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Abstract

After-sales service is a major profit generator for more and more OEMs in industries with

durable products. Successful engagement in after-sales service improves customer loyalty

and allows for competitive differentiation through superior service like an extended service

period after end of production during which customers are guaranteed to be provided

with service parts. In order to fulfill the service guarantee in these cases, an effective

and efficient spare parts management has to be implemented, which is challenging due

to the high uncertainty concerning spare parts demand over such a long time horizon.

The traditional way of spare parts acquisition for the service phase is to set up a huge

final lot at the end of regular production of the parent product which is sufficient to

fulfill demand up to the end of the service time. This strategy results in extremely high

inventory levels over a long period and generates major holding costs and a high level

of obsolescence risk. With increasing service time more flexible options for spare parts

procurement after end of production gain more and more importance. In our paper

we focus on the two most relevant ones, namely extra production and remanufacturing.

Managing all three options leads to a complicated stochastic dynamic decision problem.

For that problem type, however, a quite simple combined decision rule with order-up-

to levels for extra production and remanufacturing turns out to be very effective. We

propose a heuristic procedure for parameter determination which accounts for the main

stochastic and dynamic interactions between the different order-up-to levels, but still

consists of quite simple calculations so that it can be applied to problem instances of

arbitrary size. In a numerical study we show that this heuristic performs extremely well

under a wide range of conditions so that it can be strongly recommended as a decision

support tool for the multi-option spare parts procurement problem.

Keywords: Spare Parts, Inventory Management, Reverse Logistics, Final Order



1 Introduction

The after-sales service is an important and at the same time often still underestimated

source for generating revenue and profit for manufacturing companies. In a recent bench-

mark study covering more than 120 companies from various industries including aerospace

and defense, automotive, and consumer goods, Deloitte Research (2007) revealed that

business units related to service provided an on average 75% higher profitability com-

pared with the overall business profitability. Although revenues of these units amount

to only a quarter of total revenues they yield almost 50% of total profit. Comparable

numbers have been provided by Kim et al. (2007). However, since many companies still

neglect the importance of their after-sales market, market shares of original equipment

manufacturers (OEMs) in the service business show a considerable growth potential. But

there are further reasons, why companies should more deeply engage in after-sales ser-

vice. Cohen et al. (2006a) stress an improved customer loyalty and a resulting competitive

differentiation through superior services. Such services include short repair times or an ex-

tended service period in which customers are guaranteed to be provided with spare parts.

Additionally, it should be noted that the after-sales markets can be expected to show

better resistance to economic downturn situations than markets for primary products.

Inventory management has long been recognized to play a key role in providing ade-

quate after-sales service (Cohen and Lee, 1990). However, the peculiarities involved when

dealing with spare parts supply chains considerably differ from those applied to the man-

ufacturing supply chain for various reasons (for a detailed discussion see e.g. Kennedy

et al., 2002, and Cohen et al., 2006b). We restrict our discussion to two main issues.

Firstly, specific demands for spare parts are usually unpredictable but must be filled al-

most instantly. Even on an aggregate level as observed by OEMs, demands for spare parts

include both dynamics and considerable variability (see Kennedy et al., 2002; Hesselbach

et al., 2002). Secondly, a relatively long service period compared to commonly decreasing

product life cycles steadily increase the number of products which are no longer produced

but for which still spare parts must be provided. Teunter and Klein Haneveld (2002) for

instance give evidence from the electronics industry, where service periods between 4 and

30 years are observed for products that normally are produced for less than two years.

As a consequence, especially in the end-of-life period, which encompasses the period be-

tween end-of-production (EOP) of the primary product and its end-of-service (EOS), the
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loss of scale economies makes provisioning of spare parts increasingly unattractive. Not

surprisingly, Deloitte Research (2007) identified supplier reliability and long lead times

for purchased components as the two major challenges for operations planning.

The traditional way of spare parts acquisition for the final phase of the service period

is to place a huge final production order or last-time buy at EOP of the parent product

which is sufficient to fulfill spare parts demand up to the end of the service time. However,

this strategy results in extremely high inventory levels being held over a long period and

it further generates major holding costs and a high level of obsolescence risk. Cattani

and Souza (2003) for instance report that write-offs at Hewlett Packard due to scrapped

inventory reduce profits each year by up to 1% of revenue. Recknagel (2007) estimates

the obsolescence risk accepted for final order decisions in the white goods industry to be

around 25%.

More flexibility can be provided by adding options such as extra production and

remanufacturing of used products (for an overview on further options see Hesselbach

et al., 2002). Extra production can take place in specialized internal facilities in small or

medium-size lots or in form of occasional procurement from outside suppliers. It therefore

incurs high flexibility since this option can react on additional information about demand

obtained during the service period. Because of the loss of scale economies, variable

production cost can easily exceed regular production cost by 100% and more, and often

considerable lead times apply. When remanufacturing facilities are available, product

recovery can be used as a further option for spare parts acquisition. Remanufacturing of

used components or parts normally causes only moderate variable cost. However, that

cost must be adapted to include a price discount for selling a refurbished part instead of

a new one. Furthermore, this option is restricted by a limited availability of recoverable

products, yielding further uncertainty in timing and quantity of returns.

For example, Volkswagen AG, a large Germany based car manufacturer, has been

aware of both opportunities as well as challenges of the after-sales business and is known

to provide superior service to the customer. Volkswagen guarantees the availability of

all critical spare parts at reasonable prices for at least 15 years after producing the last

car of a certain model. This period is considerably longer than the production period

of about 6 years, yielding a large and growing number of stock-keeping units (SKUs),

rising from 160,000 in 1995 up to 350,000 in 2005. Volkswagen must supply spare parts
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for more than 50 million cars with the customers stemming from around 200 current and

previous models. All procurement processes are coordinated at the Genuine Parts Centre

(named OTC), a central warehouse for spare parts located near Kassel (Germany). In

2006, the OTC with shelf space of more than 850,000 square meters delivered almost 18

million parts to their customers of 4 billion � in value (Volkswagen AG, 2006). From

our company experience, we estimate that about 20% of the stock stems from final order

like provisioning. Volkswagen has a long history of product recovery of more than 60

years. Industrial remanufacturing takes place under the same standards applied to serial

production und recovered parts carry the same warranty as new parts. Customers profit

from price discounts of around 50% when buying genuine exchange parts. In 2008 about

2.5% of all SKUs are additionally sourced from remanufacturing used cars’ components

or broken parts. Despite this relatively small number this amounts to about 15% of the

spare parts turnover (Volkswagen AG, 2008). Providing spare parts in an efficient way

poses a large challenge to the manufacturer, requiring decisions on which parts to offer

as spares, and about disposition, procurement, and inventory control of a huge number

of SKUs.

Service divisions like the OTC at Volkswagen seek for ways to reduce inventory in-

vestments by efficiently coordinating all relevant procurement options, i.e. the final order,

extra production, and remanufacturing. This is a challenging task in face of the large

number of SKUs, time variability and uncertainty involved. In this paper, we analyze

acquisition policies aiming to answer the following questions:

1. How effective are simple decision rules which can easily be implemented in practice?

2. How should these rules be applied in terms of setting the policy parameters?

These questions are not only of relevance for automotive companies. Similar problems are

present in other industries with durable products, but short innovation cycle. See, e.g.,

Spengler and Schröter (2003) and van Kooten and Tan (2009) for two cases concerning

producers of complex industrial products.

The remainder of the paper is structured as follows: Our contribution to literature is

outlined in Section 2. In Section 3, we introduce the modeling assumptions and formulate

a dynamic model for spare parts management in the final phase. The high computational

effort required for finding optimal solutions necessitates the development of heuristics for
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dealing with practical problem sizes. Therefore, a heuristic solution approach is provided

in Section 4. The performance of this approach is investigated in Section 5. In Section 6,

we present managerial insights for inventory control of spare parts in the final phase and

conclude with directions for further research.

2 Literature Review

Quantitative approaches being relevant in our context can be distinguished in approaches

dealing with decision making during the end-of-life period focusing on the determination

of the final order and those that deal with inventory control in product recovery systems.

Fortuin (1980) presents a first mathematical approach aiming to determine the final

order size. For given service levels, and assuming an exponentially declining stochastic

demand over a given planning horizon, final orders are calculated for a problem environ-

ment where no further procurement options are available. Teunter and Fortuin (1999)

extend this approach by generalizing the demand pattern and further integrating prod-

uct recovery using a simple push policy where all returns are recovered upon arrival.

This policy structure is optimal when remanufacturing cost can be neglected and holding

returned items in stock is at least as costly as keeping new spare parts. Further on,

near-optimal policy parameters are determined. Teunter and Fortuin (1998) present an

application of this approach to a case study from the electronics industry and provide

detailed procedures to forecast future demand distributions based upon historic demand

data, price, and the relevant life cycle phase. For a similar push policy system with re-

pairable spare parts facing random yield and lead time for repair, van Kooten and Tan

(2009) develop a numerical procedure for final order determination by using a Markov

chain approach. Also in Pourakbar et al. (2009) a combination of final order and push

repair policy is addressed which is enriched by a switching option to an alternative pol-

icy (named product swapping) in form of offering a new product instead of repair. An

approach for determining the optimal time to switch is presented. Teunter and Klein

Haneveld (2002) consider a system where a final order decision is combined with subse-

quent extra production orders during the service period. They propose a procurement

policy with order-up-to levels for extra production and present a method for calculating

these policy parameters.
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Extending the number of procurement options to more than only two considerably

increases the complexity of the required approach. Spengler and Schröter (2003) evaluate

various strategies to meet spare parts demand for electronics equipment using a complex

System Dynamics approach. Inderfurth and Mukherjee (2008) present a basic formulation

of the multiple-option spare parts procurement problem as a stochastic dynamic decision

problem. However, both contributions do not investigate the optimal policy structure

and do not provide methods for finding optimal parameters for a given policy. We extend

the approach put forth in Inderfurth and Mukherjee (2008) and propose a modeling

framework incorporating the final order decision, extra production with lead-times, and

remanufacturing of used parts.

Lessons learned from inventory control in product-recovery systems can be applied

in this context. For a given final order, we are dealing with a hybrid manufactur-

ing/remanufacturing system under stochastic demands and returns as it is known from

literature on stochastic inventory control in reverse logistics (for an overview see van der

Laan et al., 2004). Inderfurth (1997) analyzes optimal policy structures of such a system

and concludes that simple order-up-to policies only are present in the case of negligible

or equal lead times. In addition, finding optimal policy parameters is not a simple task

even in the special case. An efficient approach for determining close-to-optimal policy

parameters has been presented by Kiesmüller and Scherer (2003). They show that an

approximation of the value function considerably simplifies the search for the parame-

ters. However, no similar approximations are available in case of lead-time differences for

production and remanufacturing. In a related approach, Kiesmüller and Minner (2003)

propose the use of simple order-up-to policies also for this case and develop simple proce-

dures based upon a myopic newsvendor approach to determine policy parameters in the

static infinite-horizon framework.

The main contribution of this paper is to provide insights into the usability of simple

order-up-to policies in combination with the final order decision for end-of-life spare parts

acquisition. An efficient heuristic is developed explicitly taking into account demand and

return dynamics and a finite horizon setting. Furthermore, in contrast to the previous

approaches, we are able to assess the performance loss due to the suboptimal policy

structure.
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3 Model for multiple-option spare parts procurement

In this section, based upon the formulation proposed in Inderfurth and Mukherjee (2008) a

multi-period stochastic model is presented. The model can be used to determine both the

optimal final order level and subsequent remanufacturing and extra production decisions.

Although this optimization problem is hard to solve for realistic problem sizes, exploring

it provides us with important insights that can be exploited to elaborate an effective

heuristic. Additionally, we will use it for generating benchmarks in order to assess the

performance of our heuristic approach.

3.1 Assumptions

We consider a periodic review system with a finite planning horizon of length T . The first

planning period begins at EOP, and the last one ends at EOS. The length of a period

can reflect a time span between a month and a year, depending on the specific practical

background. In each period t, a random number of spare parts Dt is demanded and

a random number of used products Rt returns becoming available for remanufacturing

in the following period. The probability distributions of demands and returns can vary

over time according to the dynamic nature of the demand and return process during the

service period of a part. It is assumed that spare parts demand and product returns are

not correlated on the aggregate level of an OEM’s perspective. We also do not consider

correlation of the stochastic variables between successive periods as we do not have any

respective evidence from practice.

In the first period the size of the final order, denoted by y, is fixed. Subsequently,

in each period the stocks of serviceables and recoverables are observed and decisions

are made on the remanufacturing quantity rt and on the number of units pt procured

by extra production. While remanufacturing can usually be carried out in any period

without major setup time, it might take considerable lead time to run extra production

or initiate outside procurement. Thus, extra production is assumed to increase the stock

level only after a lead time of l periods. Two inventory state variables are relevant for

describing the information necessary to make optimal decisions in each period: the net

serviceables stock ISt and the stock of used products IRt .

The cost parameters are assumed to be time-invariant. They include sourcing unit cost
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for final lot production cF , extra production cP , and remanufacturing cR. Fixed costs are

not considered. The final order is part of the last regular production run so that there

are no extra setup costs. Remanufacturing usually is a quite flexible sourcing option

which is connected with only minor setup activities. Extra production often is rather

characterized by a major lead time for reactivating respective manufacturing facilities or

outside supply sources than by a considerable setup cost. The stocking of serviceable

spare parts is charged by a holding cost h per unit and period. We consider two different

types of cost when not being able to satisfy a demanded item during the period when

it is required. A backorder cost v per unit and period applies for all periods in which

the delivery of a spare part can be postponed (i.e. for t < T ). A per unit penalty for

unsatisfied demand p is charged if at the end of the service period a required part cannot

be delivered so that the customer has to be compensated in other ways. In practice

we usually find a cost relationship where remanufacturing is more costly than regular

large-scale production, but cheaper than extra procurement. Given a penalty p that

is higher than unit procurement cost of all options results in situations where all three

options are regularly utilized for spare parts procurement. This is just the environment

of interest which we will model here. Thus the following cost inequality is assumed to

hold: cF ≤ cR ≤ cP < p.

Holding costs for returned used products are neglected since the capital tied up in

returns is near zero in many cases. Also physical holding costs play a very minor role,

because stock-keeping of used products often does not require a special treatment and

results in negligible additional costs. Disposal costs for used products and spare parts

left at the end of the planning period are not taken into account since in the case of

durable products, the value of the material tied up in these parts quite often outweighs

the costs of disassembling and cleaning. In principle, the consideration of disposal as well

as recoverables holding cost is possible within our framework, but it would not contribute

much in many practical cases. The objective is to minimize the total expected cost over

the entire planning horizon. We treat all cost parameters as real values and thus neglect

discounting.
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3.2 Model

Given the above assumptions, we consider the following model (let (x)+ denote max{x; 0}
and pt = 0 ∀t < 1):

minTEC = E

{
cF · y +

T−l∑
t=1

cP ·pt +
T−1∑
t=1

[
cR ·rt + h·(ISt+1

)+
+ v ·(−ISt+1

)+]

+cR ·rT + h·(IST+1

)+
+ p·(−IST+1

)+}
(1)

ISt+1=

⎧⎪⎨
⎪⎩
y + p1−l + r1 −D1 for t = 1

ISt + pt−l+ rt −Dt for t = 2, ..., T

(2)

IR1 = 0 and IRt+1= IRt − rt +Rt for t = 1, ..., T (3)

y ≥ 0, pt ≥ 0, and 0 ≤ rt ≤ IRt for t = 1, ..., T (4)

The objective function in (1) describes the expected value (regarding the stochastic

demand and return flow) of the total cost TEC over the entire planning horizon T . It

includes sourcing cost for final order, extra production, as well as remanufacturing. Fur-

ther, holding cost for serviceable parts, backorder cost when not immediately satisfying

demand and a penalty for unmet demand at the end of the planning horizon are consid-

ered. Constraints (2) and (3) represent inventory balance equations, where for ease of

presentation initial stocks are set to zero. Restrictions (4) assure non-negativity of all

decisions and pose a limit for the remanufacturing quantity to not exceed the number of

available used products in each period.

In order to solve this dynamic stochastic optimization problem the corresponding

functional equations have to be formulated. For a production lead time l > 0 these read

as follows:

Period T

fT (I
R
T , I

S
T , pT−l)=min

rT

{
cR ·rT+E

DT

{
h·(IST +pT−l+rT−DT )

++p·(DT−IST −pT−l−rT )
+
}}
(5)

Periods t = T − l + 1, ..., T − 1

ft(I
R
t , I

S
t , pt−l, ..., pT−l)=min

rt

{
cR ·rt+ E

Dt,Rt

{
h·(ISt +pt−l+rt−Dt)

++v ·(Dt−ISt −pt−l−rt)
+

+ ft+1(I
R
t −rt+Rt, I

S
t +pt−l+rt−Dt, pt−l+1, ..., pT−l)

}}
(6)
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Period t = l + 1, ..., T − l

ft(I
R
t , I

S
t , pt−l, ..., pt−1)=min

rt,pt

{
cP ·pt+cR ·rt+ E

Dt,Rt

{
h·(ISt +pt−l+rt−Dt)

++v ·(Dt−ISt −pt−l−rt)
+

+ ft+1(I
R
t −rt+Rt, I

S
t +pt−l+rt−Dt, pt−l+1, ..., pt)

}}
(7)

Periods t = 2, ..., l

ft(I
R
t , I

S
t , p1, ..., pt−1)=min

rt,pt

{
cP ·pt+cR ·rt+ E

Dt,Rt

{
h·(ISt +rt−Dt)

++v ·(Dt−ISt −rt)
+

+ ft+1(I
R
t −rt+Rt, I

S
t +rt−Dt, p1, ..., pt)

}}
(8)

Period 1

f1=min
y,p1

{
cF ·y+cP ·p1+ E

D1,R1

{
h·(y−D1)

++v ·(D1−y)++f2(R1, y−D1, p1)
}}

(9)

In case of zero lead time (l = 0) only the inventory variables IRt and ISt have to be

taken into account as state variables of the functional equations. In general, these recur-

sive equations reveal that the optimal policy in each period has to be determined with

respect to two plus up to l state variables, depending on the number of open production

orders that exist in any period. This is caused by the fact that the time of arrival of each

single open order must be considered when evaluating the impact of extra production on

the cost of a period. Consequently, the computational effort required to solve the opti-

mization problem (5)-(9) highly depends on the length of the extra production lead time

l, contributing to the curse of dimensionality we face in stochastic dynamic programming.

It therefore is necessary to develop a heuristic solution approach that can be used to solve

problems of real-life size for arbitrary length of production lead time. Such a heuristic

will be presented in the next section.

4 Heuristic for spare parts procurement after EOP

4.1 Overview

In order to develop a heuristic which combines applicability and effectiveness, we apply

two steps of simplification. First we choose a simple but effective policy for period-by-

period decision making which is easy to handle and includes a limited number of policy

parameters. Second, we propose a heuristic procedure to determine all policy parameters
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such that they are near-optimal. To this end we start with considering what is known

regarding the policy structure of our problem.

The dynamic spare parts procurement problem in (1)-(4) combines a single final order

decision at the beginning of the first period with a time sequence of remanufacturing and

extra production decisions. Given the final order decision, the remaining problem has the

basic structure of a multi-period hybrid manufacturing/remanufacturing problem with

stochastic demand and returns under proportional costs. From Inderfurth (1997) it is

known, that for this problem type the structure of the optimal policy is highly complex

except for the case of equal lead times for both options. Under this specific lead time

condition the optimal policy has a simple (S,M)-structure with two order-up-to levels in

each period t (St for extra production and Mt for remanufacturing).

The heuristic approach that we propose is based on the application of this simple

policy also in situations where the production lead time is larger than the lead time for

remanufacturing. Thus, for sake of simplicity and easier applicability in case of l > 0,

our solution procedure is relying on a suboptimal policy structure. The same policy

simplification is also found in Kiesmüller and Minner (2003) in a related setting.

For using this (S,M) policy class, appropriate inventory positions for each decision

have to be defined. The inventory position being relevant for the extra production decision

is

IP S
t = ISt + IRt + pt−1 + ...+ pt−l. (10)

It includes both serviceables and recoverables stocks as well as previous production orders

that did not yet result in a material inflow (inventory on order). For remanufacturing

decisions, the relevant inventory position is

IPR
t = ISt + pt−l, (11)

i.e. serviceables stock plus that open order which becomes available to satisfy demand

during the considered period. According to the (S,M) policy remanufacturing and extra

10



production decisions are made in the following way:

rt =

⎧⎪⎨
⎪⎩
0 for t = 1

min{(Mt − IPR
t )+, IRt } otherwise

(12)

pt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(S1 − y)+ for t = 1

(St − IP S
t )

+ for 2 ≤ t ≤ T − l

0 otherwise

(13)

Even if we restrict the solution procedure on applying a simple (S,M) policy, opti-

mizing the final order size and the dynamic order-up-to levels is a very cumbersome task,

because all parameter values are interdependent. Instead, we propose the use of fairly

simple heuristics for determining close-to-optimal solution parameters. The main idea

behind our approach is to facilitate parameter determination by performing it in three

consecutive steps which allow us to account for the main dependencies between policy

parameters.

The remanufacture-up-to levelsMt constitute a group of parameters which only weakly

depend on the others, because remanufacturing is preferred over extra production and

has an immediate impact on period cost due to zero lead time. So, these parameters will

be determined at first. The extra production decisions depend on the remanufacturing

strategy so that the produce-up-to levels St will be calculated second, using the Mt values

as input. Eventually, the final order will be determined because it depends on both the

remanufacturing and extra production strategy while the final order itself only affects the

inventory position of serviceables, but not the economic target inventories St and Mt.

For the determination of the order-up-to levels for remanufacturing and extra pro-

duction in each period a myopic newsvendor approach is chosen. Kiesmüller and Minner

(2003) showed that this type of approach works very well, at least in a stationary situa-

tion with infinite horizon. However, a newsvendor model cannot be satisfactorily applied

for approximating the optimal final order size, because it does not sufficiently take into

account the period-by-period process of changes in stock levels caused by the other pro-

curement options. For this reason, a marginal cost approach is used to determine the size

of the final order. In the next subsections we will describe parameter determination in

detail.
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4.2 Myopic newsvendor approach for Mt determination

Since there is no lead time to be considered and no dependency on other parameters to

be taken into account, remanufacture-up-to levels Mt are obtained by solving the classic

newsvendor problem (see, e.g., Silver et al., 1998, Chapter 10). This requires determining

appropriate underage and overage costs. Except for the last period an underage could be

satisfied in the subsequent period yielding cost of a backorder v for a single period. In the

last planning period T , a delayed supply to fill the underage is not possible causing cost

of a penalty reduced by saved cost of remanufacturing an item (i.e. p − cR). Therefore,

underage cost is given by

cuM
t =

⎧⎪⎨
⎪⎩
v for t < T

p− cR for t = T

. (14)

An overage is dealt with by reducing the next periods remanufacturing quantity, thus

causing holding cost for a single period h. In the last period, remanufacturing cost must

be added since there is no further use of the item that was remanufactured in excess.

Thus, overage cost is given by

coMt =

⎧⎪⎨
⎪⎩
h for t < T

h+ cR for t = T

. (15)

Determining the critical ratio for the newsvendor solution in the usual way
(

cuM
t

cuM
t +coMt

)
and applying it to the period’s demand distribution function yields the following term for

the remanufacture-up-level Mt

Mt =: argmin
M

⎛
⎜⎝P (Dt ≤ M) ≥

⎧⎪⎨
⎪⎩

v
v+h

for t < T

p−cR
p+h

for t = T

⎞
⎟⎠ . (16)

Here and in the sequel we operate with discrete random variables which also will be

assumed for later numerical computations. The formulation of parameter calculation

from (16) in case of continuous random variables is straightforward.

4.3 Adjusted newsvendor approach for St determination

Order-up-to levels for extra production must be determined for all periods t = 1, ..., T − l.

Because of the unit cost differences, we assume that production only takes place in t if it
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is expected that all returns are used up at the point of arrival of the order, i.e. at t + l.

The relevant random net demand variable NDt for a newsvendor-like approach under

this condition is given by the excess demand over available returns during lead time l,

given by NDt =
t+l∑
i=t

Di−
t+l−1∑
i=t

Ri. For estimating underage and overage cost we distinguish

between direct and indirect effects. Direct effects refer to events occurring in period t+ l

which are directly affected by the extra production decision in period t. Indirect effects

arise from the impact of extra production on remanufacturing decisions beyond period

t+ l.

The direct effect of an underage is given by the cost v of a backorder for one period if

t+l < T or by the penalty reduced by extra production cost p−cp if t+l = T , respectively.

As an indirect effect it might happen that, if there are excess returns after period t+l, the

backorder could be filled from remanufacturing instead of extra production production

yielding a cost reduction of cp− cr. This event we estimate to take place with probability

αt+l, which represents the probability that after period t+ l (cumulative) returns suffice

to cover (cumulative) demand, so that

αt+l = P

(
T−1∑
i=t+l

Ri >
T∑

i=t+l+1

Di

)
. (17)

Of course, the indirect effect only is valid for t + l < T . Thus, underage cost cuS
t is

approximated as

cuS
t =

⎧⎪⎨
⎪⎩
v − αt+l · (cp − cR) for t < T − l

p− cP for t = T − l

. (18)

The direct effect of an overage is given by the cost of holding an extra produced item

for another period. But this cost could possibly be avoided by adjusting remanufacturing

in t + l. However, such an adjustment is not possible if remanufacturing does not take

place in this period, i.e. if the inventory position relevant for remanufacturing exceeds the

corresponding order-up-to level (IPR
t+l ≥ Mt+l). According to (11), the inventory position

is IPR
t+l = ISt+l + pt = St − IRt +

t+l−1∑
τ=t

rτ −
t+l−1∑
τ=t

Dτ . If remanufacturing takes place just in

time, IRt can be replaced by Rt−1 and rτ by Rτ−1∀τ = t, ..., t+ l−1. Then, the probability

of holding cost caused by St and occurring in t+ l, denoted by ωt, is approximated by

ωt(St,Mt+l) = P

(
St +

t+l−2∑
τ=t

Rτ −
t+l−1∑
τ=t

Dτ ≥ Mt+l

)
. (19)
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In this way the interdependency between extra production and remanufacturing decisions

(or in other words, between their respective parameters) is taken into account.

If we cannot decrease extra production later on, there is an additional burden from

extra producing one unit too much (cp−cr) because this would have been remanufactured

for otherwise. This indirect effect is assumed to take place again with probability αt+l.

Thus, overage cost coSt is approximated by

coSt (St,Mt+l) =

⎧⎪⎨
⎪⎩
ωt(St,Mt+l)h+ αt+l · (cP − cR) for t < T − l

ωt(St,Mt+l)(h+ cp) + (1− ωt(St,Mt+l))(cp − cr) for t = T − l

. (20)

Produce-up-to levels St (t = 1, ..., T − l) are determined by solving

St = argmin
S

(
Ψt(S) ≥ cuS

t

cuS
t + coSt (S,Mt+l)

)
. (21)

where Ψt(.) represents the probability distribution function of the net demand NDt. Fol-

lowing this approach, it turns out that different from the standard newsvendor formulation

the order-up-to-level to be determined also affects the critical ratio. However, since both

Ψ(S) and coSt (S,Mt+l) are increasing functions in S, there exists a unique solution for

(21). For finding St a simple procedure can be used that starts with a low level of S and

incrementally increases S until the inequality in (21) holds.

4.4 Marginal cost approximation for final order y

Relevant cost elements. For determining the final order size y+, we develop an ap-

proximation of its marginal impact on the total cost function and search for that size of

y where this marginal cost c(y) starts to become greater than zero. Behind this approach

stands the supposition that the total expected cost TEC is a unimodal function w.r.t.

the final order if we apply an order-up-to level policy for extra production and remanu-

facturing. This supposition is true in the case of equal lead times where it is found from

Inderfurth (1997) that the total cost is a convex function of the starting inventory which is

equivalent to the final order size in our case. Unfortunately, this property must no longer

hold if lead times for production and remanufacturing differ. Numerical tests indeed re-

vealed that the total cost function can loose unimodality if the order-up-to levels St and

Mt are fixed in a completely arbitrary way. However, for the (near-optimal) parameter

levels determined according to our heuristic procedure in (16) and (21), extensive tests
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(including all problem instances presented in the next section) support our unimodality

supposition. So we determine the final order y+ by

y+ = argmin
y

(c(y) ≥ 0) (22)

where the marginal cost is approximated by

c(y) = cF+θ(y,M1, ...,MT )·h−π(y, S1, ..., ST−l)·cP−β(y,M1, ...,MT , S1, ..., ST−l)·cR−γ(y)·v.
(23)

Here c(y) includes both the direct cost effect cF of increasing the final order by one unit

and approximate cost effects on the quantities held in stock in each period as well as on

extra production/remanufacturing decisions and backorders. We do not consider the effect

of penalty costs, since these can be avoided by later extra production or remanufacturing.

Next, it will be shown how the probabilities necessary to estimate the expectations of

the various cost effects depend on both the final order size as well as on the various

order-up-to levels.

Approximate holding time θ. θ denotes the expected number of periods a marginal

item added by the final order decision remains in stock. This is given by that period,

after which one of the two relevant inventory positions falls below the respective order-

up-to level for the first time. Since remanufacturing is the preferred procurement option

under normal conditions (i.e. for not too long lead times and not too small return rates)

an undershoot of a remanufacture-up-to level is assumed to limit the final order holding

period. In order to calculate the expected duration of this time interval we weight all

possible holding periods with the respective probabilities and sum them up. Approxi-

mating the probability that the final order holding time will be t periods or more by

P

(
y −

t−1∑
i=1

Di ≥ Mt

)
, the expected holding time can be determined by

θ(y,M1, ...,MT ) =
T∑
t=1

P

(
y −

t−1∑
i=1

Di ≥ Mt

)
. (24)

Approximation of the probabilities (π, β) to reduce extra production and

remanufacturing. Increasing the final order by one unit will also have an impact on

remanufacturing and extra production cost since it might lead to a reduction of these

procurement activities in later periods. To this end it has to be analyzed if an additional
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unit ordered at the beginning will result in a future saving of a remanufactured unit or

an extra produced unit, or if there will be no saving at all.

Since the solution structure gives a higher priority to remanufacturing than to extra

production we first calculate whether remanufacturing takes place at all, i.e. if the stock

on hand (without considering later procurement) would fall below remanufacture-up-to

level Mt in any period t. If it never does, as might be the case for a very large final

order, increasing the final order would not have any impact on remanufacturing or extra

production. The corresponding event approximately happens with probability ρ

ρ(y,M1, ...,MT ) = max
t=1..T

{
P

(
y −

t−1∑
i=1

Di < Mt

)}
. (25)

We choose the maximum value in (25) because under general conditions of dynamic de-

mand and return streams during the planning horizon the highest Mt-undershoot prob-

ability might be related to another period than the last one.

When increasing the final order, lowering remanufacturing only seems to be favorable

as long as it is not possible to reduce extra production. A future production unit can be

replaced if the serviceables’ inventory position will drop below the respective produce-up-

to level in any period t. This will also depend on y, and the probability π of this event

can be approximated by

π(y, S1, ..., ST−l) = max
t=1,...,T−l

{
P

(
y −

t−1∑
i=1

(Di −Ri) < St

)}
. (26)

The maximum value in (26) is chosen for the same reason as in (25). In case of stationary

demand and return flows the maximum values for the probabilities in (25) and (26) will

always occur in the final period T and T − l, respectively (also due to p > v).

Summarizing, due to profitability of saving production cost first, the expected cost

reduction in case of an incremental final order increase will be πcP . A cost saving con-

cerning remanufacturing only takes place if extra production cannot be reduced, but

remanufacturing can. This probability is estimated by the difference between ρ and π.

However, there is a certain (small) possibility that extra production might take place,

but remanufacturing will not. This can happen if at the beginning of the planning pe-

riod a production order is triggered whereas remanufacturing will not take place later on.

This is only found in situations with delayed inflow of returns or when the final order is

smaller than the first order-up-to level S1 and larger than the respective remanufacture-
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up-to level M1. In these cases we could find π > ρ so that the probability for saving a

remanufacturing unit is set to

β(y,M1, ...,MT , S1, ..., ST−l) = max {ρ− π, 0} , (27)

resulting in a respective cost saving of βcR.

Approximation of the expected duration γ of a backorder situation. Because

of extra production lead time and limited return availability a shortage of serviceable

spare parts can occur at the beginning of the planning horizon if the final order size is

very small. This backorder situation can last for more than one period. The probability

of a backorder situation in period i < l is estimated by P

(
y −

(
i∑

τ=1

Dτ −
i−1∑
τ=1

Rτ

)
< 0

)
.

Using this probability we can determine the expected duration γ of such a shortage by

γ(y) =
l∑

i=1

P

(
y −

(
i∑

τ=1

Dτ −
i−1∑
τ=1

Rτ

)
< 0

)
, (28)

resulting in a backorder cost of γ · v.
Calculating the durations and probabilities in (24)-(28) is a quite easy numerical

task. The computational effort is even more reduced if demand and returns are treated

as continuous random variables which are (approximately) normally distributed. In this

case the convolutions of distributions in (24)-(28) can be performed analytically. Together

with the simple calculation of the remanufacturing and extra production parameters of

the applied (S,M) procurement policy in (16) and (21), the heuristic offers a fairly simple

approach to solve the complex stochastic dynamic planning problem under consideration.

The attractiveness of this approach, however, depends on its cost performance which is

investigated in the next section.

5 Numerical Investigation

The purpose of this numerical investigation is twofold. We start with a detailed perfor-

mance analysis, which shows how the heuristic performs in a great variety of problem

settings. To this end, the results from the heuristic are compared with the optimal so-

lution obtained by stochastic dynamic programming. In a first step we investigate two

demand/return scenarios and use of a full factorial design. In a second step, while limit-

ing the number of parameter combinations, a wide range of demand/return scenarios is
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Table 1: Expected demand and returns in the considered scenarios.

Period t 1 2 3 4 5 6 7 8 9 10
∑

static E(Dt) 6 6 6 6 6 6 6 6 6 6 60

scenario E(Rt) 3 3 3 3 3 3 3 3 3 0 27

dynamic E(Dt) 2 3 5 7 8 8 6 4 2 1 60

scenario E(Rt) 1 2 3 5 5 4 4 3 2 0 27

considered. Further on, it is tested which part of the heuristic’s performance loss is due

to the application of the simplified decision rule given by the (S,M) policy and which

part is caused by the heuristic approach for parameter determination. For this numerical

study parameter values are selected in such a way that they reflect relations we found in

practical situations. To provide benchmark solutions, however, the planning horizon as

well as demand/return distributions and the periods of extra production lead time are

chosen such that the resulting problems still can be solved to optimality.

5.1 Experimental design

For a first test, we considered two demand and return scenarios: a static and a dynamic

one with an identical total number of expected demands and returns over a planning

horizon of ten periods. The dynamic scenario is characterized by the unimodal life cycle-

type shape of expected spare parts demand and used product returns that we often find

in practice. The static scenario serves as benchmark case for studying the impact of

deviations from static conditions on the performance of our heuristic. The return ratio,

i.e. the quotient of average total returns and average total demand, in both scenarios is

qR = 45%. Demand and returns are independent random variables and follow discrete

approximations of normal distributions with means as given in Table 1. The level of

expected demand and returns is scaled such that a numerical optimization is still possible.

It is very likely that the results of the following performance analysis will not be different

if respective data would be scaled up.

For deriving the total expected costs TEC connected to the heuristic and for solving

the Stochastic Dynamic Program (5)-(9), demand and return distributions are discretized

in the respective μ± 3σ-interval. All calculations required in our heuristic approach are

performed based upon these distributions. Both the evaluation of the heuristic as well
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Table 2: Parameter values in the full factorial design (cF = 10).

Parameter cR cP h v p ρD ρR

Low value 12 16 1 25 75 0.1 0.1

High value 16 20 3 75 200 0.4 0.4

as the optimization is performed under use of a computer program we developed on the

basis of the C programming language.

With respect to all relevant parameters we used a full factorial design including low and

high values for each parameter except for the final order unit cost, which was normalized to

10 (see Table 2). Concerning the other cost parameters, we choose values that are related

to the final order cost in such a way as (according to our experience in the automobile

industry) we often find in practice. Remanufacturing unit cost exceed the final order cost

by 20% or 60%, respectively. Low extra production unit cost is chosen such that there is

no cost advantage for remanufacturing (clowP = chighR = 16). High extra production cost is

set to twice the unit cost of final order (chighP = 20). The holding cost parameter ranges

between a low value of 10% and 30% of final order unit cost. These relatively large values

are chosen because of the scaled down planning horizon of 10 periods which might be

interpreted as years in a real-life planning situation. Backorder cost rate ranges between

vlow = 25 and vhigh = 75 and the penalty at the end is either plow = 75 or phigh = 200.

The levels of uncertainty of demand and return streams are characterized by their

respective coefficients of variation ρD (for demand) and ρR (for returns). These coefficients

are assumed to be time-independent, each taking a low value of 0.1 and a high value of

0.4. Such values might be realistic for the smoothed aggregate spare part demands faced

by an OEM at a central warehouse level, even though the need for a spare part is highly

erratic for a single customer. The lead time for extra production is varied between 0 and

2 periods where the two-period case represents the upper limit for which an optimization

is possible from a computational point of view. Given these alternatives, we face a total

number of 768 parameter combinations that are investigated.

5.2 Performance analysis

For each instance we determine the relative costs deviation ΔTEC of our heuristic ap-

proach from the optimal solution. By appropriately grouping the instances, a sensitivity
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Figure 1: Overall performance of the heuristic and influence of scenario type and produc-

tion lead time.

analysis of the average performance of the heuristic with respect to the two considered

demand/return scenarios as well as for parameters are performed. The results are il-

lustrated using box plots which are supplement by average deviations in brackets and

detailed in Table 5 in the Appendix.

In Figure 1, the performance of the heuristic over all instances is shown. Additionally,

the influence of the demand/return scenario type as well as of the production lead time

is demonstrated. The results reveal that with a value of 0.41% the average cost deviation

of the heuristic over all scenarios is extremely small. Even better, also the worst case

performance is within a 2.5% limit so that the heuristic seems extraordinary promising. In

the static scenario the heuristic has a mean cost deviation of only 0.2%. With an average

deviation of 0.61% the performance remains still very good in the dynamic scenario,

even though the approximations used for the heuristic approach to some extent refer to

static conditions. Aside the scenario structure mainly variations in the lead time of extra

production l and in the demand variability ρD seem to have a significant impact on the

heuristics’ performance (see Figures 1 and 2).

With an increase in lead time the performance tends to worsen, but still remains at a

very high level of far below 1% even for maximum lead time of two periods. Concerning

the impact of different levels of risk, it is mostly the demand risk that matters. Figure 2

shows that an increasing demand variability (both alone as well as jointly with a rising

return variability) results in a slight deterioration of the heuristic’s performance. Addi-

tionally, we see that the level of return risk practically has no impact at all. The same
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Figure 2: Influence of return and demand risk parameters on heuristic performance.

Table 3: The considered demand and return patterns.

Period 1 2 3 4 5 6 7 8 9 10

d
em

an
d falling pattern 13 11 8 7 6 5 4 3 2 1

unimodal pattern 2 4 7 8 9 9 8 7 4 2

constant pattern 6 6 6 6 6 6 6 6 6 6

re
tu
rn
s

rising pattern 1 1 2 2 3 3 4 5 6 0

unimodal pattern 1 2 3 4 4 4 4 3 2 0

falling pattern 6 5 4 3 3 2 2 1 1 0

constant with qR = 15% 1 1 1 1 1 1 1 1 1 0

constant with qR = 45% 3 3 3 3 3 3 3 3 3 0

constant with qR = 75% 5 5 5 5 5 5 5 5 5 0

seems to hold for the cost parameters levels (see Figures 4 and 5 in the Appendix).

In order to examine the impact of the dynamic scenario structure we extend the

numerical study in a second step and consider in total three demand patterns: a falling, a

unimodal, and a constant one; all having a total mean demand of 60. Six return patterns

are considered: a rising, a unimodal, and a falling one (all with a return ratio of 45%),

as well as three constant patterns with different return ratios qR, set either to 15%, 45%,

or 75%. Combining all demand and return patterns as depicted in Table 3 yields a total

of 18 scenarios. In order to reduce the computational effort a subset of the full factorial

design is used by fixing all cost parameters at a specific level (here at their low value)

and varying only those parameters with major performance impact, i.e. lead time (with

l ∈ {1, 2, 3} and risk levels (with ρD ∈ {0.1, 0.4} and ρR ∈ {0.1, 0.4}). This yields 12

instances per scenario.
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The results confirm the excellent performance of the heuristic approach showing an

average error of 0.31% over all combinations of demand and return patterns. Both av-

erage and maximum deviations in each of the 18 scenarios are depicted in Table 4. The

highlighted numbers refer to the two basic scenarios investigated in the previous study.

The results reveal that also in the considered subset of parameter combinations the mean

cost deviations do not change much so that the explanatory power of this second study

is not restricted.

Considering the full set of results in Table 4, we first observe that there is no single

combination of demand and return patterns for which the heuristic deviates by more

than one percent on average from the optimal solution. In detail, there is no clear picture

how the pattern of demand and return streams influence the heuristic’s performance. It

seems that the demand pattern has a major impact. Hereby, it becomes apparent that

a unimodal demand pattern is connected with a significantly larger cost deviation than

other patterns. The impact of the return ratio also seems to be minor. Interestingly, the

cost deviation is highest for the smallest return ratio.

Table 4: Average and maximum error (in parentheses) of the heuristic in 18 de-

mand/return scenarios.

demand pattern

d
y
n
.
re
t.
p
at
te
rn 0.31% (0.97%) 0.35% (0.83%) 0.13% (0.40%)

0.15% (0.33%) 0.69% (1.42%) 0.09% (0.35%)

0.14% (0.44%) 0.68% (1.78%) 0.11% (0.44%)

st
at
ic

re
t.
p
at
te
rn 0.34% (1.06%) 0.88% (2.29%) 0.15% (0.45%)

0.11% (0.29%) 0.67% (1.28%) 0.07% (0.22%)

0.20% (0.68%) 0.43% (0.90%) 0.08% (0.25%)
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Figure 3: Influence of lead time on the performance of the policy structure (with optimized

parameter).

5.3 Impact of the policy structure

A more detailed investigation of the reason for cost deviations of our heuristic requires

the determination of (close-to) optimal policy parameters for the simple (S,M) policy

structure. In doing so we can assess which part of the heuristic, i.e. either the simplified

policy or the parameter determination approach, to a larger extent contributes to the

performance loss of our solution approach. This approach provides insights regarding the

appropriateness of a simple two-parameter rule for joint manufacturing/remanufacturing

decisions in case of lead time differences. This important question is still open and has

not been answered in other research contributions addressing related problems like in

Kiesmüller and Minner (2003).

For searching optimal order-up-to levels for extra production and remanufacturing

in combination with a best final order size, we implemented a local search procedure

that uses our heuristic’s values for the final order and the parameters St and Mt as

initial solution. The algorithm checks whether the value of the objective function can

be reduced by first increasing or decreasing the final order and subsequently proceeding

(one period after the other) in the same way with each period’s order-up-to level St and

remanufacture-up-to level Mt. Each time an improved solution is found the algorithm

restarts. If there is none, it stops. Although the computing time of the algorithm already

benefits from a good initial solution it still is quite time consuming and therefore hardly

recommendable for real life problems. Since there is no guarantee of finding optimal

policy parameters using this search procedure the results only show an upper bound of
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the performance loss.

The search procedure was applied to all 768 instances of the first test. From Figure

3 it can be seen, that the simple policy structure yields excellent results and thus only

has a very limited responsibility for the suboptimality of our heuristic. As expected, the

deviation will rise with increasing lead time, because the optimal policy becomes more and

more complex. Nevertheless, the cost deviations for non-zero lead times are extremely

small concerning both average and worst case behavior. Both are only very slightly

increasing with lead time duration indicating that also for lead times larger than two

periods (which unfortunately could not be investigated numerically) the simple (S,M)-

policy will perform very well.

Since the major part of our heuristic’s performance loss is due to the parameter deter-

mination approach it would be interesting to see how the heuristically found parameter

values deviate from (close-to) optimal ones. In many cases where our heuristic leads to op-

timal or near-optimal solutions, we do not find mentionable parameter deviations. So we

restrict our presentation to those 10 out of the 768 problem instances where the heuristic

performed worst and where considerable parameter deviations are to be expected. These

instances are provided in Table 6 in the Appendix, starting with the worst case as number

one and ordered according to increasing performance. In addition to the cost deviation

ΔTEC (in %) from minimal cost, we report the final order size y, the order-up-to levels

St for production, and remanufacture-up-to levels Mt.

These 10 worst performing cases all refer to problem instances with highest lead time

(l = 2) and highest demand variability (ρD = 0.4). Concerning the other parameters,

we find all parameter values under consideration appearing in these instances. 8 of the

10 instances imply the dynamic scenario, only instances #6 and #7 represent the static

one. A closer look at Table 6 reveals that the heuristic final order level is somewhat

smaller than the one from parameter optimization, but mostly quite close. Parameter

optimization more or less yields optimal final order sizes, except for 3 instances (#1,

#2 and #10) where we find larger deviations. Interestingly, this does not result in a

major cost deviation suggesting that the cost function is quite flat around the optimal

final order level. The remanufacture-up-to levels generated by our heuristic are quite

close to the optimal Mt levels. In contrast, the approximation of the St parameters

performs somewhat worse. The produce-up-to levels (reported for 8 periods only because
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of the two-period lead time) of our heuristic are almost always smaller than the optimal

ones. They follow the unimodal shape of the optimal levels, but partly show considerable

deviations which seem to be the main reason for the loss of cost performance. Related to

all 10 presented instances the cost deviation resulting from the application of the simple

(S,M) policy on average contributes 10% to the total deviation caused by the heuristic.

In instance we find the highest value of policy-based contribution (24%) to the overall

performance loss.

6 Managerial Insights and Conclusions

A major challenge for spare parts management after EOP is the high uncertainty con-

cerning spare parts demand over a long period until EOS. In our study we presented a

model formulation to coordinate different procurement options for spare part acquisition,

namely final order, extra production, and remanufacturing. We developed an advanced

heuristic based upon a quite simple order-up-to decision rule for joint production and

remanufacturing. This policy structure turns out to be very effective which is an impor-

tant finding from a managerial point of view since it confirms that in planning situations

with finite horizon and stochastic dynamic demand and return flows of various shapes a

simple-to-implement (S,M) policy can be applied without concern.

We developed a heuristic procedure for parameter determination which takes into

account the main stochastic and dynamic interactions when employing the (S,M) rule,

but still consists of quite simple calculations so that it can be applied for problem instances

of arbitrary size. Our numerical study revealed that this heuristic performs extremely

well under all cost and demand/return conditions so that it can be strongly recommended

as a decision support tool for the multi-option spare parts procurement problem under

consideration. An important part of this heuristic is the myopic way of determining

the order-up-to levels of the policy. The good quality of the heuristic confirms what

already has been experienced in other research contributions (e.g. by Morton and Pentico,

1995 or Bollapragada and Morton, 1999), namely that dynamic order-up-to levels can be

approximated fairly well using a myopic single-period approach even if we face a multi-

period non-stationary situation as in our problem environment. The managerial impact of

this finding is that problem complexity can be reduced considerably by confining oneself
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to a simple myopic problem sight when parameters of a dynamic policy are determined.

Our approach can also be used to check the importance of flexibility of procurement

options for the spare parts management problem. For instance, considering all 768 prob-

lem instances of the first test, a restriction to a final-order-only strategy results in total

expected costs that are between 8% (best case) and 90% (worst case) higher than the costs

of using the additional options of extra production and remanufacturing. That means

that managers should take care to establish respective procurement contracts and facili-

ties which allow for extra production and remanufacturing activities during the end-of-life

service period of a good.

The presented study is restricted to a problem environment for final order determina-

tion in combination with extra production and remanufacturing decisions that naturally

does not capture all situations that we might face in practice. It would be straightfor-

ward to include aspects like initial inventories or the discounting of period costs. It is also

quite easy to take into consideration the impact of holding costs for stocking returned

items, even if in that case disposal decisions should be taken into account. From previous

research (see Inderfurth, 1997) we know that under these conditions the two-parameter

(S,M) policy should be extended by a third parameter which can be interpreted as a

dispose-down-to level. Thus, we still can apply a fairly simple decision rule and extend

parameter approximations developed for this case (see Kiesmüller and Scherer, 2003).

Our problem description does not account for fixed costs and respective order batching

in case of extra production and remanufacturing. This is because we do not consider the

problem of short-term production planning, but refer to a medium-term production and

remanufacturing strategy within a multiple-year planning horizon formed by a product’s

service period. However, production might be accompanied by the necessity to produce or

order a major quantity due to the specific effort combined with an extra production run,

especially if it is performed by an outside supplier of a part. In that case often a minimum

production quantity has to be purchased. This aspect will have a major impact on the

policy structure and will be left for future research. It is also a matter of future studies to

integrate additional procurement options like product swapping or the use of compatible

successive products into our approach. Finally, it will be interesting to include options

of active acquisition of returns, as e.g. considered in Galbreth and Blackburn (2006) and

Kleber et al. (2009), into the spare parts procurement problem so that the flexibility of
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the remanufacturing option is increased.
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A Appendix
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Figure 4: Influence of remanufacturing and extra production unit cost cR/cP on heuristic

performance.
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Figure 5: Influence of holding cost h, backorder cost v, and penalty p on heuristic per-

formance.
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Table 5: Boxplot data.

Q1 Median Q3 Sample Mean

Maximum

Figure 1

all instances 0.01% 0.15% 0.69% 2.09% 0.41%

static scenario 0.00% 0.05% 0.22% 1.89% 0.20%

dynamic scenario 0.06% 0.49% 1.08% 2.09% 0.61%

l = 0 0.00% 0.02% 0.15% 1.28% 0.21%

l = 1 0.03% 0.23% 0.68% 1.80% 0.42%

l = 2 0.09% 0.39% 1.03% 2.09% 0.59%

Figure 2

ρR = 0.1 0.00% 0.12% 0.64% 2.05% 0.38%

ρR = 0.4 0.03% 0.19% 0.76% 2.09% 0.43%

ρD = 0.1 0.00% 0.01% 0.14% 1.33% 0.12%

ρD = 0.4 0.15% 0.65% 1.13% 2.09% 0.69%

ρR = ρD = 0.1 0.00% 0.00% 0.10% 1.18% 0.09%

ρR = ρD = 0.4 0.16% 0.70% 1.13% 2.09% 0.71%

Figure 3

l = 0 0.00% 0.00% 0.00% 0.00% 0.00%

l = 1 0.00% 0.00% 0.03% 0.36% 0.03%

l = 2 0.00% 0.01% 0.06% 0.48% 0.05%

Figure 4

cR = 12 0.04% 0.20% 0.67% 2.05% 0.42%

cR = 16 0.00% 0.08% 0.70% 2.09% 0.39%

cP = 16 0.01% 0.15% 0.75% 2.09% 0.43%

cP = 20 0.01% 0.15% 0.65% 2.05% 0.38%

Figure 5

h = 1 0.00% 0.10% 0.64% 2.05% 0.38%

h = 3 0.03% 0.24% 0.71% 2.09% 0.43%

v = 25 0.01% 0.14% 0.57% 1.89% 0.33%

v = 75 0.01% 0.15% 0.94% 2.09% 0.48%

p = 75 0.01% 0.15% 0.67% 2.09% 0.41%

p = 200 0.01% 0.15% 0.70% 2.09% 0.40%
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Table 6: Parameter values, final order y, remanufacture-up-to levelsMt, order-up-to levels

St, and relative cost deviation in 10 worst case instances for optimal solutions (Opt), the

optimized (M,S)-policy (Pol), and the heuristic approach (Heu).
# cR cP h v p ρR y M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 S1 S2 S3 S4 S5 S6 S7 S8 ΔTEC

Opt 18

1 16 16 3 75 200 0.4 Pol 13 3 7 11 13 14 15 13 11 6 3 18 25 32 35 35 29 20 14 0.3%

Heu 12 3 7 12 14 15 15 14 12 7 3 17 24 29 30 30 28 21 13 2.1%

Opt 18

2 16 16 3 75 75 0.4 Pol 13 3 7 11 13 15 15 13 11 6 3 18 25 32 35 34 29 19 12 0.3%

Heu 12 3 7 12 14 15 15 14 12 7 3 17 24 29 30 30 28 21 12 2.1%

Opt 46

3 12 20 1 75 75 0.1 Pol 46 4 8 13 15 17 17 15 12 6 3 18 25 30 33 30 25 18 11 0.0%

Heu 45 4 8 13 15 17 17 15 13 8 3 18 25 30 32 32 29 22 11 2.0%

Opt 44

4 12 16 1 75 75 0.4 Pol 44 4 8 13 15 17 17 15 12 6 3 18 25 31 35 33 27 19 11 0.1%

Heu 41 4 8 13 15 17 17 15 13 8 3 18 25 31 33 33 30 23 12 2.0%

Opt 47

5 12 20 1 75 75 0.4 Pol 47 4 8 13 15 17 17 15 12 6 3 18 25 31 33 31 26 18 11 0.0%

Heu 45 4 8 13 15 17 17 15 13 8 3 18 25 31 33 33 29 22 11 1.9%

Opt 20

6 16 16 3 25 200 0.1 Pol 21 9 9 9 9 9 9 9 9 9 9 21 21 22 22 23 23 23 21 0.3%

Heu 18 9 9 9 9 9 9 9 9 9 9 18 18 18 18 18 18 18 19 1.9%

Opt 21

7 16 16 3 25 200 0.4 Pol 21 9 9 8 9 9 9 9 9 9 9 21 22 23 23 24 24 24 22 0.4%

Heu 18 9 9 9 9 9 9 9 9 9 9 19 19 19 19 19 19 19 19 1.9%

Opt 48

8 16 16 1 75 75 0.1 Pol 48 4 8 13 15 17 16 15 12 6 3 18 25 30 38 37 29 19 11 0.0%

Heu 46 4 8 13 15 17 17 15 13 8 3 18 25 30 32 32 29 23 12 1.9%

Opt 48

9 16 16 1 75 75 0.4 Pol 48 4 8 13 15 17 16 15 12 6 3 18 25 31 39 38 30 20 12 0.1%

Heu 46 4 8 13 15 17 17 15 13 8 3 18 25 31 33 33 30 23 12 1.8%

Opt 18

10 16 16 3 75 75 0.1 Pol 13 3 7 11 13 15 15 13 11 6 3 18 25 32 34 34 28 19 11 0.2%

Heu 12 3 7 12 14 15 15 14 12 7 3 17 23 28 30 30 27 21 11 1.8%
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