.1 Problem Description

When performing his/her tasks, an order picker is guided by a so-called pick list. This list specifies

the sequence in which the requested articles should be collected, as well as the quantities in which

they are to be picked. A pick list may contain the articles of a single customer order (pick-by-order)

or of a combination of customer orders (pick-by-batch). In practice, the sequence in which the articles

are to be picked and the corresponding route of the order picker (which starts at the depot, proceeds

to the respective storage locations, and returns to the depot) is usually determined by means of a

so-called routing strategy, e.g. by the S-Shape Heuristic or by the Largest Gap Heuristic. Despite

the fact that an optimal, polynomial time algorithm for the picker routing problem exists (cf. Ratliff

and Rosenthal 1983), it is hardly ever used in practice. Order pickers seem not to accept the optimal

routes provided by the algorithm, because of their not always straightforward or sometimes even

confusing routing schemes (cf. de Koster, Roodbergen, and van Voorden 1999, p. 230).

The examples of the routing schemes of the S-Shape Heuristic and the Largest Gap Heuristic (cf.

Figure 2.1) demonstrate their straightforward character. The black squares symbolize the locations

of articles to be picked on the respective routes.

The S-Shape Heuristic gives a solution in which the order picker only enters an aisle if at least one

requested article is located in that aisle and traverses the aisle entirely. Afterwards the order picker

proceeds to the next aisle containing a requested article. An exception could be the last aisle: if the

order picker is positioned in the front cross-aisle, he would pick the items of the last aisle and return

to the front aisle, i.e. the cross-aisle which contains the depot.

Solutions provided by the Largest Gap Heuristic are characterized in the following way: The order

picker traverses the first and last aisle entirely containing an article to be picked. All the other aisles

are entered from the front and back in such a way that the non-traversed distance between two

adjacent locations of articles to be picked in the aisle is maximal.

Figure 2.1 also shows that benefits may arise from collecting the articles of two (or more) customer

orders in a single tour instead of two (or more) tours, in particular if the articles are identical or

closely located to each other. The pictures on top and in the middle of Figure 2.1 depict the tours

of two seperate customer orders, while the pictures at the bottom show tours resulting from the

batching of the two customer orders and which are shorter than the total length of the seperate

tours. Order pickers are usually using a picking device (a cart or a roll pallet) for the collection of

the requested articles. Depending on the size of the picking device, customer orders can be combined

until the capacity of the device is exhausted. On the other hand, splitting of customer orders is

usually prohibited since it would result in an additional not acceptable sorting effort.

Order batching can be carried out as proximity batching, where orders are combined considering

their locations in the warehouse, or as time window batching, where orders are combined according

to their arrival time (cf. Choe and Sharp 1991). Here we consider a situation, where we assume that

all orders are known beforehand. Therefore, we will concentrate on proximity batching.

Due to the high proportion of time-consuming manual operations, order picking is considered the
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Figure 2.1: Examples of S-Shape-Routing (left) and Largest Gap-Routing (right)

most labor-cost intensive function in a warehouse (cf. Drury 1988). Consequently, the minimization

of picking times is of great importance for the efficient control of the picking process. The components

of the total order picking time (time spent by order pickers to collect the articles of all customer

orders) are the setup times for the routes, the traveling times that are needed to travel to, from, and

between the locations of articles to be picked, the search time for the identification of the articles, and

the time needed for picking the articles (cf. Tompkins, White, Bozer, Frazelle, and Tanchoco 2003).

Amongst these components, the traveling time is of outstanding importance, since it consumes the

major proportion of the total order picking time, while the other components can either be assumed

as constant (search times and pick times) or as neglectable (setup times). Furthermore, if the pickers’

travel velocity is assumed to be constant, the minimization of the total traveling time is equivalent



4 Metaheuristics for the Order Batching Problem in Manual Order Picking Systems

to the miminization of the total length of the picker tours (cf. Jarvis and McDowell 1991, p. 94).

In other words, the Order Batching Problem can be defined as follows: how can a given set of

customer orders, with given storage locations, given routing strategies and given capacity of the

picking devices, be grouped (batched) into picking orders such that the total length of all necessary

picking tours is minimized (cf. Wäscher 2004, p. 337).

2.2 Model Formulation

According to Gademann and van de Velde (2005), a mathematical formulation of the problem can be

given as follows: Let J = {1, . . . , n} be the set of customer orders, C be the capacity of the picking

device, and cj the capacity required for order j (j ∈ J). Furthermore, let each batch of customer

orders be described by a vector ai = (ai1, ..., ain) with binary entries aij stating whether an order j

is included in a batch i (aij = 1) or not (aij = 0). The set I of all feasible batches is characterized

by the fact that the capacity of the picking device is not violated, i.e. the following property holds:

∑
j∈J

cj · aij ≤ C, ∀i ∈ I. (2.1)

If we define binary decision variables xi (i ∈ I), which describe if a batch i is chosen (xi = 1) or not

(xi = 0), and let di further represent the length of the picking tour in which all orders of a batch i

are collected, then the following optimization model can be formulated:

min
∑
i∈I

di · xi (2.2)

s.t.
∑
i∈I

aij · xi = 1, ∀j ∈ J ; (2.3)

xi ∈ {0, 1}, ∀i ∈ I. (2.4)

The sets of constraints (2.3) and (2.4) ensure that a set of batches is choosen in a way that each

customer order is included in exactly one of the chosen batches. It is important to keep in mind that

the number of possible batches rises exponentially with the number of orders.

The Order Batching Problem as described above is known to be NP-hard (in the strong sense) if

the number of orders per batch is greater than two (cf. Gademann and van de Velde 2005).

3 Review of Solution Approaches

For the Order Batching Problem only few approaches have been developed which try to solve the

problem to or close to optimality. For the (general) model described in the previous section, Gade-

mann and van de Velde (2005) present a branch-and-price algorithm with column generation that

was able to provide optimal solutions for small instances (up to 32 orders) in reasonable computing

time. For the case of S-Shape routing Bozer and Kile (2008) present a mixed integer programming

approach, that generates near optimal solutions for small (up to 25) order sizes.

Furthermore, Chen and Wu (2005) describe an order batching approach based on data mining and
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integer programming. In this approach, at first, similarities of customer orders are determined by

means of an association rule; then a 0-1 integer programming approach is applied in order to cluster

the orders into batches. For larger problems – as they usually occur in practice – the use of heuristics

is still suggested.

Heuristic solution approaches suggested for the Order Batching Problem are of the constructive type

in the first place. They can be distinguished into three groups: priority rule-based algorithms, seed

algorithms, and savings algorithms (cf. Wäscher 2004).

Priority rule-based algorithms consist of a two step procedure: In the first step, priorities are assigned

to customer orders, which provide the sequence for a second step in which the orders are allocated to

batches. Several rules have been described in the literature according to which the priorities can be

determined. The probably best known and most straightforward way is the application of the First-

Come-First-Served (FCFS) rule. Other rules include the application of the two-dimensional and the

four-dimensional space-filling curves by Gibson and Sharp (1992) or the six-dimensional space-filling

curve by Pan and Liu (1995). The allocation of the customer orders to batches can either be done

by means of the Next-Fit-Rule (customer orders are added to a batch until the capacity limit is

reached; then a new batch is opened), by the First-Fit-Rule (all batches are numbered in the order in

which they have been opened; the next customer order is allocated to the first batch which provides

sufficient capacity), or the Best-Fit-Rule (the next customer order is assigned to the batch with the

least remaining capacity) (cf. Wäscher 2004).

Seed algorithms, introduced by Elsayed (1981) and Elsayed and Stern (1983), generate batches se-

quentially. Their procedure can be divided in two phases: seed selection phase and order congruency

phase. During the seed selection phase, an inital order – the so-called ”seed” – is chosen. A large

variety of rules is available for the selection of the seed, e.g. choose the first order, choose the largest

order, or choose the order with the longest picking tour, and others. Furthermore, the seed can be

determined in a single mode (where only the first order in the batch defines the seed) or in cumulative

mode (all orders included in the batch define the seed). Afterwards, unassigned customer orders will

be added to the seed according to an order-congruency rule, which measures the ”distance” from

an order not yet allocated to the seed of the batch. Examples of criteria according to which this

”distance” can be determined are the number of additional aisles to be visited, the difference between

the centers of gravity of the order and the seed, or the sum of the travel distance between every item

of the order to the closest item in the seed. An overview of the various seed selection and order

congruency rules is given in de Koster, van der Poort, and Wolters (1999), Ho and Tseng (2006) and

Ho, Su, and Shi (2008).

Savings algorithms are based on the Clarke-and-Wright-Algorithm for the vehicle routing problem

(cf. Clarke and Wright 1964) and have been adapted in several ways for the Order Batching Problem.

In the initial version for the Order Batching Problem (C&W(i)), for each combination of customer

orders i and j the savings savij are computed which can be obtained by collecting the articles of the

two customer orders on one (large) tour instead of collecting them in two seperate tours. Starting

with the pair of orders with the highest savings, the pairs are considered for being assigned to a batch

in a non-ascending order. This may lead to three situations: in case that none of the two orders have
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been assigned, a new batch will be opened for them; if one of the orders has already been assigned,

the other one is added to the batch if the remaining capacity is sufficient; in case that not enough

capacity is available or that both orders have already been assigned, the next pair of orders will be

considered. All orders which are left unallocated at the end of the process will be assigned to an

individual batch each. The algorithm can be improved by recalculating the savings each time orders

have been allocated to a batch (C&W(ii)). A savings algorithm that generates batches sequentially

is the EQUAL algorithm (cf. Elsayed and Unal 1989). In this method, the first pair of orders which

has been allocated to a batch is considered as the initial seed. Then the order which – in combination

with the seed – leads to the highest savings and does not exceed the capacity of the picking device,

is added to the batch. All orders in the batch form the new seed. A new batch is opened if none

of the remaining orders fit into the batch. In the small-and-large-algorithm (cf. Elsayed and Unal

1989) two subsets are defined, namely a set of large orders and a set of small ones. In a first step, the

large orders are assigned to batches according to the EQUAL algorithm described above. The small

orders are then, in a non-ascending order of their size, assigned to the batch where they generate

the highest savings without violating the remaining capacity. Remaining orders are again assigned

to new batches.

Comprehensive numerical experiments have shown that either seed algorithms or savings algorithms

provide the best solution with respect to the total length of all necessary tours, dependent on the

warehouse layout and customer order characteristics (cf. de Koster, van der Poort, and Wolters

1999).

Apart from the constructive heuristics described above, Hsu, Chen, and Chen (2005) have suggested

a Genetic Algorithm for the Order Batching Problem. Their approach includes an aisle-metric for

the determination of the tour lengths and is therefore limited to S-Shape-Routing, only. Tsai, Liou,

and Huang (2008) describe an approach in which both batching and routing problems are solved by

means of a Genetic Algorithm. Due to these special conditions of application, both approaches will

not be considered any further, here.

4 Iterated Local Search

Iterated Local Search has been successfully applied to a variety of optimization problems, for instance

to the Traveling Salesman Problem (cf. Katayama and Narihisa 1999), Scheduling Problems (cf.

Brucker, Hurink, and Werner 1996), or the Quadratic Assignment Problem (cf. Stützle 2006). The

main principle can be described as follows (cf. Lorenço, Martin, and Stützle 2003): Let S be the set

of feasible solutions of an optimization problem. A solution s′ (s′ ∈ S) is called a neighbor of solution

s (s ∈ S) if it can be obtained by applying a single local transformation to s. The heuristic consists

of two alternating phases, a local search phase and a perturbation phase. In the local search phase one

starts from an initial solution s0 ∈ S and finds a (probably randomized) sequence of feasible solutions

s0, s1, . . . , sm = ŝ. Each element sj (j ∈ {1, . . . , m}) is a neighbor of its predecessor, possessing a

smaller (minimization problems) or higher (maximization problems) objective function value than

the previous one. Provided the problem is bounded, ŝ is a local optimum.
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Iterated Local Search aims at exploring the vicinity of this local optimum (used as an incumbent

solution) more closely in order to identify a solution with an improved objective function value.

Therefore, in the perturbation phase, the incumbent solution is partially modified (perturbed) and a

further local search phase is applied to this solution. The new solution stemming from the local search

phase has to pass an acceptance criterion in order to become the new inbumbent solution, otherwise

the previous solution remains the incumbent solution for a further perturbation. These two phases

are repeated until a termination condition is met. The challenge consists in choosing an appropriate

perturbation scheme: if the perturbation is too marginal, one will often obtain identical solutions

after different local search phases; if the perturbation is too extensive, one might unintentionally

leave a good subspace of the solution space.

For the Order Batching Problem this general principle has been modified in the following way: An

initial solution is generated by means of the FCFS rule. Two different solutions, i.e. two different

sets of batches, are called neighbors if one solution can be achieved from the other by interchanging

two orders from different batches (SWAP) or by assigning one order to a different batch (SHIFT ). In

the local search phase (cf. Function 4.1), a first improvement strategy is used: We try to reduce the

objective function value by a SWAP. If an improvement can be obtained, we proceed from the new

solution and search for another improvement by a SWAP. In case that no SWAP can be identified

which improves the objective function value, we try to achieve an improvement by SHIFT s. If

no further improvement can be identified, we search again for a SWAP that leads to an improved

solution. This is repeated until no improvement by SWAPs and SHIFT s can be identified. The

local search phase as described above is a form of a variable neighborhood descent with only two

neighborhoods.

Function 4.1 local search(s)

repeat

repeat

try to exchange two orders from different batches of s in order to reduce the total length of

all tours (SWAP);

until no further improvement is possible;

repeat

try to assign an order from one batch of s to another batch in order to reduce the total length

of all tours (SHIFT);

until no further improvement is possible;

until no further improvement is possible;

return s;

The perturbation phase (cf. Function 4.2) has been designed in the following way: We select two

different batches k and l randomly and move the first q orders from batch k to batch l, and the

first q orders of l to k (q is a random number, that is at most half of the number of orders in k and

l, respectively). If this rearrangement is not possible, i.e. capacity constraints would be violated,

remaining orders will be assigned to a new batch. The determination of the number of exchanges is
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a critical step. If the number is too small, we would probably fall back into the same local optimum.

On the other hand, if this number is too high, we would not be able to intensify a good solution

subspace. We restrict the number of rearrangements to n� · λ + 1, where n� is the number of batches

in the best known solution and λ (rearrangement factor) a constant. Regarding the acceptance

criterion, a new solution is accepted as an incumbent solution if its objective function value is lower

than the best currently known one. Furthermore, we also allow for a few deteriorating steps, i.e. if a

sequence of perturbation phases and local search phases applied to a particular incumbent solution

does not lead to a new global best solution within a certain time interval t. The solution obtained

in the last local search phase will be chosen as new incumbent solution, if the difference between the

length of all picking tours of the last solution d(s) and length of all picking tours of the best known

solution d(s�) is smaller than a threshold μ ·d(s�), where the threshold factor μ is in [0, 1]. Otherwise

the incumbent solution will be perturbated again. Algorithm 4.1 summarizes the heuristic.

Function 4.2 perturbation(s, γ)

for i = 1 to γ do

choose two batches k and l from s randomly;

choose q with q > 0 and smaller than half of the number of orders in k and l;

move - as long as the capacity constraint is not violated for l - q orders of k to l;

move - as long as the capacity constraint is not violated for k - q orders of l to k;

assign the remaining orders to a new batch;

end for

return s

Algorithm 4.1 Iterated Local Search (ILS)

Parameters: rearrangement factor λ, threshold factor μ, time interval t for an incumbent solution;

let sinitial be a solution provided by the FCFS rule;

s� := local search(sinitial);

sincumbent = s�;

repeat

s := perturbation(sincumbent, n
� · λ + 1);

s := local search(s);

if d(s) < d(s�) then

s� := s;

sincumbent := s;

end if

if no improvement of d(s�) during t and d(s) − d(s�) < μ · d(s�) then

sincumbent := s;

end if

until termination condition is met;

s� is the solution of ILS;
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5 Rank-Based Ant System

The general idea of Ant Systems is inspired by nature, where it can be observed that ants easily find

the shortest path from a nest to a food source by marking their trails with pheromones. Shorter paths

will soon get marked with a higher amount of pheromones, such that following ants will choose those

marked trails with a higher probability. In the subsequent course this will lead to a self-reinforcing

process, ending in a situation where nearly all ants follow the shortest path.

(Artificial) Ant Systems for combinatorial optimization problems were first introduced by Colorni,

Dorigo, and Maniezzo (1991), Dorigo, Maniezzo, and Colorni (1991) and Dorigo (1992) and have been

thoroughly discussed for a multitude of problems, e.g. the Traveling Salesman Problem, scheduling

and routing (cf. Dorigo and Stützle 2004). Apart from the basic Ant System, several extensions have

been developed, e.g. Max-Min Ant Systems (cf. Stützle and Hoos 2000), Ant Systems with elitist

strategies or Rank-Based Ant Systems (cf. Bullnheimer, Hartl, and Strauss 1999). In (artificial)

Ant Systems, the pheromone effect taken from nature is combined with another aspect not common

for real ants. This is done in order to integrate a greedy behavior into (artificial) Ant Systems, in

addition to the adaptive behavior observed for real ants.

For the adaption to the Order Batching Problem, a savings-based Ant System (RBAS) has been

chosen which combines greedy (savings) and adaptive (pheromone) aspects when deciding about the

combination of two batches. The Ranked-Based Ant System was implemented since it has proven

(cf. Doerner, Gronalt, Hartl, Reimann, Strauss, and Stummer 2002 and Reimann, Doerner, and

Hartl 2004) to be a good variant of savings-based approaches.

The general principle of RBAS has been adopted for the Order Batching Problem as follows: In the

beginning each order forms a single batch. In the subsequent steps, the batches are combined as long

as the capacity constraint for the picking device is not violated. For each possible combination (k, l) of

two batches, we compute the corresponding savings savkl (cf. Section 3) and the pheromone intensity

τ̃kl. The pheromone intensity of a batch combination is determined as the sum of pheromones of all

order combinations between the orders in batch k and the orders in batch l, divided by the number

of possible order combinations:

τ̃kl =

∑
i∈k

∑
j∈l

τij

|k| · |l|
where

τij: pheromone intensity of order combination (i, j),

|k|: number of orders in batch k,

|l|: number of orders in batch l.

The probability pkl for the combination of two batches k and l is defined as

pkl =
(τ̃kl)

α · (savkl)
β

∑
(u,v)

(τ̃uv)α · (savuv)β
,
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where

τ̃kl: pheromone intensity of batch combination (k, l),

α: parameter for the control of the influence of the pheromone intensity τ̃kl (α ≥ 0),

savkl: savings obtained by combining the batches k and l,

β: parameter for the control of the influence of the savings savkl (β ≥ 0).

If no further feasible combinations of batches can be identified, an attempt is made to improve the

obtained solution by applying the aforementioned basic local search function (cf. Function 4.1).

The process is repeated for each ant that is used. Each ant represents a solution. Afterwards,

the pheromones for all order combinations are updated. In analogy to the processes in nature a

fraction ρ of the pheromone evaporates. Likewise good solutions will receive an additional amount of

pheromones. More precisely, the pheromone increase is calculated according to the ranking position

r within the set of the m best solutions in the actual iteration. In addition, the best solution found

so far in all iterations will be rewarded with an additional increase of the pheromone intensity.

According to Bullnheimer, Hartl, and Strauss (1999) the pheromone intensity is updated as follows:

τij = (1 − ρ) · τij + Δτij + Δτ �
ij ,

with Δτij :=
m∑

r=1

Δτ r
ij,

Δτ r
ij =

⎧⎨
⎩

(m + 1 − r) · θ, if order combination (i, j) is in a batch of the r-th best solution,

0, otherwise;

and

Δτ �
ij =

⎧⎨
⎩

(m + 1) · θ, if order combination (i, j) is in a batch of the best solution so far,

0, otherwise;

where

θ: pheromone quantity (θ ≥ 0).

The updated pheromone intensities provide the basis for the subsequent iteration. The detailed

description of the RBAS used here is given in the pseudo-code of Algorithm 5.2.

6 Design of the Experiments

6.1 Warehouse Parameters

In order to evaluate the performance of the proposed heuristics in our numerical experiments we

assume a single-block warehouse with two cross aisles, one in the front and one in the back of the

picking area. All aisles are vertically orientated and the depot is located in front of the leftmost aisle.

This type of layout is depicted in Figure 2.1 and is identical to the one frequently used in literature

(cf. de Koster, van der Poort, and Wolters 1999, Petersen and Schmenner 1999). The picking area
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Algorithm 5.2 Rank-Based Ant System (RBAS)

Parameters: number of iterations, number of ants, initialization of the τij, number of best solutions

m, evaporation factor ρ, pheromone quantity θ, control parameter α, β;

for it = 0 to number of iterations do

for a = 0 to number of ants do

create start solution s;

repeat

for all feasible pairs (k, l) of s do

compute savkl;

determine τ̃kl;

end for

determine pkl;

choose combination (k̃, l̃);

update s by combining k̃ and l̃;

until no further combination is possible;

s :=local search(s);

update the best m solutions (s�
1, . . . , s

�
m) of this iteration;

update the best solution s�
0 found so far;

end for

for all order combinations (i, j) do

τij := (1 − ρ) · τij;

end for

for r = 0 to m do

for all batches k in s�
t do

for all order combinations (i, j) in k do

τij := τij + (m + 1 − r) · θ;
end for

end for

end for

end for

s�
0 is the heuristic solution;

consists of 900 storage locations (cells) and we asume that a different article has been assigned to

each storage location. The storage locations are partitioned in 10 (picking) aisles with 90 storage

locations each (45 cells on both sides of each aisle). The aisles are numbered from 1 to 10, where

aisle no. 1 is the leftmost aisle and aisle no. 10 the rightmost aisle. Within an aisle two-side-picking

is assumed, i.e. beeing positioned in the center of an aisle, the order picker can pick items from

cells on the right as well as from the cells on the left without additional movements. The length of

each cell amounts to one length unit (LU). When picking an article, the order picker is positioned

in the middle of the cell. Whenever the order picker leaves an aisle, he/she has to move one LU
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in vertical direction from the first storage location, or from the last storage location respectively, in

order to reach the cross aisle. For a transition into the next aisle the order picker has to move 5 LU

in horizontal direction, i.e. the center-to-center distance between two aisles amounts to 5 LU. The

depot is 1.5 LU away from the first storage location of the leftmost aisle, i.e. the distance between

cross aisle and depot amounts to 0.5 LU. We assume a class-based storage assignment of articles

to storage locations, i.e. the articles are grouped into three classes A, B and C by their demand

frequency, where A contains articles with high, B with medium and C with low demand frequency.

Articles of class A are only stored in aisle no. 1, articles of class B in aisles no. 2, no. 3 and no.

4, and articles of class C only in the remaining six aisles. Furthermore, we assume that 52 percent

of the demand belongs to articles in class A, 36 percent to articles in B and 12 percent to articles

in C. Within a class, the location of each article is determined randomly. Table 6.1 summarizes all

warehouse parameters fixed for the numerical experiments.

no. of aisles: 10

no. of cells on each side of an aisle: 45

no. of storage locations: 900

length of a cell [LU]: 1

center-to-center-distance between two aisles [LU]: 5

distance between depot and front cross aisle [LU]: 0.5

storage policy: class-based (ABC-storage)

Table 6.1: Warehouse Parameters

6.2 Problem Classes

In our numerical experiments we consider five different sizes of customer orders (20, 30, 40, 50, 60),

where the number of articles per order is uniformly distributed in {5, . . . , 25}. The capacity of the

picking device (defining the maximal quantity of articles that can be assigned to a batch) is 30, 45,

60 and 75 articles, chosen in a way that a batch consists of 2, 3, 4 and 5 customer orders on average.

In combination with the two routing strategies (S-Shape, Largest Gap) we obtain 40 problem classes,

and for each of these classes 40 instances are generated. In other words 1600 instances have been

considered, each with one trial per instance. An overview of the problem classes considered in the

experiments is given in Table 6.2.

total number of orders: 20, 30, 40, 50, 60

capacity of the picking device [no. of articles]: 30, 45, 60, 75

routing strategy: S-Shape, Largest Gap

Table 6.2: Problem Classes
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6.3 Benchmarks

In the numerical evaluation, the performance of the newly proposed batching strategies Iterated

Local Search (ILS) and Rank-Based Ant System (RBAS) is compared to the First-Come-First-

Served (FCFS) rule, which is used as a baseline, while the savings algorithm C&W(ii) serves as a

benchmark. C&W(ii) is chosen as benchmark, since numerical experiments (cf. de Koster, van der

Poort, and Wolters 1999) have shown that it leads to good results for different warehouse layouts.

6.4 Algorithm Parameters

In a series of pre-tests, the parameter values have been determined: For the RBAS we perform 100

iterations, and the number of ants in each iteration has been set to half the number of customer

orders. The pheromone intensity of each order combination has been initialized by 2, and the control

parameters α and β have been set to 5. The evaporation factor ρ has been set to 0.1, and the

uprating factor θ to 0.001. During the process of updating the pheromone intensity, we consider the

three best solutions in each iteration, i.e. m = 3.

In order to provide equivalent conditions for both suggested methods, we allow identical computing

times, which is determined by RBAS. In other words, for each instance the problem is solved by

RBAS and the resulting computing time is used as the termination condition for ILS.

In ILS the rearrangement factor λ has been set to 0.3. We further allow 10 deteriorations of maximal

μ = 0.05 each. In combination with the computing time, this results in t = tRBAS/10, where tRBAS is

the computing time of RBAS. Table 6.3 summarizes the parameter choice.

Rank-Based Ant System

no. of iterations: 100

no. of ants: no. of orders / 2

initial pheromone intensity τij: 2.0

control parameter α: 5

control parameter β: 5

evaporation factor ρ: 0.1

no. of best local solutions m: 3

uprating factor θ: 0.001

Iterated Local Search

termination condition: tRBAS

rearrangement factor λ: 0.3

threshold factor μ: 0.05

time interval t for an incumbent solution: tRBAS / 10

Table 6.3: Algorithm Parameters
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6.5 Implementation and Hardware

The computations for all 1600 instances have been carried out on a desktop PC with a Pentium

processor with 1.86 GHz and 1 GB RAM. The algorithms have been encoded in C++ using the DEV

Compiler Version 4.9.9.2.

7 Results of the Experiments

7.1 S-Shape-Routing

The results from the numerical experiments for S-Shape routing are depicted in Table 4. For all

problem instances, application of C&W(ii) improved the total length of all picking tours on average

by 19.5 percent (in comparison to the application of FCFS only). Differentiated with respect to the

different problem classes, the (average) improvement ranged from 10.27% (no. of customer orders:

20; capacity of the picking device: 75) to 22.39% (60; 45). In general it can be observed that only

small improvements were obtained by C&W(ii) for problem classes characterized by a small number

of customer orders. This can be explained by the fact that – given these conditions – there is just a

small probability that the total tour length will be improved since the algorithm opens a new batch

for each pair of unassigned orders. We note that our results are in line with those from de Koster,

van der Poort, and Wolters (1999), who have run numerical experiments for a similar warehouse and

obtained a reduction of the total traveling time of the order pickers of 18% (constant travel velocity

assumed) for problem instances with 30 customer orders and a capacity of the picking device of 24

articles. Therefore, we conclude that our implementation of C&W(ii) is credible and that the results

obtained by C&W(ii) provide a good benchmark.

By application of the newly proposed heuristics ILS and RBAS, the objective function value could

be improved (again, in comparison to FCFS) by 24.16% (ILS) and 23.91% (RBAS) on average for all

problem instances, and varied between 20.02% and 26.95% for ILS, and between 20.19% and 26.56%

for RBAS, respectively, across the different problem classes. For both, ILS and RBAS, improvements

were larger for problem classes with larger capacities of the picking device. In general, the dispersion

of the improvements tends to be smaller for ILS and RBAS than for C&W(ii).

In comparison to C&W(ii), on average, additional improvements of 5.56 percentage points could be

achieved by application of ILS, and of 5.27 percentage points by application of RBAS, respectively.

The additional improvements were as small as 3.53 percentage points (ILS; no. of customer orders:

40; capacity of the picking device: 30) and 3.60 percentage points (RBAS; 40; 30), but went up to

10.18 percentage points (for both ILS and RBAS; no. of customer orders: 20; capacity of the picking

device: 75).

For 15 of the 20 problem classes, ILS provided the best results on average. Independently from

the order size, ILS was always superior to RBAS for larger capacities of the picking device (i.e. for

cap = 45, 60, 75), whereas RBAS outperformed ILS for a small capacity (cap = 30). It has to be

noted, however, that the results from both methods do not differ significantly with respect to solution

quality (average total length of picking tours per problem instance). This can also be seen from the
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no. cap. FCFS C&W (ii) ILS RBAS
cust. [no. ∅ dist. ∅ no. ∅ dist. ∅ impr. ∅ no. ∅ dist. ∅ impr. ∅ no. ∅ dist. ∅ impr. ∅ no.
ord. art.] [LU] bat. [LU] [%] bat. [LU] [%] bat. [LU] [%] bat.
20 30 5181 13.2 4364 15.90 11.3 4156 20.02 10.7 4146 20.19 10.7

45 3431 7.8 2828 17.43 7.1 2624 23.51 6.8 2632 23.28 6.8
60 2673 5.7 2348 11.32 5.3 2086 21.42 5.3 2090 21.26 5.3
75 2137 4.6 1909 10.27 4.3 1693 20.45 4.2 1693 20.45 4.2

30 30 7813 19.7 6403 18.17 16.6 6086 22.27 15.8 6077 22.38 15.7
45 5360 11.9 4273 20.20 10.9 3999 25.34 10.3 4015 25.02 10.3
60 4005 8.6 3265 18.34 8.1 2999 25.05 7.7 3013 24.70 7.6
75 3204 6.7 2709 15.23 6.2 2461 23.03 6.1 2479 22.44 6.1

40 30 10260 25.5 8174 20.42 21.2 7815 23.95 20.3 7808 24.02 20.3
45 6966 15.4 5461 21.57 13.7 5098 26.95 13.2 5116 26.56 13.2
60 5228 11.2 4242 18.86 10.3 3898 25.42 10.0 3933 24.76 10.0
75 4151 8.7 3473 16.24 8.2 3160 23.78 8.0 3189 23.09 8.1

50 30 13093 32.8 10460 20.13 27.1 9963 23.95 25.9 9950 24.05 25.8
45 8669 19.3 6746 22.11 17.2 6377 26.40 16.6 6386 26.27 16.5
60 6525 13.9 5229 19.79 12.8 4879 25.17 12.6 4930 24.39 12.6
75 5291 11.0 4316 18.37 10.2 3995 24.43 10.1 4032 23.76 10.1

60 30 15376 38.5 12037 21.84 31.7 11431 25.78 30.1 11429 25.79 30.1
45 10192 22.6 7906 22.39 20.2 7486 26.52 19.7 7520 26.19 19.7
60 7822 16.6 6082 22.25 15.0 5761 26.34 14.8 5797 25.87 14.8
75 6199 12.9 5025 18.88 12.1 4677 24.51 11.9 4712 23.95 11.9

Average 19.50 24.16 23.91
Minimum 10.27 20.02 20.19
Maximum 22.39 26.95 26.56

”no. cust. ord.”: number of customer orders; ”cap. [no. art.]”: capacity of the picking device in the num-
ber of articles; ”∅ dist. [LU]”: average total length of picking tours in length units; ”∅ impr. [%]”: improvement of
the algorithm compared to the FCFS solution in percent; ”∅ no. bat.”: average number of batches.

Table 7.1: Solution Qualities for S-Shape-Routing

difference in the average number of batches, which is 0.1 at most.

Table 7.2 depicts the average computing times per problem instance for ILS and RBAS. The times

for FCFS and C&W(ii) have not been listed since these methods consumed less than five seconds

per instance. The average computing time for RBAS (which determines the total computing time of

ILS) varied between 6.9 seconds (no. of customer orders: 20; capacity of the picking device: 30) and

1,340.3 seconds (60, 75). Basically, two problem parameters determine the computing times, namely

the size of the problem instances (i.e. the number of customer orders which has to be dealt with)

and the capacity of the picking device. Increasing values of these parameters gave rise to increasing

computing times. Even though no significant differences could be observed between ILS and RBAS

with respect to solution quality, major differences become evident with respect to the computing time

which passed (on average per problem instance) until the best solution was found. On average, across

all problem instances, the best solution was found by RBAS after 66.8% of the total computation

time (results not shown in Table 7.2). For small problem instances (no. of customer orders: 20) it
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took 22.7% (cap = 30) and 46.6% (cap = 75) of the total computing time, while for large instances

(no. of customer orders: 60) 80.0% (cap = 30) and 90.8% (cap = 75) was needed. ILS, on the other

hand, found the best solution much earlier; on average, ILS only needed 21.9%, and in the worst case

only 36.6 percent of the total computation time. RBAS is particularly time consuming because the

savings have to be recalculated for each ant and, likewise, a new tour length has to be determined

for each feasible pair of batches. What ILS is concerned, the only time consuming part is the local

search phase, which is also included in RBAS. From this follows that – within identical computation

times – ILS generates and evaluates far more solutions than RBAS does.

no. of cust. cap. ∅ time ILS RBAS
orders [no. art.] [sec] [%] [%]

20 30 6.9 14.4 22.7
45 13.1 19.8 37.3
60 15.8 20.0 33.4
75 17.4 16.6 46.6

30 30 32.9 12.9 38.4
45 64.8 23.1 61.2
60 76.2 28.7 65.2
75 86.0 24.2 65.0

40 30 106.1 15.5 66.0
45 199.4 36.8 73.7
60 242.8 23.0 81.8
75 265.3 32.8 75.6

50 30 239.6 20.4 74.7
45 477.2 20.9 76.8
60 573.1 21.1 83.9
75 655.6 20.5 89.8

60 30 523.3 24.2 80.0
45 995.9 24.0 83.5
60 1196.3 23.4 88.7
75 1340.3 15.9 90.8

”∅ time [sec.]”: average computing time of RBAS in seconds per instance. ”ILS [%]”: average percentage of computing
time [sec.] when ILS finds the best solution on average. ”RBAS [%]”: percentage of time [sec.] when RBAS finds the
best solution on average.

Table 7.2: Computing Times for S-Shape-Routing

7.2 Largest Gap-Routing

The results from the numerical experiments for Largest Gap routing are presented in Table 7.3.

Application of C&W(ii) provided solutions improving the objective function value of the solutions of

FCFS by 16.16% on average (for all problem instances). The average improvement for the different

problem classes ranged from 10.73% (no. of customer orders: 20; capacity of the picking device: 75)

to 19.43% (60; 60). As for S-Shape routing, it can also be observed here that improvements grow with
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no. cap. FCFS C&W (ii) ILS RBAS
cust. [no. ∅ dist. ∅ no. ∅ dist. ∅ impr. ∅ no. ∅ dist. ∅ impr. ∅ no. ∅ dist. ∅ impr. ∅ no.
ord. art.] [LU] bat. [LU] [%] bat. [LU] [%] bat. [LU] [%] bat.
20 30 4396 12.8 3810 13.38 11.1 3692 16.08 10.5 3684 16.28 10.4

45 3279 8.0 2816 14.05 7.3 2682 18.14 6.9 2684 18.10 6.9
60 2522 5.5 2226 11.45 5.3 2102 16.37 5.1 2102 16.38 5.1
75 2168 4.4 1921 10.73 4.2 1799 16.73 4.1 1799 16.74 4.1

30 30 6628 19.5 5661 14.74 16.8 5463 17.76 15.8 5436 18.18 15.6
45 4803 11.6 4007 16.53 10.5 3828 20.28 10.0 3827 20.30 9.9
60 3974 8.6 3349 15.71 7.9 3176 20.05 7.7 3175 20.07 7.7
75 3350 6.8 2862 14.51 6.4 2647 20.91 6.2 2647 20.91 6.2

40 30 8718 25.4 7336 15.93 21.4 7096 18.68 20.4 7080 18.86 20.2
45 6519 15.6 5347 17.87 14.0 5151 20.93 13.5 5148 20.97 13.4
60 5160 11.1 4224 18.06 10.1 4016 22.11 9.9 4022 21.99 9.9
75 4390 8.8 3693 15.85 8.2 3455 21.24 8.1 3461 21.12 8.1

50 30 11184 32.6 9399 16.02 27.6 9106 18.65 26.2 9075 18.93 26.0
45 7853 18.7 6413 18.32 16.9 6171 21.43 16.4 6166 21.49 16.4
60 6473 13.9 5259 18.75 12.6 4993 22.87 12.3 4996 22.82 12.3
75 5458 10.9 4514 17.26 10.2 4247 22.16 10.1 4249 22.12 10.0

60 30 13515 39.2 11282 16.64 33.2 10906 19.45 31.4 10889 19.58 31.3
45 9651 22.9 7779 19.39 20.4 7518 22.07 19.9 7515 22.09 19.9
60 7645 16.3 6158 19.43 15.0 5865 23.28 14.7 5865 23.28 14.7
75 6615 13.1 5386 18.50 12.2 5061 23.45 11.9 5069 23.34 12.0

Average 16.16 20.13 20.28
Minimum 10.73 16.08 16.28
Maximum 19.43 23.43 23.34

For abbreviations see Table 7.1.

Table 7.3: Solution Qualities for Largest Gap-Routing

an increase in the problem size (i.e. with an increasing number of customer orders). Improvements

tend to be larger for medium-size capacities of the picking device (cap = 45, 60) than for small (cap

= 30) and large capacities (cap = 75).

Again, in comparison to FCFS, application of ILS and RBAS improved the objective function value

(average total length of picking tours per customer order) by 20,13% (ILS) and 20.28% (RBAS),

respectively, on average for all instances. The average improvements ranged between 16.08% and

23.43% for ILS, and between 16.28% and 23.34% for RBAS. For both, ILS and RBAS, improvements

were larger again for problem classes with larger capacities of the picking device, and the dispersion

of the improvements was smaller for ILS and RBAS than for C&W(ii).

The improvements provided by ILS exceeded those of C&W(ii) by 3.97 percentage points on average

across all instances, ranging from 2.63 (number of customer orders: 50; capacity of the picking device:

30.) to 6.40 percentage points (30; 75) for the different problem classes. For RBAS the additional

improvement amounted to 4.12 percentage points on average for all instances, ranging from 2.70 (60;

45) to 6.40 percentage points (30; 75).
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With respect to the average length of the pickings tours per customer order, RBAS performed better

than ILS in 14 of the 20 problem classes, even though the differences in the objective function values

are only marginal and cannot really be looked upon as significant. RBAS slightly outperforms ILS

on problem classes with small capacities of the picking device, while RBAS is superior for classes

with high capacities. Like in S-Shape routing, also the average number of batches is not significantly

different for ILS and RBAS across the different problem classes.

Table 7.4 presents the computation times for ILS and RBAS; computation times for FCFS and

C&W(ii) can be neglected and have been omitted again. Across all problem classes the average

computational time per problem instance for RBAS (and – likewise – for ILS) varied between 14.3

seconds and 3,386 seconds (56.4 minutes). As for case of S-Shape routing, the computing time is

strongly dependent on the number of orders, as well as on the capacity of the picking device. The

percentage of the actual computing time which had to pass, until the best solution was found, again

turned out to be significantly smaller for ILS than for RBAS. On the average, only 18.2% was needed

by ILS, against 53.1% by RBAS. Across all problem classes, this percentage ranged from 5.2% to

34.1% (ILS), and from 5.6% to 91.9% for RBAS.

no. of cust. cap. ∅ time ILS RBAS
orders [no. art.] [sec] [%] [%]

20 30 14.3 5.2 5.6
45 28.2 6.8 13.4
60 37.6 6.9 8.6
75 45.8 5.9 8.3

30 30 68.4 18.2 24.2
45 144.3 20.8 32.8
60 180.8 15.3 32.1
75 207.6 20.2 40.9

40 30 218.3 7.4 38.6
45 443.7 19.1 50.4
60 568.0 21.7 76.6
75 655.9 24.0 75.5

50 30 508.9 19.1 57.2
45 1092.4 25.4 83.7
60 1403.3 34.1 87.9
75 1618.9 19.3 88.0

60 30 1060.3 16.0 67.2
45 2258.5 24.4 86.4
60 2891.5 30.8 91.6
75 3386.8 23.0 91.9

For abbreviations see Table 7.2.

Table 7.4: Computing Times for Largest Gap-Routing
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7.3 Comparison of Routing Strategies

Subject to the parameters of the warehouse and the composition of the customer order data, one

routing strategy can be more favorable than the other. Therefore, we continue our analysis with a

comparison of the results obtained for the two routing strategies.

In general, it can be observed that for a large number of articles to be picked on one route the

S-Shape-Routing results in shorter tour lengths, while the Largest Gap-Routing should be prefered

for a small number of articles within one route (cf. Hall 1993). The same results can be observed

in our experiments. Independent of the batching method and the problem size (total number of

orders), Largest Gap routing – on average – outperforms S-Shape routing for small capacities of the

picking device, whereas for high capacities the opposite is true. This can be explained by the fact

that an increase in the capacity of the picking device will also increase the picking intensity per aisle

(i.e. average number of locations of articles to be picked per aisle). As a consequence, the maximal

distance between two adjacent locations of articles to be picked in the same aisle will be reduced.

This has no impact on the behavior of the S-Shape heuristic, but the application of the Largest Gap

heuristic will result in solutions with longer travel distances within the aisles. In the worst case, the

order picker has to collect an article from each storage location in an aisle, and Largest Gap routing

would provide a tour within an aisle, which is twice as long as the length of the aisle.

As mentioned above, this effect is generally independent from the batching method. When FCFS

and C&W(ii) are applied, Largest Gap routing outperforms S-Shape routing for small capacities of

the picking device (cap = 30, 45). For a large capacity (cap = 75) the opposite is true. In case that

the picking device has a capacity of 60 articles, no specific ordering of the routing strategies can be

given with respect to the solution quality. Instead, which method has to be preferred is dependent on

the size of the problem (number of customer orders). The results for the two metaheuristics ILS and

RBAS are similar apart from the fact that the switch from Largest Gap to S-Shape can already be

observed for a capacity of 60 articles. The improvements (in comparison to the results from FCFS)

obtained by joint application of C&W(ii) and S-Shape routing are up to 4 percentage points larger

than improvements from C&W(ii) and Largest Gap routing for small capacities (30 and 45 articles)

of the picking device. On the other hand, for large capacities, the joint application of C&W(ii)

and Largest Gap routing results in improvements of only 0.5 percentage points. This suggests that

C&W(ii) is able to compensate the weakness of FCFS, when the Largest Gap heuristic is used. If

one of the metaheuristics is combined with S-Shape-Routing, the improvements are always larger

than in the case where the metaheuristics are combined with Largest Gap.

With respect to computing times, Largest Gap routing always requires more time than S-Shape

routing, due to the fact that one has to search for the largest gap between all picks within each aisle.

8 Conclusions and Outlook

In this article we considered the Order Batching Problem, a problem which is pivotal for the efficient

management and control of manual picker-to-parts order picking systems in distribution warehouses.

We introduced two new metaheuristics, based on Iterated Local Search and on Ant Colony Opti-
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mization, for the solution of this problem. By means of extensive numerical experiments it could be

shown that – in terms of solution quality – both approaches are not only superior to existing meth-

ods but provide solutions which could improve the efficiency of distribution warehouse operations

significantly.

When compared to each other, both approaches do not differ very much with respect to the quality

of the solutions they provide. However, since it provides these solutions in significantly shorter com-

puting time, Iterated Local Search appears to be more suitable for being implemented in software

systems for the solution of practical problems. Future research should concentrate on the develop-

ment of alternative neighborhoods in order to speed up the local search step which, at present, is

still fairly time-consuming.
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