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Abstract

The aim of our paper is the development of an adequate estimation model for the loss

given default, which incorporates the empirically observed bimodality and bounded

nature of the distribution. Therefore we introduce an adjusted Expectation Maxi-

mization algorithm to estimate the parameters of a univariate mixture distribution,

consisting of two beta distributions. Subsequently these estimations are compared

with the Maximum Likelihood estimators to test the efficiency and accuracy of both

algorithms. Furthermore we analyze our derived estimation model with estimation

models proposed in the literature on a synthesized loan portfolio. The simulated

loan portfolio consists of possibly loss-influencing parameters that are merged with

loss given default observations via a quasi-random approach. Our results show that

our proposed model exhibits more accurate loss given default estimators than the

benchmark models for different simulated data sets comprising obligor-specific pa-

rameters with either high predictive power or low predictive power for the loss given

default.
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1 Introduction

The general idea of our paper is the development of an estimation model for the loss

given default (LGD). The LGD ”means the ratio of the loss on an exposure due to the

default of a counterparty to the amount outstanding at default.”1 This ratio is required

to be estimated by banks following the Internal Ratings-Based Approach for their retail

portfolios. Here the estimated LGDs are important for the capital requirement of the

institute due to incurred credit risk. Furthermore the pricing process of credits is also

highly influenced by an accurate estimation of possible losses.

Empirical analyses have shown that the distribution of the LGD often exhibits a bimodal

shape.2 This characteristic is intuitively reasonable when considering two possible devel-

opments of a defaulted loan. First the obligor may recover and continues her contractual

repayment covenants. This results in a very small loss amount basically driven by admin-

istrative costs. Secondly the obligor may not recover which results generally in a higher

loss amount. The mentioned bimodality in the density of the LGD distribution leads to

difficulties in the development of possible estimation models. Established approaches do

not consider this bimodal shape and we could not find any estimation procedure that

overcomes this difficulty. This scientific gap shall be closed by our paper where we do not

only account for the bounded character of the LGD distribution but also for its bimodality

which enhances the estimation of future LGDs.

The approach we propose is to approximate the LGD distribution by a mixture of two

beta distributions and furthermore regress the estimated transformed distribution values

of the LGD on certain obligor-specific parameters. We obtain the needed parameters of

the mixture by either applying a Maximum Likelihood estimation or an adjusted version

of the Expectation-Maximization algorithm. The whole analysis and comparison with

certain benchmark models is based on synthesized loan portfolios simulated by Monte

Carlo techniques. We therefore generated two different data sets of loan portfolios with

different explanatory power of the obligor-specific parameters within each portfolio. The

results show that our approach could outperform the benchmark models in both accuracy

and lower deviation of the estimated values from the realized ones for both data sets

simulated. So our model provides potential for enhancements in credit pricing models.

The further proceeding in our paper is as follows: After a literature review of credit risk

simulations and LGD estimation models in Section 2 we proceed with the description of

the data set simulations in Section 3. Section 4 describes our estimation model in detail

where the results of the carried out analyses are presented in Section 5. Section 6 concludes

the paper.

1 See Article 4 (27) Directive 2006/48/EC.
2 See for example the mentioned literature in Appendix 1.
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2 Literature Review

This section is divided into two parts, one regarding simulation approaches for portfolio

credit risks and the second part recapitulates current literature concerning LGD estima-

tions.

2.1 Literature Review of Credit Risk Simulation

Up to our knowledge, the recent literature about simulations of credit risk is driven by the

estimation of either rare loss events or risk measures, as e.g. expected shortfall, value-at-

risk or expected loss. However, the main focus is put on the sensitivity of the risk measures

for changes in the default probability or dependencies between different risk factors and

no studies could be found that address the development of estimation models based on

simulated credit portfolios.

Gordy (1998) compares J.P. Morgan’s CreditMetrics and Credit Suisse Financial Prod-

uct’s CreditRisk+ via the underlying mathematical structure and highlights the differences

between both models in functional form, distributional assumptions and estimation pre-

cision. Both models assume a constant LGD, focus on the default probability and the

correlation between the defaults. The simulation incorporates three aspects of a credit

portfolio: credit quality, total number of obligors in the portfolio and the distribution of

dollar outstandings across the obligors within one rating grade. As a result he finds that

both models perform similar on average quality portfolios and both models demand higher

capital on lower quality portfolios. Furthermore an independence on the distribution of

loan sizes in the portfolio could be found and both models are highly sensitive to the

average default correlations in the portfolio.

A simulation study on the comparison of expected shortfall and value-at-risk for the

allocation of capital in credit portfolios is carried out by Kalkbrener et al. (2004). They

employ a multi-factor model for specifying the default correlations and an importance

sampling algorithm is introduced for Merton-type models to efficiently compute the value-

at-risk and expected shortfall of credit portfolios. The LGD is assumed to be constant at

100 percent for each obligor. Results of the study are the insight that expected shortfall

is a better risk measure than the value-at-risk and by applying the importance sampling

algorithm the variance and computation time of the simulation are strongly reduced.

Another simulation study in the context of credit risk is taken out by Jobst and Zenios

(2005). They simulate risk-free interest rates and credit spreads to determine prices of

credit risk sensitive securities. Here the LGD is assumed to be either uniformly distributed

or constant at a level of 100 percent. Thus the credit spread almost solely depends on the
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rating and therefore on the default probability of the security. This approach results in a

consistent pricing approach for these kind of securities.

Kang and Shahabuddin (2005) simulate the dependency between systematic and unsys-

tematic risk factors via a t-copula and transform this copula into a probability of default

for each obligor. The LGD is modelled by a linear function and results in a uniformly dis-

tribution among the obligors. They also present an important sampling algorithm for the

estimation of multi-factor portfolio credit risk for the t-copula model. A similar approach

is taken by Bassamboo et al. (2008), who derive sharp asymptotics for portfolio credit

risk that illustrate the implications of extremal dependence among obligors.

Glasserman et al. (2008) employ an important sampling technique within a Gaussian

copula model for the estimation of portfolio credit risk as a rare event study. The LGD

is assumed to be bounded to the top and can be stochastic. However, the focus of the

paper is put on the important sampling algorithms and not on a certain LGD-modelling

approach.

2.2 Literature Review of LGD Estimation Models

The second part of the literature review describes different LGD estimation models as for

example implied market models and workout LGD models, where some of them are used

as benchmarks in the simulation part of this paper.

One of the most famous models is the LossCalc model introduced by Moody’s KMV.3 The

general idea for estimating the recovery rate is to apply a multivariate linear regression

model including certain risk factors, e.g., industry factors and macroeconomic factors, and

include transformed risk factors resulting from ”mini-models”. These mini-models try to

take the dependencies between some influencing factors into consideration, i.e. two or more

LGD-influencing factors that offer a certain relationship are transformed into one variable

which is afterwards included in the overall regression model. The first step preceding

the regression is the transformation of recovery rates into an approximately normally

distributed random variable to remove the bounded characteristic of this variable. This

transformation will be reversed after the regression and yields again a bounded estimator

for the recovery rate.

Another estimation model, proposed by Glößner et al. (2006), consists of two steps, namely

a scoring and a calibration step. The scoring step includes the estimation of a score using

collateralizations, haircuts, expected exposure at default of the loan and recovery rates

of the uncollateralized exposure. The score itself can be interpreted as a recovery rate

of the total loan but is only used for relative ordering in this case. For computing the

3 See Gupton and Stein (2005).
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distribution of the loss rate depending on the score, this loss rate is approximated by the

aggregated exposure of the portfolio up to the score value and the average loss rate of the

portfolio.

An estimation model based on a linear regression in connection with a logit transforma-

tion of the LGD and a time consideration by using lag-variables within the regression

is presented in Hamerle et al. (2006). The dependent variable in the regression is the

transformed LGD and the independent variables are credit specific and macroeconomic

variables representing potential systematic sources of risk. These systematic risk-variables

are considered with a time-lag. Furthermore two unsystematic factors are included to ac-

count for credit-specific risk and for correlation between credits which is not considered

by the macroeconomic factors.

Peter (2006) and Appasamy et al. (2008) propose a kind of multi-step approach. Both

define possible scenarios after default of a credit, e.g. cure, restructuring or liquidation,

and compute a scenario probability-weighted LGD. Either average scenario LGDs or credit

specific scenario LGDs can be applied. Possible ways of computing scenario probabilities

might be a logistic regression model or applying a Markov chain.

The assumption of a beta distributed LGD is taken up by Huang and Oosterlee (2008),

where they apply different kinds of beta regressions for modeling the LGD. In short, the

beta regressions are used to estimate the mean of the underlying distribution depending on

certain LGD-influencing factors. Furthermore, depending on the model, other covariates

are estimated by linear regression or Maximum Likelihood estimations. It is showed that

the beta regressions provide a good way in modeling LGDs and finally, the portfolio loss

distribution could efficiently be approximated.

Bastos (2009) presents two models for the LGD estimation. The first approach is called

fractional response regression and is based on either a log functional relationship or a log-

log functional relationship between the LGD and the independent variables to ensure the

bounded nature of the dependent variable. The second approach is a so-called regression

tree, which is a kind of clustering of the LGDs in homogeneous subgroups. This clustering

is grounded on explanatory variables in the way that the group-inherent variance of the

LGD is as small as possible.

The approaches proposed in Hamerle et al. (2006), Gupton and Stein (2005), and Bastos

(2009) serve as benchmark models for comparison with our approach derived in Section

4. The exact implementation of the mentioned models is described in Section 4.4.
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3 Simulation Model

3.1 Simulation of LGD

This first part introduces the LGD simulation and tries to reason why a mixture distribu-

tion framework is a more appropriate setting when referring to empirical LGDs. As shown

in the literature review, a bimodal distribution is mostly assumed. This assumption can

be justified by the following idea.

In the first case the obligor fails to meet the payment commitment for a specific date

and, therefore, is defaulted according to the Basel II capital requirements.4 Nevertheless

in most cases the outstanding payment is acquitted later and so the obligor has recovered.

Thus the loss of the debtor is limited to internal costs, e.g. administration and personnel

costs. In the second case the obligor defaults at all and so the loss equals the amount

outstanding less proceeds of collateral recoveries.

Bimodal distributions are constructed by mixing canonical distributions under some cer-

tain assumptions. Since the LGD is in general a value between zero and one, it is reasonable

to use distributions with a bounded support, e.g. we use beta distributions on the interval

[0,1]. The density of a random variable X following a general beta distribution over the

interval [a,b] reads as:

f(x) =
1

B(a, b, p, q)
· (x− a)p−1 · (b− x)q−1

where

B(a, b, p, q) =
Γ(p) · Γ(q)
Γ(p+ q)

· (b− a)p+q−1, (1)

and Γ(.) denotes the Gamma function.

The generation of the density function of a random variable following a multi-mode distri-

bution resulting from a mixture of m random variables Υi with given density fj(υi), j =

1, . . . ,m is just the convex combination of the densities of Υi. The same holds for the

distribution function:

f(υi) =
m∑
j=1

ωj · fj(υi)

F (υi) =
m∑
j=1

ωj · Fj(υi)

s.t.
m∑
j=1

ωj = 1, ωj ≥ 0 ∀ j = 1, . . . ,m (2)

4 Possible default reasons are mentioned in Directive 2006/48/EC Annex VII Part 4 Nr. 44.
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In our case Υi is assumed to be beta distributed and m = 2. Thus Figure 1 shows a

possible density function of a mixed distribution resulting from the densities of two beta

distributed random variables Υ1 and Υ2 over the interval [0,1].

Figure 1: Mixture density of two beta distributions

The figure shows a possible density function of a mixed distribution resulting from the
densities of two beta distributed random variables over the interval [0,1] with ω1 = 0.8,
p1 = 1.5, q1 = 11, p2 = 12 and q2 = 4.

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1
LGD

f(L
G

D
)

right-skewed beta distribution left-skewed beta distribution mixture distribution

The simulation of the LGD is the first step for the simulation of a loan portfolio. Generally

this part of our approach can be divided into four steps. At first two beta distributions over

the interval5 [0,1] are chosen and, subsequently, the mixture distribution is constructed.

Henceforth n random realizations are drawn from the mixture distribution and finally the

whole procedure is done k-times. As a result we get k loan portfolios with each containing

n obligors characterized by the corresponding LGD.

Beta distributions are defined by the two parameters, here denoted as p and q, which are

no location and scale parameter itself but in combination. The expected value, the mode,

denoted as γ(.), and the variance of a beta distributed random variable Υ over [0,1] are

5 We chose the interval [0,1] for computational purposes since every LGD distribution can be trans-
formed in a way that [0,1] is sufficient.
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calculated by:

E(Υ) =
p

p+ q
(3)

γ(Υ) =
p− 1

p+ q − 2
(4)

Var(Υ) =
p · q

(p+ q + 1) · (p+ q)2
(5)

Since we want to construct a bimodal distribution from the two beta distributed random

variables Υ1 and Υ2, where the density of Υ1 is assumed to be right-skewed and the density

of Υ2 is assumed to be left-skewed, with corresponding parameters p1, q1 and p2, q2, resp.,

the parameters should fulfill certain assumptions.

First each parameter p and q should be greater than one since otherwise the density

of these distributions do not exhibit any mode. Furthermore we assume that the ex-

pected values E(Υ1) and E(Υ2) are contained in different intervals to ensure a bimodal

density of the mixture distribution and we also assume that Var(Υ1) and Var(Υ2) are

contained in different intervals.6 E(Υ1) should be contained in the interval [0.059,0.3] and

E(Υ2) should lay in [0.7,0.941] where the upper bound of the first interval and the lower

bound of the second one are empirically justified.7 Var(Υ1) is contained in the interval[
0.003, (1−E(Υ1))·(E(Υ1))2

1+E(Υ1)

)
and Var(Υ2) is contained in the interval

[
0.003, E(Υ2)·(1−E(Υ2))2

2−E(Υ2)

)
.

For each portfolio simulated we first need to generate one random mixture distribution by

randomly choosing two beta distributions. Therefore, two parameters for each distribu-

tion have to be selected by chance. The parameters E(Υ1), E(Υ2) are at first drawn from

the described intervals and the parameters Var(Υ1) and Var(Υ2) are drawn afterwards.

These values are used subsequently for the computation of the parameters p and q of each

distribution. Assuming p and q greater than one, the upper bound of the variance interval

depends on a given expected value. The upper bound of Var(Υ1) is derived here, whereas

the upper bound of Var(Υ2) is derived in Appendix 2.

Since Υ1 is assumed to be right-skewed, it follows that q is greater than p. We therefore

rearrange Equation (3) for q and substitute the value in Equation (5).

Var(Υ1) =

(
p

E(Υ1)
− p

)
· p(

p
E(Υ1)

− p+ p+ 1
)
·
(

p
E(Υ1)

− p+ p
)2

=
(1− E(Υ1)) · (E(Υ1))

2

p+ E(Υ1)
(6)

6 A more reasonable parameter for a bimodal distribution might be the modes but due to computa-
tional simplifications the expected values are chosen instead.
7 In Appendix 1 an overview of different studies about LGD distributions with respect to different
time spans, industrial branches and financial contracts is given. For our intervals the maximum and
minimum values of these studies are taken.
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Furthermore, the upper bound for the variance is given if p equals its minimal possible

value, namely one, and so we get:

Var(Υ1) <
(1− E(Υ1)) · (E(Υ1))

2

1 + E(Υ1)
(7)

The lower bounds of the variance intervals are determined simultaneously with the lower

bound of the expected value interval in case of Υ1 and the upper bound of the expected

value interval in case of Υ2.

The idea behind the determination of the lower bound of the variance interval is that

we want to avoid extremely peaked densities since these densities would result in a very

narrow interval for the realizations, namely the LGD in our case. However, such an LGD

distribution is not observed in reality and so it seems not suitable for our simulation.

Given an expected value, the ratio between the parameters p and q remains constant.8 In

Appendix 4 it is shown that the variance of a beta distributed random variable decreases

for increasing parameters p and q given a constant ratio between these parameters. This

implies that, given a certain expected value, the variance is higher for lower parameter

values p and q. However a lower bound for these parameters is given by one. Hence a

minimal value for the variance interval corresponds to a minimal expected value. In Table

1 certain combinations of a minimal variance given an expected value are provided. In the

whole explanation above, a right-skewed distribution was assumed. For the left-skewed

case the parameters p and q change their roles and we assume an upper bound for the

expected value, but the derivation remains the same.

Table 1: Combinations of variances and expected values
The table shows different expected values and

corresponding maximum variances (used as the

lower bound of the variance intervals).

variance expected value expected value
(right-skewed) (left-skewed)

0.001 0.033 0.967

0.002 0.047 0.953

0.003 0.059 0.941

0.004 0.068 0.932

0.005 0.076 0.924

For our purpose a minimum variance of 0.003 is chosen for the interval. A lower variance

would result in very peaked densities and a higher variance implies that the minimal ex-

pected value for the right-skewed density is above six percent, which is not very meaningful

for recovered loans.

8 See Appendix 3.
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Finally the weight ω1 is randomly selected from the open interval (0.5,1), where ω1 can

be interpreted as a kind of probability of recovery and 1 − ω1 as a kind of write-off

probability. Thus we implicitly assume that the probability of recovery is always larger

than the write-off probability.9

An illustration of possible mixture densities, which result according to the approach de-

scribed above, is provided in Figure 2.

Figure 2: Possible mixture densities of two beta distributions

The figure shows possible mixed density functions of two beta distributed random variables
over the interval [0,1] according to the approach described earlier.
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After creating the mixture distribution, the portfolio generation requires that n realiza-

tions from this underlying distribution have to be drawn. In general there are two widely

accepted methods to draw realizations from a given distribution in a Monte Carlo sim-

ulation. The most famous one is the Inversion Method. Due to the definition of a beta

distributed random variable it is not possible to obtain the inverse of the distribution

function analytically and this is also true for mixture distributions consisting of beta dis-

tributions. Nevertheless we apply this method numerically by dividing the interval [0,1]

into 10,001 equidistant points. For each point, ηi, we compute the value of the mixture

distribution function which equals the cumulated probability up to this point according

to Equation (2). Subsequently we draw n realizations � from a [0,1]-uniformly distributed

9 All drawn values are, of course, assumed to be uniformly distributed over the respective interval.
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random variable and obtain n simulated LGDs (ψi) as a solution of:

ψi = F−1

(
argmax

F (ηi)
(�− F (ηi)) > 0

)
(8)

The second widely accepted method is the Acceptance and Rejection Method where the

general idea is to find a target probability distribution T , with given density function

t(x), from which random realizations can be easily drawn.10 Furthermore the target’s

density should be close to the density of the examined distribution, in our case the mixture

distribution. However there is no ”simple” distribution which density is close to a bimodal

density. Hence when using well-known distributions as the target the algorithm becomes

inefficient since there is a great rejection probability resulting from the difference between

the two densities. Therefore the numerical Inversion Method described above seems more

efficient and reasonable.

3.2 Simulation of Obligor’s Parameters

The second part of this section describes the modelling of the obligor-specific parameters.

Therefore we use four LGD-influencing variables. Due to descriptive ease we will constrain

the simulation of the obligor-specific parameters to fictitious parameters named A, B,

C, and D. However at the end of this section possible LGD influencing parameters are

provided. Via usage of a copula we will also include dependencies between three of the

parameters. After the modelling, Section 3.3 will provide the merger of the LGD and the

simulated parameter values.

Parameter A is assumed to be beta distributed with p = q = 5. Since A is truncated on

the [0,1]-interval it can be interpreted as a kind of ratio, e.g. a financial statement ratio or

another credit-influencing ratio. Furthermore we imply a positive causal relation between

A and the LGD. The second parameter, B, is normally distributed with μ = 0.05 and

σ = 0.2. This parameter can be interpreted as a profit ratio, e.g. return on investment

or return on equity. Thus we imply a negative causal relation between B and the LGD.

Parameter C is binary distributed where the cut-off point between the two classes is 0.7,

i.e. the probability of an observation of the first class is 70 per cent. This parameter can be

interpreted as a kind of status variable, e.g. repeated default, existence of collateralization

or classification into junior or senior debt. We imply a negative causal relation between

C and the LGD. The last parameter, D, is beta distributed with p = 2 and q = 10. Like

the first parameter, D can be interpreted as a kind of ratio, whereas the causal relation

between D and the LGD is assumed to be negative.

10The Acceptance and Rejection Method was introduced by von Neumann (1951). For further infor-
mation see Gentle (2003), pp. 113–125.
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Regarding the correlation between all parameters, we assume that parameter A has no

causal coherence to any other parameter and thus we assume independency between

this parameter and the others. So this means that we can independently draw from the

parameter-underlying distribution by using the Inversion Method. The causal coherence

between the parameters B, C and D is assumed to be positive between each of them. For

the construction of this dependency, we choose a copula approach.

A copula can be, roughly speaking, regarded as a function that joins or couples multivari-

ate distribution functions to their one-dimensional marginal distribution functions and

whose one-dimensional margins are uniform.11 More precisely,12

Definition 1. A function C : [0, 1]n → [0, 1] is a n-copula if it enjoys the following

properties:

• ∀ u ∈ [0, 1] : C(1, . . . , 1, u, 1, . . . , 1) = u,

• ∀ ui ∈ [0, 1] : C(u1, . . . , un) = 0 if ∃ j ∈ {1, . . . , n} : uj = 0,

• C is grounded and n-increasing.

Since the aim of our model is not the analysis of asymmetric dependencies in the pa-

rameters, we apply a Gaussian copula and not an Archimedean copula. When using this

simulation approach with real historical data one has to be cautious in choosing the

appropriate dependency structure, i.e. a Gaussian copula may not be the best fitting

dependency model for other parameters.13

Now we introduce the construction principle for our case of a three-dimensional Gaussian

copula. First we need the correlation matrix ρ which has to be at least positive semidefinite

according to the definition of a copula. Our general assumption is a positive dependency

between each variable which, however, does not imply the positiv semidefiniteness of

ρ. We construct intervals for each correlation parameter between two variables within

the copula since we do not want to have a fixed correlation matrix for all simulated

portfolios. Therefore we will draw single correlation parameters from the intervals for

each portfolio subject to the constraint that the resulting correlation matrix is at least

positive semidefinite. Furthermore we assume that the dependency between parameters

B and C and the dependency between C and D are at least as high as the dependency

between parameters B and D. Since we demand intervals as large as possible, a non-linear

optimization problem according to Appendix 5 has to be solved, resulting in the following

correlation matrix, where the first row denotes the dependencies of B, the second row

11 See Nelsen (2006), p. 7.
12 See Malervergne and Sornette (2006), pp. 103-104.
13A general overview of existing copula types is given in, e.g., Nelsen (2006).
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denotes the dependencies of C and the last row denotes the dependencies of D.

ρ =

⎛⎜⎝1 ρB,C ρB,D

1 ρC,D

1

⎞⎟⎠ =

⎛⎜⎝1 [0.5, 0.75] [0.125, 0.5]

1 [0.5, 0.75]

1

⎞⎟⎠ (9)

The next step in the copula computation is the transformation of three independently

standard-normally distributed random variables Zi, i = 1, 2, 3 into three dependent

standard-normally distributed random variables Xi, i = 1, 2, 3 using the Cholesky de-

composition of ρ. Hence the dependent variables are given by:

X1 = Z1

X2 = ρB,C · Z1 +
√
1− ρ2B,C · Z2

X3 = ρB,D · Z1 +
ρC,D − ρB,D · ρB,C√

1− ρ2B,C

· Z2

+
√
1− ρ2B,D − (ρC,D − ρB,D · ρB,C)2 · Z3 (10)

In the next step the three dependent variables are plugged in the distribution function of

the standard normal distribution and thus we get three dependent uniformly distributed

random variables Ui, i = 1, 2, 3. Finally the Ui’s are used as the input for the Inversion

Method to generate observations from the marginal distributions underlying the copula,

e.g. U3 is used as the input for the inverse beta distribution to generate observations for

parameter D.14

After this simulation procedure we obtained k portfolios each comprising n observations

of four obligor parameters. The final step for the portfolio creation is the merger of the

four parameters with the simulated LGD value in a systematic manner described in the

next part.

3.3 Merging of LGD and Parameters

This part finishes the portfolio creation by combining the four parameters and the LGD

into one obligor-specific defaulted loan. The parameters will be matched in a quasi-random

procedure where the dependency structure between each parameter and the LGD men-

tioned in the prior part is applied. However, we include a stochastic component in this

14A further step is needed to generate the copula. The computation of the joint distribution involves
creating the weighted sum of the inverse of the marginal distributions. Nevertheless we do not need
aggregated observations and a meaningful interpretation of this aggregate observation is not given for
our case.
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matching to obtain a more realistic credit portfolio. The detailed procedure is described

in the following.

First we sort the simulated observations of each parameter, including the LGD, and

create quintiles. For the parameters in the copula we apply the sorting procedure and

quintile creation to the copula values instead of the simulated observations of the marginal

distributions. Parameter A will be matched separately to the LGD since there is no

dependency to the other parameters. The matching procedure is done by means of a so

called ”double-stochastic matrix”. Due to the disposition of each parameter into quintiles,

we will match each quintile of the obligor’s parameter to an LGD quintile according to

the specific dependency structure. For the ease of comprehension the matching procedure

will be explained for parameters with a negative causal relation to the LGD, e.g. B.

Initially we need a five-by-five matrixM describing our double-stochastic matrix since we

want to match quintiles. Each element ofM ,mi,j, i, j = 1, . . . , 5, describes the probability

that an observation of the j-th quintile of (in this example) parameter B is matched to

an observation of the i-th quintile of the LGD. For completeness reasons of the matching,

the row sum has to equal one for all rows, i.e.,
5∑

j=1

mi,j = 1 ∀ i, as well as for the column

sum, i.e.,
5∑

i=1

mi,j = 1 ∀ j. A linear program can be solved for the generation of M and is

described in Appendix 6. The resulting matrix for our case is presented in Figure 3 where

the probability for each mi,j is given.

Figure 3: Matrix M for the matching process

The figure shows the outcome of the linear program according to Appendix 6 presented as
the matrix M .
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After generation of the matrix, we pick the first observation of the first LGD-quintile.

Furthermore a random number Nr from a uniform-[0,1]-distribution is drawn and com-

pared with the cumulated probabilities of the first row of M . If, e.g., Nr = 0.425, the first

LGD-observation is matched with an observation of parameter B of the fifth quintile.

This observation is randomly chosen from the fifth quintile and both matched values are

deleted from the set of observations. The procedure is repeated n times for k portfolios

resulting in n · k pairs of observations. An obstacle that may occur during the matching

process might be a chosen parameter B quintile which is already empty. In this case, the

next plausible quintile is chosen.

The whole procedure described for parameter B is done for the copula values instead

of the realizations of the marginal distributions within the copula. After matching the

copula with the LGD, we replace the copula value with the respective observations of the

marginal distributions. One has to consider that for a different dependency structure, e.g.

for parameter A, the matrix M is mirrored around the third column. Finally we obtain k

matrices with each consisting of five columns (LGD and four obligor parameters) and n

rows. Thus each matrix describes a loan portfolio consisting of n obligors.

As can be seen in Figure 3 the matching probabilities for the assumed relationship between

the LGD and the obligor-specific parameters are rather small in the sense that, e.g. for the

second, third and fourth quintile the probability for the correct classification assumed is

below 50 percent, namely 45 percent for the second and fourth quintile and 40 percent for

the third quintile. This matching structure allows for many outliers, which finally leads to

a less predictive relationship between the obligor-specific parameters and the LGD. Thus

we will refer to this resulting data set as the ”bad data set” in the further sections of

this paper. To enhance the general validity of our upcoming estimation model we create

a second data set according to the same process described above. However, this data set

exhibits a quite higher predictive relationship due to an increase of the probabilities for

the correct classification assumed and is in the further proceeding referred to as ”good

data set”.15 So both data sets can be used to verify the performance quality of our model

and the benchmark models developed in the next Section.

This finishes the simulation part of our paper. We will use the simulated portfolios in

the following sections for analyzing different LGD-estimation models. Our simulation ap-

proach is different to all existing methods described in the literature to model credit

portfolios where the idea is focused on a kind of macroeconomic description of a loan

portfolio in the sense of using a superordinated systematic risk factor. Instead our ap-

proach is more focused on the idea of the microstructure of the loan portfolio in the sense

of using obligor-specific properties. Therefore banks are able to apply this approach to

15The corresponding matrix for the matching process for the good data set can be found in Appendix
7.

15



get any synthesized number of credit portfolios using historical data to approximate the

parameter-underlying distributions. This is especially important if the size of the real

credit portfolio is large enough for obtaining the distributions and dependencies of the

obligor’s parameters but too small for a decomposition of the portfolio for further anal-

yses like modeling, validating and stress testing. Additionally the described approach is

adjustable for simulating similar problem sets, e.g., probability of default estimations,

rating function derivations or pricing models.

As mentioned before, the portfolio consists of fictitious obligor-specific parameters. A

possible LGD-influencing factor might be the rating of the obligor. The rating can be

considered as a measure for the default probability of the obligor. Several studies found an

empirical evidence for a positive relation between default probability and LGD.16 Another

LGD-influencing factor is represented by the seniority of a loan. The relationship between

seniority and LGD is assumed to be negative since it is obvious that senior loans are served

prior to junior loans in case of a bankruptcy. Also the industry and macroeconomic factors

that are influenced by the business cycle might affect the LGD as shown in Schuermann

(2005).

4 Estimation Model and Benchmark Models

This part introduces the estimation model applied. As our LGD-estimation shall account

for the bimodality of the LGD-distribution, we initially need to estimate the parameters

of the mixture distribution. Since we assume the LGD-distribution being a mixture of two

beta distributions, two commonly used algorithms are introduced for the estimation of

the two parameters, p and q, of each beta distribution and the weight ω1. We furthermore

analyze the efficiency and reliability of both algorithms since up to our knowledge this

analysis has not been done for this special case of mixture distributions.

4.1 Maximum Likelihood Algorithm

The well-known Maximum Likelihood (ML) algorithm can be used to compute the pa-

rameters and weights of a mixture distribution but as we will see shortly the problem may

be analytically intractable. The likelihood function for a mixture distribution consisting

of two distributions reads as:

LML =
n∏

i=1

f(υi) =
n∏

i=1

(ω1 · f1(υi) + (1− ω1) · f2(υi)) (11)

16 See e.g. Bakshi et al. (2001) and Jokivuolle and Peura (2003). For a detailed literature overview on
this topic see Altman (2006).
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and thus the log likelihood function reads as:

logLML =
n∑

i=1

log (ω1 · f1(υi) + (1− ω1) · f2(υi)) . (12)

As we assume a mixture consisting of two beta distributed random variables, an analytical

solution of the maximization is not possible. Therefore a numerical procedure has to be

used where the iterative step of the enhancement of the parameter vector θ reads as:

θ(k+1) = θ(k) −
(
∂2 logLML

∂θ∂θ′

)−1

· ∂ logLML

∂θ(k)
(13)

This approach is the well-known Newton-Raphson method and is considered as a fast and

reliable approximation algorithm. Thus we need the first and second (partial) derivatives

of the log likelihood function for the gradient and the Hessian inverse. The iterative

procedure is repeated until the relative change in the log likelihood function does not

exceed a predefined level of tolerance.

4.2 Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm introduced by Dempster et al. (1977)

mainly comprises of two steps, the so called E-step and the M-step. First it is assumed

that a data set Υ is observed and contains observations described by some distribution.

The data set Υ is assumed to be an uncomplete data set. Therefore the existence of a

complete data set Λ = (Υ,Ξ) is assumed, where Ξ is an additional data set containing

the missing information. Ξ is assumed to be random and unobservable. Furthermore a

distribution for Λ is assumed as well, which is just the joint distribution of (Υ,Ξ). Hence

the density reads as:

f(λ|Θ) = f(υ, ξ|Θ) = f(ξ|υ,Θ) · f(υ|Θ), (14)

where Θ is the set of distribution parameters that are to be estimated. Finally the complete

data likelihood function denoted as LEM can be set:

LEM =
n∏

i=1

f(υi, ξi|Θ). (15)

In our case of a mixture of two beta distributions, the density of the incomplete data set

Υ reads as:

f(υi|Θ) =
2∑

j=1

ωj · fj(υi|θj), (16)
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where Θ = (ω1, ω2, θ1 (= p1, q1), θ2 (= p2, q2)) and fj denotes the density of the right-

skewed beta distribution (j=1) or the left-skewed beta distribution (j=2). Thus the log

likelihood function of the incomplete data set results in:

logLEM =
n∏

i=1

f(υi, ξi|Θ) =
n∑

i=1

log

(
2∑

j=1

ωj · fj(υi|θj)
)
. (17)

Since the optimization of the logarithm of a sum is pretty difficult, the above mentioned

concept about the existence of additional data simplifies the optimization problem. In our

case the additional data set Ξ is defined as:

ξi =

⎧⎨⎩1 if observation i belongs to the first (right-skewed) beta distribution

2 if observation i belongs to the second (left-skewed) beta distribution.
(18)

If the additional data Ξ is known, the log likelihood rearranges to:

logLEM =
n∑

i=1

log

(
2∑

j=1

�{ξi=j} · ωj · fj(υi|θj)
)
, (19)

where still a logarithm of a sum is observable but for every observation just one of the

summands remains. The reason is that the observations under the additional information

are from mutually exclusive densities, i.e. one observation can only be generated by one

density. Thus the logarithm of the remaining summand is just the logarithm of a product.

The problem that the additional data set is not known still remains. However it is assumed

that the additional data is random and so by taking the conditional expectation of the

complete data log likelihood function with respect to the additional data Ξ (known as

the E-Step) we end up with a function only depending on the observable data Υ and the

parameters Θ that are to be estimated. For optimizing this function, we need both initial

values for the density parameters and the distribution of the additional data for taking

the expectation. Therefore the conditional expectation of the k-th iteration reads as:

EΞ

[
logLEM|Θ(k−1)

]
= EΞ

[
n∑

i=1

log
(
�{ξ(k−1)

i =1} · ω
(k)
1 · f1(υi|θ(k)1 )

+�{ξ(k−1)
i =2} · (1− ω

(k)
1 ) · f2(υi|θ(k)2 )

)]

=
n∑

i=1

(
EΞ(�{ξ(k−1)

i =1}) · (log f1(υi, θ
(k)
1 ) + logω

(k)
1 )

+EΞ(�{ξ(k−1)
i =2}) ·

(
log f2(υi, θ

(k)
2 ) + log(1− ω

(k)
1 )

))
(20)

Since the expectation is just taken with respect to Ξ the indicator functions have to be
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considered only. So the expectations result in:

EΞ

(
�{ξ(k−1)

i =1}

)
= 1 · ω

(k−1)
1 · f1(υi, θ(k−1)

1 )

f(υi,Θ(k−1))
+ 0 · ω

(k−1)
2 · f2(υi, θ(k−1)

2 )

f(υi,Θ(k−1))

=
ω
(k−1)
1 · f1(υi, θ(k−1)

1 )

f(υi,Θ(k−1))

and analogously

EΞ

(
�{ξ(k−1)

i =2}

)
=

ω
(k−1)
2 · f2(υi, θ(k−1)

2 )

f(υi,Θ(k−1))
(21)

Inserting (21) in (20) results in:

EΞ

[
logLEM|Θ(k−1)

]
=

n∑
i=1

(
ω
(k−1)
1 · f1(υi, θ(k−1)

1 )

f(υi,Θ(k−1))
·
(
log f1(υi, θ

(k)
1 ) + logω

(k)
1

)
+
ω
(k−1)
2 · f2(υi, θ(k−1)

2 )

f(υi,Θ(k−1))
· log f2(υi, θ(k)2 )

+
ω
(k−1)
2 · f2(υi, θ(k−1)

2 )

f(υi,Θ(k−1))
· log

(
1− ω

(k)
1

))
(22)

The M-step requires the optimization of Θ(k), which includes the parameters p
(k)
1 , q

(k)
1 , p

(k)
2 , q

(k)
2

and ω
(k)
1 . The resulting estimators are subsequently used again for the next iteration of

the EM algorithm. Below we show the derivation of the optimal estimator for ω
(k)
1 , which

is just the sum of the posterior probabilities over all observations divided by the number

of observations.

0
!
=
∂EΞ

[
logLEM|Θ(k−1)

]
∂ω

(k)
1

=
n∑

i=1

(
ω
(k−1)
1 · f1(υi, θ(k−1)

1 )

f(υi,Θ(k−1))
· 1

ω
(k)
1

−ω
(k−1)
2 · f2(υi, θ(k−1)

2 )

f(υi,Θ(k−1))
· 1

(1− ω
(k)
1 )

)
n∑

i=1

ω
(k−1)
2 · f2(υi, θ(k−1)

2 ) · ω(k)
1

f(υi,Θ(k−1)) · (1− ω
(k)
1 ) · ω(k)

1

=
n∑

i=1

ω
(k−1)
1 · f1(υi, θ(k−1)

1 ) · (1− ω
(k)
1 )

f(υi,Θ(k−1)) · (1− ω
(k)
1 ) · ω(k)

1

n∑
i=1

ω
(k−1)
2 · f2(υi, θ(k−1)

2 )

f(υi,Θ(k−1))
=

n∑
i=1

ω
(k−1)
1 · f1(υi, θ(k−1)

1 )

f(υi,Θ(k−1)) · ω(k)
1

−
n∑

i=1

ω
(k−1)
1 · f1(υi, θ(k−1)

1 )

f(υi,Θ(k−1))

n∑
i=1

=f(υi,Θ
(k−1))︷ ︸︸ ︷

ω
(k−1)
1 · f1(υi, θ(k−1)

1 ) + ω
(k−1)
2 · f2(υi, θ(k−1)

2 )

f(υi,Θ(k−1))
=

n∑
i=1

ω
(k−1)
1 · f1(υi, θ(k−1)

1 )

f(υi,Θ(k−1)) · ω(k)
1

ω
(k)
1 =

n∑
i=1

ω
(k−1)
1 ·f1(υi,θ(k−1)

1 )

f(υi,Θ(k−1))

n
(23)
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The estimators for the parameters p and q of each distribution in the mixture can be

derived analogously. However the derivation of these estimators is not that straightforward

since it here involves the derivative of the beta density. Beckman and Tietjen (1978) and

others show that it is quite complicated to solve the likelihood equations. We therefore

consider the Method of Moments (MM) estimators which read as:

p = υ ·
(
υ

s2υ
· (1− υ)− 1

)
q = (1− υ) ·

(
υ

s2υ
· (1− υ)− 1

)
, (24)

where s2 denotes the sample variance and υ denotes the sample mean. Due to our modifi-

cation of using the MM estimators for the parameters p and q, we only obtain an adjusted

EM (aEM) algorithm instead of the pure EM algorithm. We avoid the usage of numerical

derivatives as in the ML algorithm due to computational effort.

The general idea of our simulation is to obtain 1,000 credit portfolios each containing

10,000 creditors with individual LGDs and obligor-specific parameters. We had to repeat

the above mentioned algorithms 1,385 times to achieve the required number of portfolios,

where the ML algorithm stopped 385 times due to non-convergence and in 197 cases

the aEM algorithm did not converge. However, in these cases the ML algorithm did not

converge as well. In consequence we can state that in our case the aEM algorithm has

better convergence properties than the ML algorithm.

In a next step we look at the reliability of our estimators by comparing the mean squared

errors (MSE) over all portfolios for the parameters of the mixture distributions. Table 2

shows the results of this reliability analysis.

Table 2: Parameter reliability analysis
The table provides the mean squared errors of each parameter estimated in the mixture

model, namely the two parameters of each beta distribution and the weight.

Algorithm MSE of p1 MSE of q1 MSE of p2 MSE of q2 MSE of ω1

ML 0.0055 0.1583 1.9490 0.2153 1.7968 · 10−4

aEM 0.0158 0.3768 10.8126 0.3426 1.7934 · 10−4

It can clearly be seen that the ML estimators are much more accurate in all parameters

than the corresponding aEM estimators except for the estimation of the weighting factor.

However the difference between both MSEs is negligible. Resuming the analysis we obtain

that the ML algorithm provides more accuracy than the aEM algorithm but at the expense

of the convergency properties.17 Due to the relative small values of the MSEs for each

17We omit a further statistical analysis due to the clear difference in the MSE values and the number
of observations. A statistical test on equality of the parameter values would lead to similar results.
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parameter, the resulting LGD estimation based on these estimated parameters will only

slightly deviate from the ”true” LGD values underlying the simulation.

4.3 Estimation of LGDs with Obligor-Specific Parameters

Now we will explain our complete estimation model in more detail. It generally consists

of five steps with small deviations depending on the estimation approach. First the dis-

tribution parameters of the mixture distribution, i.e. p1, q1, p2, q2 and ω1, are estimated

via either the ML or aEM algorithm. However we only apply the ML algorithm due to

the better accuracy in the parameter estimation. The next step requires the computation

of the estimated distribution values for both beta distributions over all LGDs (compare

Equation (1)). There are two different approaches pursued in the third step. One requires

the computation of the mixture distribution values followed by a regression of the trans-

formed mixture distribution values on the obligor-specific parameters. The transformation

is done due to the bounded nature of the dependent variable and will be discussed in more

detail below. The second alternative carried out in this step requires the regression of the

transformed single distribution values on the obligor-specific parameters for each beta

distribution. Subsequently both estimators of the regressions are weighted with estimated

ω. The fourth step is equal for both alternatives and contains the re-transformation of

the estimators into an again bounded estimator for the distribution value of the mixture.

Finally the LGDs are estimated via the Inversion Method described at the end of Section

3.1.

Now the single steps are described in more detail. The first step was described in detail in

the Sections 4.1 and 4.2. By using the estimated parameter values, the required estimated

distribution values can be computed in the second step. The third step first involves the

transformation of the estimated distribution values of either the mixture or the single

beta distribution values. Two different transformation types are used, namely the logit

transformation and the normal transformation. The logit transformation reads as:

ylogi = log
F (υi)

1− F (υi)

and accordingly

yj,logi = log
Fj(υi)

1− Fj(υi)
, j = 1, 2, (25)

and the normal transformation reads as:

ynormi = Φ−1(μ, σ, F (υi))

and accordingly

yj,normi = Φ−1(μ, σ, Fj(υi)), j = 1, 2. (26)
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The argument υi is the i-th observation of the realized LGDs, F (.) denotes the mixture

distribution and Fj(.) denotes the single beta distribution. The parameters μ and σ are

the mean and the standard deviation of the mixture distribution which act as the location

and scale parameter in the normal distribution and Φ−1 denotes the inverse distribution

function of a standard normally distributed random variable. After the transformation a

linear regression of the estimated distribution values for either the mixture distribution

or each beta distribution on the obligor-specific parameters is carried out.

In the fourth step, the estimators are either re-transformed in case of the regression in-

volving the mixture distribution or the ω-weighted estimators from each beta distribution

are re-transformed. The final step comprises the computation of the LGD via the inverse

of the estimated mixture distribution values by applying the Inversion Method according

to Equation (8). For future LGD estimations one would skip the first two steps and would

just insert the obligor-specific parameters into the regression model of the third step.

Afterwards one would proceed with the last two steps.

4.4 Benchmark Models

We will now introduce the before mentioned benchmark models in the way we will apply

them in our analysis. Starting with the approach of Hamerle et al. (2006) we first transform

the bounded LGDs into an unbounded variable yHam by the logit transformation:

yHam
i = log

LGDi

1− LGDi

. (27)

Afterwards an OLS regression is applied to the transformed LGDs. Since we do not have

any time consideration, the panel regression described by Hamerle et al. (2006) is reduced

to an OLS regression in our case. The dependent variable yham is retransformed into an

estimation of the LGD.

The second benchmark model is in the style of the LossCalc model by Moody’s KMV

described by Gupton and Stein (2005). The assumption underlying the model is an LGD

described by just one beta distribution. Therefore a transformation of the LGD is done

by normalizing the LGD via a beta transformation:

yKMV
i = Φ−1(μ, σ,Beta(LGDi)), (28)

where μ and σ are the estimators of the mean and the standard deviation of the beta

distribution. Analogously to the fist benchmark model an OLS regression is applied. The
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retransformation is done by:

̂LGDi = Beta−1(p, q,Φ(ŷi)),

where

p =
μ2 · (1− μ)

σ2
− μ q =

1

μ
− 1. (29)

As a third benchmark model we choose the regression tree model applied to recovery rates

proposed by Bastos (2009). Regression trees are nonparametric and nonlinear predictive

models and were first introduced by Breiman et al. (1998). The general idea is a clustering

according to certain splitting rules of the credit portfolio according to the obligor-specific

parameters into more homogeneous, mutually exclusive subportfolios. Logical if-then con-

ditions lead to a decomposition of a root node into daughter nodes by a recursive search

algorithm.18 There are certain splitting rules applicable, where Bastos (2009) refers to the

so-called ”maximum deviance reduction” rule. The referring decision measure of this rule

is denoted as DR and reads as:

DR = σT − μT1

μT

· σT1 − μT2

μT

· σT2, (30)

where σ and μ denote the standard deviation and the mean of the nodes named in the

subscript, T denotes the parent node and T1 and T2 are the observation set of the daughter

nodes. In our case we implemented the model via the MATLAB routine classregtree

where the initial tree is reduced to a certain level (deepness of the tree) by the command

prune. The best level is the one that produces the smallest tree that is within one standard

error of the minimum-cost subtree.

5 Results

We first define the following abbreviations:

• HOlog: mixture distribution model with logit transformation

• HOnorm: mixture distribution model with normal transformation

• Bas: benchmark model with the approach according to Bastos (2009)

• KMV: benchmark model with the approach according to Gupton and Stein (2005)

• Ham: benchmark model with the approach according to Hamerle et al. (2006).

18We omit the technical details of the procedure since it is not in the focus of our paper. For more
details see Breiman et al. (1998).
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We will refer to these abbreviations in the following parts. The models where the regression

is done on the single beta distribution values are not analyzed in more detail since the

analysis showed that these models could not exhibit a constant sufficient performance

over all portfolios. This may be due to the kind of data, which we cannot check since no

real data are available. It may also be due to the kind of regression and transformation

process.

The complete analysis is done for both the good and the bad data set.19 First the mean

absolute deviations (MAD) of the estimated LGDs from the realized LGDs are computed

for each portfolio and each modelling approach. The minimum, the maximum and the

mean MAD for the bad data set are presented in Table 3.

Table 3: Results for the bad data set
The table shows the mean MAD and the standard deviation of the

MAD (std MAD) over all portfolios, the minimum MAD, and the

maximum MAD for our two models and the three benchmark models

for the bad data set. All results are multiplied with a factor 100 so

that they can be interpreted as percentage points.

model mean MAD std MAD min MAD max MAD

HOlog 12.8501 3.5467 3.0184 19.2286

HOnorm 12.8707 3.5467 3.0286 19.2307

Bas 13.8004 3.7838 3.5422 22.7381

KMV 15.0221 4.0899 3.0297 23.2934

Ham 14.0952 4.1663 3.0290 21.7918

It can be seen that our models are at least one percentage point better than the benchmark

models with respect to the mean MAD, which results in an accuracy improvement of at

least 6.94 percent (HOnorm vs. Bas) up to 11.28 percent (HOlog vs. KMV). Furthermore

the standard deviations of the MAD of our models are also smaller than the ones of the

benchmark models. The relative differences between the standard deviations of the MAD

between our models and the benchmark models reach from 6.27 percent (HOnorm/log vs.

Bas) to 14.87 percent (HOnorm/log vs. Ham). This result is additionally emphasized by the

lower maximal values of the MADs.

The results for the good data set are presented in Table 4. In case of the good data set it

is obvious that our approaches are still better than the models according to Gupton and

Stein (2005) and Hamerle et al. (2006) with respect to the mean MAD. Both approaches

offer mean MADs that are at least 16.37 percent lower than the mean MAD of the model

proposed by Hamerle et al. (2006). In comparison to KMV our both approaches even

19 It has to be noted that the KMV model did not work properly in 55 cases of all portfolios. This
problem arose since the small values obtained after the transformation could not be processed by the
computer. These portfolios were only removed for the analysis of the KMV model.
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Table 4: Results for the good data set
The table shows the mean MAD and the standard deviation of the

MAD (std MAD) over all portfolios, the minimum MAD, and the

maximum MAD for our two models and the three benchmark models

for the good data set. All results are multiplied with a factor 100 so

that they can be interpreted as percentage points.

model mean MAD std MAD min MAD max MAD

HOlog 8.0929 1.7000 2.0748 11.6390

HOnorm 8.0730 1.6723 2.0884 11.6298

Bas 7.5675 1.4896 2.1293 11.9463

KMV 10.8753 2.7582 2.0873 17.8138

Ham 9.9110 2.5897 2.0988 17.3259

posses a mean MAD that is more than 22 percent smaller. When comparing the standard

deviations of the MADs and choosing the standard deviation of HOlog as the benchmark,

we are still more than 34 percent smaller than the model of Hamerle et al. (2006) and

more than 38 percent smaller than the KMV model. Thus our models offer a considerably

better accuracy in the LGD estimation than both just mentioned benchmark models.

Regarding the model proposed by Bastos (2009) the mean and the standard deviation

of the MAD are lower than those of our models. However our models are better in case

of considering the extreme values of the MADs. It has to be mentioned that there are

some critical points regarding regression trees. One problem is the rigidity of the ap-

proach. Since it is a kind of clustering model the continuity of the influencing parameters

vanishes and is reduced to a binary decision rule. This means that depending on the

branching structure and deepness of the tree an outlier in just one influencing factor may

lead to completely misspecified LGDs which may also lead to counterintuitive interpreta-

tions. This is especially important when having a data set that offers a weak predictive

power of the influencing factors on the LGD. A second disadvantage of the regression tree

model compared to a straight-forward regression approach is the inflexibility. This means

that regular regression approaches can use nearly every functional dependency between

the explanatory variables and the dependent variable and even between the explanatory

variables themselves.

We exemplarily choose a portfolio to illustrate the regression results and the corresponding

estimated LGD distributions. This is done for the good data set as well as for the bad

data set. In Table 5 the regression coefficients, their significance and the coefficient of

determination for our models, the KMV model and the model according to Hamerle et al.

(2006) are presented. The regression coefficients are obtained from the linear regression

ŷi = b0 + b1 ·Ai + b2 ·Bi + b3 ·Ci + b4 ·Di, where A, B, C, and D are the obligor-specific

parameters and ŷ is either the transformed realized LGD or the transformed distribution
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value of the realized LGD. Since the regression tree model proposed by Bastos (2009) does

not exhibit any functional relationship we could not obtain any regression coefficients nor

a coefficient of determination and is therefore excluded from the table. The regression tree

for the good data set of the exemplarily chosen portfolio can be found in Appendix 8.

Table 5: Estimation results for the randomly chosen portfolio
The table shows the regression coefficients for the four regres-

sion models according to the equation ŷi = b0+b1 ·Ai+b2 ·Bi+

b3 · Ci + b4 · Di. Furthermore the coefficient of determination

is given as well. A double asterisk indicates significance on the

one percent level and a single asterisk indicates significance on

the five percent level.

HOlog HOnorm KMV Ham

bad data set

b0 −2.0267∗∗ −0.0901∗∗ 0.2392∗∗ −3.4135∗∗

b1 5.4244∗∗ 0.9783∗∗ 1.0960∗∗ 5.7675∗∗

b2 −1.7129∗∗ −0.3128∗∗ −0.3564∗∗ −1.8646∗∗

b3 −0.3075∗∗ −0.0569∗∗ −0.0225∗∗ −0.1507∗∗

b4 −3.1045∗∗ −0.5615∗∗ −0.5727∗∗ −3.0556∗∗

R2 0.4536 0.4834 0.3361 0.3641

good data set

b0 −2.4484∗∗ −0.1733∗∗ 0.0746∗∗ −4.2057∗∗

b1 6.2471∗∗ 1.1377∗∗ 1.3636∗∗ 7.0808∗∗

b2 −1.8225∗∗ −0.3263∗∗ −0.3975∗∗ −2.0710∗∗

b3 −0.3636∗∗ −0.0643∗∗ 0.0191∗ 0.0224

b4 −2.9174∗∗ −0.5245∗∗ −0.4529∗∗ −2.5056∗∗

R2 0.6667 0.7081 0.4919 0.5328

The table shows that all regression coefficients are highly significant for all models regard-

ing the bad data set. The influence direction of the obligor-specific parameters (indicated

by the sign of the coefficients) is the same for all models and the same to the one pro-

posed by our simulation. Furthermore the coefficients of determination are higher for our

approaches compared to the benchmark models but they all are below 0.5. Regarding

the good data set the regression coefficients are again always significant and exhibit the

assumed direction of influence of the obligor-specific parameters on the LGD for our ap-

proaches. This is also true for both benchmark models regarding the parameters A, B,

and D. However parameter C exhibits the contrary direction of influence on the LGD but

is not significant for the model according to Hamerle et al. (2006). The coefficients of de-

termination have increased for all models whereas our models still offer higher coefficients

of determination.
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Figures 4 and 5 present the distributions of the estimated LGDs in comparison to the

distribution of the realized LGDs for the exemplarily chosen portfolio.

Figure 4: Histogram for the exemplarily chosen portfolio and the bad data set

The figure shows the distributions of the realized and estimated LGDs of the bad data set.
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It can clearly be seen that using our approaches the assumed bimodality of the realized

LGDs is maintained. The regression tree model proposed by Bastos (2009) exhibits only

a few number of classes (i.e. classes in the histogram) compared to the other models. This

is not surprising since there are only a few decision nodes in the optimal tree. Of course

the number of decision nodes can be enlarged and a bimodal structure can be obtained

but the resulting tree will be more complex and can grow exponentially which results in

an exponential growth of the number of decision pathes and makes the model inoperative

for practical purposes. The models according to Gupton and Stein (2005) and Hamerle

et al. (2006) produce similar results whereas in both cases no bimodal structure occurs

and a lot of observations can be found in the interval [0.3,0.7] where only very few realized

LGDs are present. The results regarding the good data set are similar and need no further

explanation.
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Figure 5: Histogram for the exemplarily chosen portfolio and the good data set

The figure shows the distributions of the realized and estimated LGDs of the good data set.
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6 Conclusion

The aim of the paper was to develop an LGD estimation model that incorporates the two

main distribution characteristics of the loss given default, namely the bounded charac-

ter and the bimodality. Although the bounded character is accounted for in the recent

literature the bimodality, however, has not been incorporated in any model up to our

knowledge. Here we fill this gap by introducing an estimation model that is able to han-

dle the bimodal structure of the distribution.

We introduced a mixture distribution approach comprised of two beta distributions and

applied both the Maximum Likelihood algorithm and an adjusted version of the Expec-

tation Maximization algorithm to estimate the distribution parameters of the mixture.

We have chosen a mixture of two beta distributions since they are quite flexible in ap-

proximating different distribution shapes and account for the bounded character as well.

However these advantages have to be paid by the pretty difficult derivative characteris-

tics of the incorporated Gamma function. Here the Maximum Likelihood algorithm can

only be used numerically and for parts of the estimations done by the Expectation Max-

imization algorithm the Method of Moments estimators were used instead. It was shown

that the Maximum Likelihood algorithm was more accurate in parts of the parameter

estimations but could not compete with the convergence characteristics of the adjusted

Expectation Maximization algorithm.
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The parameter estimators obtained by one of the mentioned algorithms are subsequently

used for the estimation of the distribution values of the realized LGDs, which serve as

the dependent variable within the regression model afterwards. In comparison to some

benchmark models described in the literature our approach clearly outperformed these

benchmark models according to the accuracy, deviations of the estimated LGDs and the

shape of the resulting estimator’s distribution especially accounting for the bimodality.

There is still some space for developments of our approach in the regression model since

we just used a linear regression for simplifications and our model can be extended to a

multi-modal approach which enlarges the field of applications.

The whole analysis regarding our model and the benchmark models was carried out on

synthesized loan portfolios each comprising of 10,000 obligors. Therefore we simulate

obligor-specific parameters which are either independent from all others or are part of

a certain dependency structure modelled via a Gaussian copula. The simulated obligor-

specific parameters are matched with the realized LGDs via a quasi-random approach.

This proceeding may of course reduce the validity of our results but we try to counteract

this possible shortcoming by simulating two data sets of credit portfolios with different

predictive power of the obligor-specific parameters on the LGDs within each portfolio.

In all circumstances it could be shown that our approach is superior to the benchmark

models. Due to these advantages obtained, our approach is especially preferable when

pricing credits. Here not only unbiased estimates are required but also precision for each

single estimation. Given this accuracy in our estimation procedure one can now enhance

the integration of the LGD estimation in models where the LGD is assumed to be an

exogenous influencing factor, especially regarding the interface of probability of default

and LGD.
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Appendix 2

Since Υ2 is assumed to be left-skewed, it follows that p is greater than q. We therefore

rearrange Equation (3) for p and substitute the value in Equation (5).

Var(Υ2) =

q·E(Υ2)
1−E(Υ2)

· q(
q·E(Υ2)
1−E(Υ2)

+ q + 1
)
·
(

q·E(Υ2)
1−E(Υ2)

+ q
)2

=
E(Υ2) · (1− E(Υ2))

2

q + 1− E(Υ2)

Furthermore if q equals one we get the upper bound for Var(Υ2).

Var(Υ2) <
E(Υ2) · (1− E(Υ2))

2

2− E(Υ2)

Appendix 3

Let f be a function of the parameters p and q: f(p, q) = p
q
. According to Equation (3) it

holds that:

E(Υ) =
p

p+ q
.

If we substitute p in Equation (3) with p = f(p, q) · q we get:

E(Υ) =
q · f(p, q)

q · f(p, q) + q
=

f(p, q)

f(p, q) + 1
.

If E(Υ) is given as a constant c the following holds:

c =
f(p, q)

f(p, q) + 1
⇒ f(p, q) =

c

1− c
.

Appendix 4

The variance of a beta distributed random variable Υ according to Equation (5) decreases

for increasing parameters p and q given a constant ratio between these parameters. The

constant ratio can be expressed as p
q
= c with c being some constant value. Thus we can
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write the variance just depending on q and c as:

Var(Υ) =
c · q2

(c · q + q + 1) · (c · q + q)2
=

c

(c · q + q + 1) · (c+ 1)2

⇒ ∂Var(Υ)

∂q
= − c

(c · q + q + 1)2 · (c+ 1)
< 0 ∀q.

Appendix 5

The general correlation matrix with varying interval bounds is given as:

ρ =

⎛⎜⎝1 [a, b] [c, d]

1 [e, f ]

1

⎞⎟⎠
Since the matrix has to be at least positive semidefinite, all determinants of the leading

principle minors have to be non-negative. The determinant of the first leading principle

minor of ρ equals 1, and the determinant of the second principal minor is non-negative

for any non-negative correlation. The remaining constraints result in the following opti-

mization problem given by:

max z = (b− a) + (d− c) + (f − e)

s.t.

0 ≤ 1− a2 − c2 − e2 + 2 · a · c · e
0 ≤ 1− a2 − c2 − f 2 + 2 · a · c · f
0 ≤ 1− a2 − d2 − e2 + 2 · a · d · e
0 ≤ 1− a2 − d2 − f 2 + 2 · a · d · f
0 ≤ 1− b2 − c2 − e2 + 2 · b · c · e
0 ≤ 1− b2 − c2 − f 2 + 2 · b · c · f
0 ≤ 1− b2 − d2 − e2 + 2 · b · d · e
0 ≤ 1− b2 − d2 − f 2 + 2 · b · d · f
0 = a− e

0 = b− f

0.5 ≤ a ≤ 0.75, 0.75 ≤ b ≤ 1, 0 ≤ c ≤ 0.25,

0.25 ≤ d ≤ 0.5, 0.5 ≤ e ≤ 0.75, 0.75 ≤ f ≤ 1
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Appendix 6

For calculating the double-stochastic matrix, the following linear program has to be solved:

max z =
5∑

i=1

5∑
j=1

mi,j

s.t.

1 =
5∑

j=1

mi,j ∀ i, 1 =
5∑

i=1

mi,j ∀ j

0 = m1,5 −m5,1, 0 = m1,4 −m5,2

0 = m1,3 −m5,3, 0 = m1,2 −m5,2

0 = m2,1 −m4,5, 0 = m2,2 −m4,4

0 = m2,3 −m4,3, 0 = m2,4 −m4,2

0 = m3,1 −m3,5, 0 = m3,2 −m3,4

0 = m2,3 −m2,5, 0 ≥ 2 ·m3,2 −m3,3

0 ≥ 2 ·m1,1 −m1,2, 0 ≥ 2 ·m1,2 −m1,3

0 ≥ 2 ·m1,3 −m1,4, 0 ≥ 2 ·m1,4 −m1,5

0 ≥ 2 ·m2,1 −m2,2, 0 ≥ 2 ·m2,2 −m2,3

0 ≥ 2 ·m2,3 −m2,4, 0 ≥ 2 ·m3,1 −m3,2

0.025 ≤ m1,1

0.025 ≤ m2,1

0.025 ≤ m3,1

First the structure of the goal function is irrelevant due to the constraints structure.

Furthermore the third up to the 12th constraint are to ensure the symmetry of M . The

constraints 13 up to 21 ensure that the probability of being in one quintile is at least

twice the probability of being in the next less probable quintile. The last three constraints

ensure a minimal probability of choosing each quintile in the matching process of 2.5%.

Due to this constraint structure we ensure that there are some outliers possible but just

to a reasonable extent.
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Appendix 7

Figure 6: Matrix M for the matching process for the good data set

The figure shows the outcome of an adjusted linear program similar to the one in Appendix
6 presented as the Matrix M.
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Appendix 8

Figure 7: Regression Tree for the exemplarily chosen portfolio and the good data set

The figure shows the regression tree for the exemplarily chosen portfolio of the good data
set. The end nodes represent the estimated LGD for this specific branch.
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