
WORKING PAPER SERIES

Exact and heuristic linear-inflation policies for an inventory 
model with random yield and arbitrary lead times

Karl Inderfurth/Gudrun P. Kiesmüller

Working Paper No. 7/2013



 

Impressum (§ 5 TMG)  
Herausgeber:  
Otto-von-Guericke-Universität Magdeburg  
Fakultät für Wirtschaftswissenschaft  
D  Dekan  
 

Verantwortlich für diese Ausgabe:  

Otto-von-Guericke-Universität Magdeburg 
Fakultät für Wirtschaftswissenschaft 
Postfach 4120  
39016 Magdeburg  
Germany  

http://www. ww. /femm

Bezug über den Herausgeber 
ISSN 1615-4274 

Karl Inderfurth and Gudrun P. Kiesmüller



1 

 

Exact and heuristic linear-inflation policies for an inventory 

model with random yield and arbitrary lead times 

K. Inderfurth  

Faculty of Economics and Management, Otto-von-Guericke-University Magdeburg, POB 4120, D-

39016 Magdeburg, Germany, karl.inderfurth@ovgu.de 

G. P. Kiesmüller 
Department of Business Administration, Christian Albrechts University, Olshausenstraße 40 24098 

Kiel, Germany, g.p.kiesmueller@bwl.uni-kiel.de 

We investigate a periodic inventory system for a single item with stochastic demand and random 

yield. Since the optimal policy for such a system is complicated we study the class of stationary 

linear-inflation policies where orders are only placed if the inventory position is below a critical stock 

level, and where the order quantity is controlled by a yield inflation factor. We consider two different 

models for the uncertain supply:  binomial and stochastically proportional yield and we allow positive 

and constant lead times as well as asymmetric demand and yield distributions. In this paper we 

propose two novel approaches to derive optimal and near-optimal numerical values for the critical 

stock level, minimizing the average holding and backorder cost for a given inflation factor. First, we 

present a Markov chain approach, which is exact in case of negligible lead time. Second, we provide a 

steady state analysis to derive approximate closed-form expressions for the optimal critical stock 

level. We conduct an extensive numerical study to test the performance of our approaches.  The 

numerical experiments reveal an excellent performance of both approaches. Since our derived 

formulas are easily implementable and highly accurate they are very valuable for practical 

application. 

Subject classifications: Inventory/Production: Approximations/heuristics, Random Yield, Lead times; 

Probability: Stochastic model applications 

Area of review: Operations and Supply Chains 
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1 Introduction 

It is well-known that in many industries production and inventory systems simultaneously have 

to cope with uncertainties from two sides, namely from the demand as well as from process side. A 

major risk concerning production processes stems from yield uncertainties like they frequently occur 

in the agricultural sector or in chemical, electronics and mechanical manufacturing industries (see 

Gurnani et al. 2000; Jones et al. 2001; Kazaz 2004). In these environments different reasons such as 

weather conditions, unreliable processes or imperfect input material can be responsible for the 

occurrence of random yields. A particularly striking example is given by semiconductor 

manufacturing in the electronic goods industry where high yield losses with an average of about 80% 

are met (see Nahmias 2009, p. 392). The most recent field where yield problems have gained specific 

attention is the remanufacturing industry. Here, the output of disassembly operations often is highly 

uncertain because of limited knowledge of the condition of used products (see Ilgin and Gupta 2010, 

Panagiotidou et al. 2012). 

In coping with the described yield problems, production and inventory control faces three main 

challenges. First, it has to be recognized that yield losses often are hard to predict so that their 

variability is too high to be ignored and randomness of production output must explicitly be taken into 

account. Second, it is important to be aware that different causes of yield losses exist so that different 

types of yield randomness have to be dealt with. Finally, many production processes in this context, 

e.g. in semiconductor manufacturing, are characterized by significant time consumption so that lead 

times of different length must be considered when control systems are developed and implemented. In 

this paper, we study different efficient approaches for controlling periodic-review production and 

inventory systems with random demand and yield, which are easy to implement and address all major 

challenges mentioned above. We refer to an infinite-horizon problem for a single item under the 

criterion of average cost minimization. Concerning yield randomness, we consider two different types 

that are most widely addressed in literature (see Yano and Lee 1995), namely the models of binomial 

and stochastically proportional yield. Binomial yield applies to cases where the generation of non-

defective units within a production batch forms a Bernoulli process while the stochastically 

proportional yield concept is used if the stochastic process conditions affect the batch as a whole so 

that the probability distribution of the yield rate does not depend on the batch size.  

From prior research it is known (see Gerchak et al. 1988, Henig and Gerchak 1990) that the 

optimal policy in case of zero lead time and stochastically proportional yield is a rule with a critical 

stock such that a production order in a period is only released if the inventory does not exceed this 

stock level. Different from the standard base-stock rule under deterministic yield conditions, however, 

the order quantity is a non-linear function of the inventory position. Since this rule is computationally 
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cumbersome to evaluate and unattractive for practical application, several approaches have been 

proposed to develop simple, but still near-optimal rules. Some of these approaches, like the so-called 

newsvendor and NLH-2 heuristic by Bollapragada and Morton (1999) and the heuristic developed by 

Li et al. (2008), try to approximate the optimal order quantity rule by a non-linear function that is 

quite simple to evaluate. More convenient for practical application, however, are those policies where 

the order release quantity is a linear function of the deviation between critical stock and inventory 

position. This type of policy for which the term linear-inflation rule has been introduced by Zipkin 

(2000, p. 393) has the major benefit that it possesses just the structure of the rule that is usually 

applied in practice when demand and yield variability in MRP-type of production control is handled 

by a safety stock and a yield inflation factor that accounts for yield losses (see Inderfurth 2009; 

Nahmias 2009, p. 392; Vollmann et al. 2005, p. 485).  

A linear-inflation policy is given by two parameters, which have to be determined before 

implementation, namely the critical stock S and the yield inflation factor F. Like other research 

contributions in this field we will focus on this policy type although we are aware that this rule is non-

optimal, not only due to the linearization of the order release function but also because it is myopic 

and uses static policy parameters even in the non-zero lead time case (see Bollapragada and Morton 

1999 and Inderfurth and Vogelgesang 2013, respectively). From numerical studies, however, we 

know that the latter aspects are of minor relevance for suboptimality and that the performance of the 

linear-inflation policy critically depends on the choice of the numerical values of the policy 

parameters S and F.  

In literature we find four approaches, listed in Table 1, that aim to determine one or both of 

these policy parameters such that they are optimal or close to optimal. These approaches differ with 

respect to several problem aspects and application fields which are relevant in the context under 

consideration. First, these differences relate to which of the two policy parameters is determined and 

if this parameter evaluation is exact or heuristic. Further, the approaches can be divided into those 

which only consider zero lead time and others where also non-zero lead times are taken into account. 

A next criterion is if the approach only refers to a single yield model or if both yield types (binomial, 

BI, and stochastically proportional, SP) are considered. Finally, we find a difference in the types of 

probability distributions for demands and yields assumed in the approaches, namely if they are strictly 

symmetric or if also asymmetric distributions are allowed. Table 1 gives an overview how the four 

approaches refer to these aspects.  
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 Exact Heuristic Lead time Yield Distribution 

 S F S F zero non-zero SP BI sym. asym. 

Bollapragada and 

Morton (1999) 
  �  �  �  �  

Zipkin (2000)   � � �  �  �  

Nagarajan and 

Huh (2010) 
�   � �  �  �  

Inderfurth and 

Vogelgesang (2013) 
  �  � � � � � � 

Table 1: Approaches for parameter determination of the linear-inflation policy 

The first three approaches in Table 1 address a similar limited problem area as they all are 

restricted to a situation with zero lead time, stochastically proportional yield and symmetric 

probability distributions. Under these conditions Bollapragada and Morton (1999) propose a heuristic 

approach (named NLH-1) resulting in a closed-form expression for the critical stock level S while 

they use the reciprocal of the expected yield rate as inflation factor F. Although there is a flaw in the 

calculations for this approach (see Inderfurth and Transchel  2007) a numerical study reveals that this 

heuristic performs very well in most of the considered cases. The approach suggested by Zipkin 

(2000) presents a heuristic for determining closed-form solutions for both parameters S and F. Since 

these parameter formulas, however, are not derived on the basis of a strict cost minimization approach 

it turns out that, in general, the performance of the Zipkin heuristic is not satisfactory. This is shown 

in a computational study carried out by Huh and Nagarajan  (2010) whose main own contribution is to 

develop a method for computing the optimal critical stock S for a given yield inflation factor F which 

is computationally tractable. Nevertheless, since for this approach a simulation procedure is needed to 

generate the stationary inventory distribution the computational burden is still quite considerable. Huh 

and Nagarajan (2010) also check different simple approaches for determining the inflation factor F 

and suggest a combined approach that works quite well compared to the optimal choice of this 

parameter. The fourth contribution in this sequence, published in Inderfurth and Vogelgesang (2013), 

extends the approach of S determination in Bollapragda and Morton  (1999)  and presents closed-form 

expressions for the critical stock also for binomial yield problems and for environments with non-zero 

lead times and asymmetric yield rate distributions. For the non-zero lead time case, a numerical study 

reveals that the performance of the linear-inflation rule with the suggested static parameters is 

comparable to that of a more sophisticated rule with dynamic critical stock parameters which, in 

principle, has the potential to perform better under non-zero lead times.   

In our paper, we develop two novel approaches to derive optimal and near-optimal expressions 

for the critical stock S under arbitrary inflation factors F which apply to all relevant problem 

instances, i.e. zero and non-zero lead times, binomial and stochastically proportional yield and 
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arbitrary demand and yield distributions which also can incorporate considerable skewness. Both 

approaches aim to derive the probability distribution of the stationary inventory level under a linear-

inflation policy and determine the optimal policy parameter from exploiting this distribution. The first 

approach uses a Markov chain modeling method and leads to a direct numerical computation of the 

inventory distribution which is exact for zero and unit lead time and is approximate for lead times 

greater than one. Thus, this Markov chain approach is able to determine the optimal critical stock 

level S like the Huh/Nagarajan approach, but with much lower computational effort, because the 

cumbersome estimation of probabilities by stochastic simulation can be avoided and only a single 

linear equation system has to be solved. The second approach fits estimations of the moments of the 

stochastic stationary inventory to standard distribution types so that closed-form expressions for the 

critical stock parameter S can be found. For estimating the moments in this so-called steady-state 

approach, an approximate method is employed like it is also used in Zipkin (2000, p. 394) to get 

results for these moments under equilibrium conditions. This estimation also includes third moments 

to enable the fitting of asymmetric distributions as for example the gamma distribution, which 

adequately represents demand for many medium- and fast moving items (Burgin, 1975). In order to 

appropriately cope with heavy skewness of the inventory distribution that can be caused by 

asymmetric demand and/or asymmetric yield rate distributions next to a normal distribution also a 

mirrowed gamma distribution is used to approximate the exact stationary inventory distribution. This 

innovative way of estimating appropriate distributions is complemented by a sophisticated 

automatism that decides which type of distribution function (normal or gamma) should be chosen in 

specific problem instances. Insofar this study also contributes to answering the questions under which 

circumstances it is feasible to use a normal distribution as approximation in inventory models with 

asymmetries (see Axsäter 2013). A numerical performance study reveals that in this sophisticated 

form the steady-state approach leads to close-to-optimal results under almost all problem conditions. 

The more elaborate Markov chain approach which is optimal for lead times of zero and one, but only 

approximate in other cases generally shows an even better performance for lead times larger than one. 

Thus, we are able to present easy-to-apply approaches for highly efficient parameter determination for 

linear-inflation policies which dominate all other approaches known up to now and can be applied to a 

wide class of random demand, random yield problems. 

The remainder of the paper is organized as follows. In Section 2 we give a detailed description 

of the model formulation. Section 3 presents the analysis of the approaches in the zero lead time case 

including a numerical performance study while Section 4 extends this content to the case with lead 

times larger than zero. Section 5 concludes the paper with a summary and outlook to further research.      
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2   Model formulation 

We consider a single stockpoint for a single item with stochastic customer demand. In order to 

model the decisions and the demand processes we divide the time axis into discrete time buckets of 

equal length and assume that demand across the periods is independent and identically distributed. We 

denote with 0tD �  the demand in period t and with D the generic demand. We further assume that 

the cumulative probability distribution of D is given. As long as there is enough stock available 

demand is satisfied directly from stock. Otherwise demand is backlogged. 

In order to replenish inventory, orders can be placed at the beginning of each period and are 

delivered after a deterministic replenishment lead time of λ periods. The order quantity is determined 

according to a stationary linear-inflation policy, which can formally be described by                                        

 
� � ,

0 ,

tt
t

t

X SF S X
Q

X S
�� �

� 	 �

  (1)  

where  tQ  denotes the order quantity, tX  the inventory position at the beginning of a period t 

before the order is placed, and S stands for the critical stock level and F for the yield inflation 

factor. If discrete values for the order quantity or the yield are required, then we round the order 

quantity in policy (1) to the closest integer value and we use the following notation . 

Due to uncontrollable conditions the quantity received is not necessarily equal to the quantity 

ordered. Let us denote with Q the order quantity (input) and with Y (Q) the uncertain yield (output) for 

a given order quantity Q. The yield is assumed to be independent from the demand and we use the 

index t if the random variables are related to period t. In this article we study the two most common 

random yield models mentioned above. First, we consider a binomial yield model where each unit 

ordered is defective with the same probability 1-p. Thus, the yield for a given order quantity Q is 

binomially distributed with the parameters ( , )Q p  and the probability distribution is given as 

 ( ( ) ) (1 ) 0,1,2, , 1,k Q k Q
P Y Q k p p k Q Q

k
� � �

� � � � 
 �� �
� �

   

Additionally, we study a proportional yield model where the delivered quantity is a random 

multiple of the ordered quantity ( ( ) · )Y Q Z Q� . Let � �0,1tZ �  denote the yield rate in period t. We 

assume that the sequence , ,...( )t t 1 2Z � is iid and denote the mean of the yield rate by Zμ  and the standard 
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deviation by Zσ . Thus, we find for a given order quantity Q the following moments for the total yield 

( )Y Q  under binomial (stochastic proportional) yield conditions. As expected value we have 

 � � � �� �                   ZE Y Q p Q E Y Q μ Q� � � �( ) ( )   (2) 

and as variance we get 

 � � � �� �                   2 2
ZVAR Y Q p 1 p Q VAR Y Q σ Q� � � � � �( ) ( ) ( )    

In addition, our approach takes into account a possible skewness of the yield rate which  

depends on parameter p for binomial yield and is given by a skewness measure Zγ  for stochastically 

proportional yield. 

After the realization of demand in period t, inventory holding costs of h ≥ 0 incur for each unit 

on stock. For each unit backlogged at the end of a period backorder costs b ≥ 0 are charged. We are 

interested in minimizing the expected long run average cost of the system that is given as a function 

of F and S  

 
1

1
( , ) lim ( , )

T

tT t
C F S C F S

T��
�

� �    

where ( , )tC F S denotes the average period cost composed of linear holding and backorder costs 

charged to the net inventory ( , )tI F S at the end of period t: 

 � �, ( , ) ( , )t t tC F S hE I F S bE I F S� �� � � �� � �� � � �   (3) 

If a stationary distribution of the net inventory tI  at the end of a period exists in a continuous 

model, the average cost in (3) can be written as  

                                                ( ) ( )
0

I I
0

C h xφ x dx b xφ x dx
�

��

� �� �          (4) 

where (.)Iφ  is the density function of I that depends on both policy parameters F and S.  

In this study, we focus on the determination of the optimal critical stock level S for any pre-

determined yield inflation factor F. Since under policy (1) the choice of S only affects the mean of the 



8 

 

distribution of inventory I but not its variability or skewness, the respective influence of S can be 

considered by its impact on Iμ  and by the dependency of (.)Iφ  on Iμ . 

Thus, for optimizing the critical stock S it is sufficient to describe the cost in (4) as function of 

Iμ  which can be formulated as  

                                                        � � � � ( )I I I
0

C μ h b xφ x dx bμ
�

� � ��        (5) 

After normalizing the inventory variable by transforming I to � �/N I II I μ σ� �  and exploiting 

the optimality condition for minimizing � �IC μ  we find (see Appendix I) 

                                                         Φ I
N

I

μ b1
σ h b

� �
� � �� � �� �

        (6) 

where Φ (.)N  stands for the cumulative distribution function of the standardized inventory variable. 

Under a symmetric inventory distribution, condition (6) can be written as  

                                                               Φ I
N

I

μ b
σ h b

� �
�� � �� �

        (7) 

Noting that Iμ  depends on the critical stock S, conditions (6) and (7) can be exploited to 

determine the optimal stock level. 

In the sequel we perform a Markov chain and a simplified steady-state analysis in order to 

determine an optimal and a near-optimal critical stock level for the linear-inflation rule. To this end, 

we have to analyze separately the case without replenishment lead time ( λ 0� ) and the situation with 

positive lead times ( λ 0� ). The Markov chain analysis yields information on the complete inventory 

distribution and provides exact results for λ 0�  and λ 1�  while it is only approximate for  >1. The 

steady-state analysis delivers closed-form approximations of the moments of the random inventory 

and generates approximations under all lead time instances. In the remainder of the article the 

following notation is used: 

X! : mean of the random variable X 
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X" : standard deviation of the random variable X 

X# : coefficient of variation of the random variable X, defined as XX X�# " !  

3,X! : third moment of random variable X 

X$ : skewness of random variable X, given by � �3 3
X X Xγ E X μ σ� �� �� �  

Our analysis applies to both types of variables, discrete and continuous ones. The discrete 

Markov chain approach under consideration naturally refers to discrete-type variables, but can 

approximate continuous ones arbitrarily close. The steady-state approach refers to each variable type 

according to the selected distribution type for the inventory variable. If a discrete distribution is used, 

discrete optimality conditions equivalent to (6) and (7) are exploited. 

3   Zero lead time (λ = 0) 

In this Section we analyze the system for zero lead time (λ = 0). Under this assumption the 

sequence of events is given as follows. At the beginning of a period the inventory level is observed 

and an order is placed according to the linear-inflation policy (1). After the instantaneous delivery the 

demand is realized and at the end of the period costs are charged based on the net inventory level. For 

λ 0�  we face the only situation where the order decision is made before the yield realization of the 

order λ  periods ago is known. So this case must be handled separately and cannot be treated as a 

special case of a general analysis for λ 0� . 

3.1   An exact Markov chain analysis 

For the analysis of the system we assume a discrete demand distribution and we restrict the 

order quantities to discrete values as well. We model the difference t%  between the inventory position 

tX   and the critical stock S in period t as a Markov chain 

 .t tX S% � �    

Note that in the case of zero lead time the inventory position equals the stock on hand. In case 

of a positive value of % an overshoot is observed and no order is placed while for negative values the 

order quantity is positive. The statespace for the Markov chain is unlimited and given as 
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. In order to obtain the transition probabilities ijp  for the Markov chain, defined as 

, we use the following recursive relation 

       

which enables us to derive expressions for i ≥ 0 

 1( ) ( ),ij t t tp P j i P D i j j SS�� % � % � � � � �    

independent from the yield distribution. The transition probabilities for i < 0 and j SS�  depend on 

the demand and yield as follows   

        

For a binomial yield we get:  

       

and the discretization in case of stochastically proportional yield is done as follows 

                

For a given value of F the stationary distribution can be determined 

numerically solving the system of equations given by 

 � �,   
           ( ) ,  ( )   ,          1ij k k ki j

k

v v with p v v and v� � � ��� ���  �ij � j,,
v with p           (       ( �ij �) , � �v h ( )v ( )� �)� �   (8) 

Due to the relation X S� �%   and since the inventory position at the beginning of a period before 

ordering is equal to the inventory level at the end of a period in case of zero lead time, the following 

expression for the average cost per period is obtained: 

 

( 1)

 ( , ) ( ) ( )-
S

k k
k S k

C F S h S k v b S k v
� ���

�� ���

� � �� �    

Note that for the optimization of S for a given value of F the stationary distribution of the 

Markov chain must only be computed once, since it is independent from the numerical value of S. The 

following lemma shows that the optimal critical stock level S* satisfies a news-vendor like condition. 
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LEMMA 1: For any given value of F the optimal critical stock level 
*( )S F  is the smallest value of S 

satisfying the following condition:  

 

Proof: The proof is similar to the general lead time case and is therefore postponed to the next section. 

Note that a similar exact analysis can be done for a lead time equal to one period. The 

stationary distribution of the inventory position is the same, but the distribution of the inventory level 

is determined by the relation I=X-D. 

3.2   An approximate steady-state analysis 

In this section we present an approach to derive a simple expression for a near-optimal critical 

stock level S ��  which can easily be implemented in a spreadsheet. The approach is based on the 

presentation of the objective function in (5) keeping in mind that the expected inventory Iμ  is a 

function of the critical stock S. 

We will approximate the distribution of the inventory level in two different ways and then we 

present a decision rule to choose from the two cases. For the optimization of the objective function we 

further simplify and analyze (5) for a strictly linear control rule. Thus we neglect that the order 

quantity is zero in case of an overshoot and use 

 � � 1( )t t tQ F S X F S I �� � � �   (9) 

For the further analysis we need more information about the expected inventory level. 

LEMMA 2: If a strictly linear control rule as in (9) is applied, then the average inventory level is 

given as 

          D
I M

S� �
!!   (10) 

where M stands for the scrap loss compensation factor, i.e.   
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     for binomial yield

   for stochastically proportional yieldZ

Fp
M

Fμ
�

� 	



                    (11) 

If M 1� , expected yield losses are overcompensated, otherwise, if M 1� , they are 

undercompensated by the ordering rule. Additionally, the average order quantity is determined by  

 Q DM
F

�! !   (12) 

Proof: The system dynamics under the strict linear control rule is given as 

 � �1t t t tI I Y Q D�� � �   (13) 

Which, considering (2) under steady-state conditions immediately leads to (12). The expression for 

the expected inventory level can then easily be obtained from (9).  

In order to exploit the optimality condition in (6), we need  knowledge about the distribution of 

the inventory level. To this end we use two types of common distribution functions as proxy for the 

unknown real stationary inventory function. Let us first assume that the inventory level is normally 

distributed with mean I!  and standard deviation I" . Then we can derive the following optimality 

condition. 

LEMMA 3: Under the assumption of a normally distributed inventory level, the optimal critical level 

NormS �
 for a strict linear control rule (9) minimizing (5) has to satisfy the following condition 

 
1D

Norm Norm I
b

hM
S

b
� � � �� �& � ��� �

! "   (14) 

where Norm&  denotes the cumulative distribution function of a standard normal distribution.  This 

solution can immediately be verified by inserting I!  from (10) in (7).  

Under asymmetric demand and/or yield distributions one must be aware that also the inventory 

distribution will be asymmetric. Since the normal distribution does not capture this case we also 

consider another distribution for the inventory level, which can be used to approximate inventory 

asymmetry. To this end we propose to utilize a gamma distribution which, however, has to be 
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mirrowed in order to approximate an inventory distribution, which is usually expected to be skewed to 

the left under a critical stock policy. Let us assume now, that the inventory level can be written as 

 ( )I T S X� �  (15) 

where ( )T S  denotes the (due to the unlimited excess stock not really existing) maximum possible 

value for the inventory level I  and X is a random variable distributed according to a gamma 

distribution with mean [ ] [ ( ) ] ( )) ( DIE X E T S I T S T S S M� � � � � � �! ! and standard 

deviation I" . Then the following Lemma 4 holds. 

LEMMA 4: For the strict linear control rule (9) and under the assumption that the inventory level is 

given as ( )I T S X� � where X is Gamma distributed, from exploiting (6) the following optimality 

condition is obtained 

 � �( )
bP X T S

b h
' �

�
  (16) 

Proof: Appendix II. 

Since the expectation of X  depends on the difference of ( )T S S�  we have to determine 

( )T S .  Obviously,  the probability that the inventory level is larger than the stock level S  is equal to 

the probability that the order quantity Q  is negative, resulting in 

 ( 0) ( ) ( ( ) )P Q P I S P X T S S' � � � ' �   

If the demand variability and the yield variability are relatively small, then the probability on 

the left hand side is close to zero, resulting in ( )T S S� . We use this equation as an approximation 

for all situations and, as a consequence, the second approximate critical stock level GammS �
 has to 

satisfy the following condition 

 ( )Gamm
bP X S

b h
�' �

�
 (17) 

where X  is gamma distributed with mean /D M!  and standard deviation I" . 
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Up to now we have derived two approximate critical levels NormS �
 and GammS �

 under the 

assumption that negative order quantities are possible. Therefore, the real inventory level is 

underestimated and the obtained approximations for the critical stock level are overestimated. In order 

to adjust our formulas, we determine the partial expectation for the negative part of the order quantity. 

This can easily be performed under the assumption that the order quantity is distributed according to a 

normal distribution with mean Q!  and standard deviation Q"  in the following way: 

 � � � �
0

( ) ΦQ Q
Q Q N Q N

Q Q

E F S X y y dy
! !

( " ( !
" "

�

��

� � � �
� �� � � � � � � �� � � �� � � �� �

� � � �
�    

Since we are interested in a near optimal critical level under a linear control rule as given in (1) 

we reduce the critical levels by the value of the partial expectation of the negative order quantity. 

 Φ          ,Q Q
i i Q N Q N

Q Q

S S i Norm Gamm�� �
� �� � � �

� � � � � �� �� � � �� � � �� �� � � �� �

! !
" ( !

" "
  (18) 

For calculating the critical stock levels iS ��
, it remains to determine expressions for  and 

Q" . The expressions for the order quantity for binomial yield as well as for stochastic proportional 

yield can be found in Lemma 5. 

LEMMA 5: Given that M 2�  holds, the variance for the order quantity under a strict linear control 

rule  and binomial yield is given as: 

 
� �� �2 2

2

2

1

1 (1 )

D D
Q

F p
M

� �
�

� �

" !
"   (19) 

Let us assume that the squared coefficient of variation of the yield factor Z, denoted by 
2

Z# , is such 

that the condition  
2 2 / 1Z M# � �  is fulfilled. Then the variance for the order quantity under a strict 

linear control rule  and stochastically proportional yield is given as  

 
� �

� �

2 2 2 2

2

2 2 21 1

Z D D
Q

Z

F

M M

�
�

� � �

! "

#

#
"   (20) 
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Note that these results hold for general lead times and not only for lead time zero. The 

respective proofs can be found in Appendix III. 

In contrast to this, the moments of the inventory level depend on the lead time and are given in 

Lemma 6.  

LEMMA 6: If M 2�
 

then the variance for the inventory level under a strict linear control rule 

, lead time zero and binomial yield is given as: 

 
� �

2
2

2

(1 )

1 1

D D
I

p
M

� �
�

� �

" !"   (21) 

Under the condition  
2 2 / 1Z M# � � the variance for the inventory level under a strict linear control 

rule , lead time zero and stochastically proportional yield is given as: 

 
� �

2 2 2
2

2 2 21 1

D Z D
I

ZM M
�

�
� � �

#"
#

" !
  (22) 

Proof: From (9) we directly get for the inventory variable that 1t tI S Q F� � � . Thus, the steady-state 

variance of I is given by 
2 2 2

I Q F" "�  so that from (19) and (20) we immediately yield the variance 

formulas of Lemma 6 in (21) and (22). 

It is obvious that for the stability of the inventory process under steady-state conditions the 

compensation factor M (and thereby F) must not exceed a certain upper level. Additionally, the above 

analysis also makes clear that the critical stock level S only has an impact on the expected inventory 

level I! , while  the variance of the inventory and order distribution is not affected by S.  

With (18) we have proposed two different approximations for the optimal critical level 
*S , and 

the question arises which of the approaches should be preferred in a specific situation. Since the main 

difference between the approaches is the distribution assumption of the inventory level, we use a 

further attribute, the skewness Iγ  of this distribution, to support our choice.  

LEMMA 7: The skewness of the inventory level I$  under a strict linear control rule, lead time zero 

and binomial yield turns out to be  
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� �
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D I D BI
I 33 3

I

1 μ σ μγ 3
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� �
� � �� �� �� �� �

 (23) 

with  
� � � � � �� �� � � �
� � � �      ,

Ω / /2 2 2 2 2
BI D I D D D D

D D 3 D

3 1 M 1 p M 1 M μ σ μ M μ σ μ M

1 p μ 3μ 2p 1 μ

� �� � � � � � � � �� �
� � � � �

 

For stochastically proportional yield the skewness of the inventory level is given as  

 
� � ,

Ω3 2
SPD I D

I 3 3 2 2 3
I Z 3 Z

1 μ σ μγ 3
σ M M 3M 1 M 3M ρ F μ

� �
� � �� �� �� � �� �

  (24) 

with  

� � � � � �� � � � ,Ω / / /2 2 2 2 2 2 2 2 2 2
SP D D D I D Z D I D 3 D3 1 M μ μ σ M 1 M σ μ M 3M ρ μ σ μ M μ� �� � � � � � � � �� �  

Proof: Appendix IV 

Based on the skewness Iγ  of the inventory level we choose that critical stock from (18) that is 

calculated from the inventory distribution with a skewness level which is closest to the Iγ  value. Thus 

the following decision rule is recommended. First compute the approximation GammS ��
 according to 

(17) and (18). Then, a gamma distribution is fit on the corresponding mean ( /Dμ M ) and standard 

deviation ( Iσ ) of the inventory level. In the next step the skewness ,I Gamm$  of this fitted distribution 

is computed as ,

2

/
$ "

!
� �amm

I
G

D
I M

 and compared with the required skewness I$ I$$  as derived in 

lemma 7. If the value of I$ I$$  is closer to zero (i.e. the $  value under normal distribution) than to 

,I Gamm$ , then we use the approximation NormS ��
 according to (14) and (18), otherwise GammS ��

 is chosen. 

3.3 Numerical study 

In this section, we present the results of a numerical study where the performance of the 

approximated critical stock level S ��
, computed according to the proposed approach presented in 

Section 3.2, is tested. In our experiments we have used the standard setting for the yield inflation 

factor, i.e., 1F p�  for binomial yield and 1 ZF � !  for stochastically proportional yield which is 

equivalent to M 1� .  We fixed the mean demand 20D! �  and the holding cost parameter h=1. We 

computed the optimal value S* with the Markov Chain approach as well as the approximated S++
 with 
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our proposed approach and compared the exact average costs for both values. For each instance i we 

have computed the relative cost difference i)  as 

� � *

*

( )
100%

( )
i

C S C S
C S

� �
� �)  

and we have calculated the average relative difference for N instances as  

 

and the maximum relative difference of N instances as 

. 

Six different values for the backorder cost parameter are chosen, similar as in Huh and 

Nagarajan (2010) . We investigate two distributions 

for the demand and consider normally as well as gamma distributed demand. The latter is especially 

considered to allow for large demand variability and non-symmetric demand distributions. Since a 

discrete demand distribution is needed we compute the probability that demand is equal to 

, {0,1,2, }k k� 
  as   

For the normal distributed demand three different coefficient of variations are chosen

( {0.1,0.2,0.3})D# � and for the gamma distributed demand five different values are selected 

( {0.1,0.2,0.3,0.5,0.75})D# � . Also three different values for p  are studied for the binomial 

distributed yield ( {0.5,0.7,0.9}p� ) resulting in 54 instances for the normal distributed demand and 

90 instances for the gamma distributed demand. In Table 2 the numerical results for the 

approximation are summarized.  
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 Normal demand Gamma demand 

Parameter Value 
Average 
relative 

deviation 

Maximum 
relative 

deviation 

Average 
relative 

deviation 

Maximum 
relative 

deviation 

ρD 

0.1 0.38 2.89 0.35 2.54 

0.2 0.18 1.12 0.32 2.34 

0.3 0.10 1.01 0.51 2.50 

0.5   0.08 0.30 

0.75   0.02 0.10 

p 
0.5 0.52 2.89 0.45 2.54 

0.7 0.11 1.09 0.25 2.34 

0.9 0.03 0.59 0.07 0.74 

Critical ratio 
b/(h+b) 

0.85 0.21 1.01 0.07 0.80 

0.90 0.21 1.09 0.14 0.97 

0.95 0.45 2.28 0.25 2.03 

0.97 0.32 2.89 0.26 2.54 

0.99 0.02 0.16 0.47 2.50 

0.995 0.12 1.12 0.35 2.34 

Total  0.22 2.89 0.26 2.54 

Table 2: Results for lead time zero and binomial yield 

It can be seen that the approximation works excellent. In about 80 (60) percent of the instances 

with normal (gamma) distributed demand the optimal critical stock level S* is found by our approach 

and for the other instances the cost deviations are very small. A closer look on the numerical results 

reveals that for the normally distributed demand situation the decision rule always selects NormS ��
, 

while in case of gamma distributed demand NormS ��
 is only chosen for small demand variability. For 

large demand variability and high service levels relative cost deviations up to 40% can be observed if 

only NormS ��
 is used as an approximation for the critical stock level, which illustrates the necessity of 

taking the skewness of the distribution of the inventory level into account. 

For the part of the numerical study where the stochastically proportional yield is considered we 

have chosen a beta distribution for the yield, because thereby different scenarios can be modeled 

easily. We consider three symmetric distributions with different variability 

( 0.5, {0.2,0.4,0.5774})Z Z! #� � . While the smallest coefficient of variation leads to a yield 

distribution similar to a normal distribution, the largest value 0.5774Z# �  results in a uniform 

distribution for the yield. Further, three distributions with a positive skewness 

( 0.75, 0.2; 0.85, 0.2; 0.85, 0.1Z Z Z Z Z Z� � � � � �! # ! # ! # ) are studied. The densities of the 

different yield distributions are illustrated in Figure 1.                                                                                                         
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Figure 1: The densities of the different yield models 

In total 108 instances are computed for normally distributed demand and 180 instances for 

gamma distributed demand and stochastically proportional yield. The results of the experiments are 

summarized in Table 3. 

 

Table 3: Results for stochastic proportional yield and zero lead time 

 Normal demand Gamma demand 

Parameter Value 
Average 
relative  

deviation 

Maximum 
relative 

deviation 

Average 
relative 

deviation 

Maximum 
relative 

deviation 

##D 

0.1 0.69 7.65 0.64 7.80 

0.2 0.43 3.41 0.47 3.58 

0.3 0.57 6.59 0.62 4.87 

0.5   1.01 8.60 

0.75   2.43 26.85 

(!Z,#Z) 

(0.85;0.1) 0.17 1.33 0.19 1.19 

(0.85;0.2) 1.17 7.65 0.51 7.80 

(0.75;0.2) 0.50 1.71 0.32 1.39 

(0.5;0.2) 0.09 0.69 0.35 4.87 

(0.5;0.4) 0.42 1.95 2.48 26.85 

(0.5;0.5774) 1.01 4.39 2.36 20.31 

Critical 
ratio 

b/(h+b) 

0.85 0.12 0.74 0.07 0.73 

0.90 0.26 1.33 0.12 1.29 

0.95 0.17 1.18 0.23 2.26 

0.97 0.22 1.71 0.51 4.21 

0.99 0.67        2.18 1.76 15.70 

0.995 1.92 7.65 3.52 26.85 

Total  0.56 7.65 1.04 26.85 
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In case of stochastically proportional yield the approximation still works very well, but a little 

bit worse than in case of binomial yield. In 47 (40) percent of the instances the approximation could 

find the optimal critical stock level. While on average the relative cost deviations are very small, in a 

few instances the cost deviation is above or close to ten percent. However, these large deviations 

occur for extremely high service levels respectively critical ratios of 0.995 or 0.99. It is questionable if 

in practice the demand and yield distributions can be estimated so precisely that extremely high 

critical ratios make sense for exact stock determination. We further would like to mention that in case 

of normal (symmetric) demand and non-symmetric yield the decision rule often selects GammS ��
 for the 

approximated critical stock level and for gamma distributed demand in about 50% of the instances it 

is chosen as well. 

4 Positive lead time λ ≥ 1 

Except from Inderfurth and Vogelgesang (2013), random yield models with positive lead times 

are not studied in detail in the literature and there are several open questions.  We consider the 

situation where the yield is observed when the order arrives. Further, the analysis is based on the 

following sequence of events. At the beginning of the period the order, placed λ periods before, is 

delivered and yield is recognized. Second, a new order can be placed based on the inventory position 

at the beginning of the period and according to the linear inflation rule as given in (1).  Then demand 

occurs and inventory and backorder costs are charged at the end of the period.  

The first issue to be discussed is the information to be used for the order decision. Since the 

yield of an order becomes known at the moment of delivery, we can only include the expected yield in 

the inventory position resulting in the following definition of the inventory position: 

 � � � �
1

1

1

t t t t l
l

X I Y Q E Y Q
�

� � �
�

� � � � �� ��
 

   (25) 

Note that according to the policy in (1) we apply a linear control rule with a static order 

parameter (critical stock) S. Even under a stationary demand and yield process this has not necessarily 

to be optimal, since the differently sized open replenishment orders which vary in time incorporate 

different levels of yield risks. These varying risk positions might be reflected by varying the critical 

stock from period to period (for a more detailed discussion see Inderfurth and Vogelgesang (2013)).  

In the following we first model the system as a Markov chain. Then we show how the Markov 

model can be used to obtain a near optimal critical stock level and additionally we propose a simple 

heuristic to compute near-optimal critical stock levels by a steady-state approach. 
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4.1 A Markov chain analysis 

At the moment when the yield becomes known, the inventory position has to be updated, 

resulting in the following recursive equation: 

 � � � � � �� �1 1 1t t t t t tX X E Y Q D E Y Q Y Q  � � � � �� � � � �� � � �� � � �   (26) 

We define the correction as the difference between the expected and the actual yield 

 � �1 1 1( )t t tR E Y Q Y Q   � � � � � �� �� �� �   (27) 

Similar as in the case with zero lead time the difference of the inventory position and the 

critical stock level can be modeled as a Markov chain, but the recursive equation for %t is now given 

as: 

         

Thus, the transition probabilities for i ≥ 0 and j SS�  can be computed as 

 1 1(   ) ( )ij t t t tp P j i P D R i j � � �� % � % � � � � �   (28) 

and for i<0 and j SS�  as 

            (29) 

The stationary distribution of the inventory position is the solution of the system of equations as 

presented in (8) where the matrix of the transition probabilities is determined by (28) and (29). In 

order to obtain the distribution of the inventory level we define a modified demand process 

 � �
1

0 0

1 t i t i
i i

D R
  

*  
�

� �
� �

� � �� �   (30) 

and use the following relation between the inventory position and the inventory level 

 � � ( 1)t t tI X E Y Q *  � � � � �� �� �    
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LEMMA 8: The optimal critical stock level  for any given value of F for the infinite horizon 

random yield problem with positive lead time and a linear control rule is the smallest value satisfying 

the following newsboy condition:  

 

(31) 

where *� +1) is the modified demand as defined in (30). 

Proof: Appendix V 

In order to apply the approach presented above, the probability distribution of the correction R  

is needed. Since the distribution of the correction depends on the order quantity, it changes from 

period to period. Therefore, we rely on an approximation and determine the first two central moments 

of the correction R in equilibrium and fit a normal distribution on the moments. It is easy to see that 

for both yield types the first moment of the correction is equal to zero. However, for the variance we 

have to distinguish between the two yield types. 

LEMMA 9: For a binomial yield model the variance of the correction R as defined in (27) is 

independent on the order quantity and given as 

 � �2 1R Dp" !� �    

Under the assumption of a stochastic proportional yield model the variance of the correction R is 

dependent on the second moment of the order quantity as follows: 

 � �2 2 2 2

QR QZ !" " "��    

Proof: Appendix VI 

Using the approximations (19) and (20) the second moment of the order quantity can be 

approximated and the approximate stationary distribution of the inventory distribution can be 

computed. It remains to determine the variance of the sum of the corrections R  in order to determine 

the distribution of the adapted demand process and the inventory level. It can be shown that the 

covariance of different correction factors is zero and we obtain the following relation 
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LEMMA10: The variance of the sum of the correction factors is equal to the sum of the variances 

 
1 1

0

 -

0

[ ] [ ]t i t i
i i

VAR R V AR R
  �

� �
� �

�� �   

Proof: Appendix VII 

As mentioned above, we always approximate the distribution of the sum of the corrections with 

a normal distribution and thus, we have to compute the convolution of a normal distribution and the 

demand distribution to obtain the distribution of the adapted demand process *  as given in (30). Due 

to this approximation the Markov chain approach is not exact. For λ 1� , however, the correction R in 

(27) is equal to zero so that the exact inventory distribution and optimal critical stock is determined.   

4.2   An approximate steady-state analysis 

For calculating the approximate critical stock level S
++

 similar as is (18) under non-zero lead 

times, we can still use the expected order quantity !Q from (12) as well as the standard deviation of 

the order quantity "Q from (19) or (20), but need to determine the steady-state values for !I and "I for 

positive lead times λ 0� . 

LEMMA 11: If a strictly linear control rule as in (9) is applied, then the average inventory level for 

both yield types and positive lead time is given as 

 
1

                      I DS
M

� �� � �� �
� �

!  !    (32) 

where M denotes  the scrap loss compensation factor as defined in (11).  

Proof: From the definition of the inventory position tX  in (26) it can be derived for the order quantity 

that  

                                            � �         ( ) ( )
λ 1

t t 1 t i t λ
i 1

Q F S I E Y Q Y Q
�

� � �
�

� �
� � � � �� �

� �
�                (33)                     

Exploiting ( )t 1 t t tI Y Q I D� � � �  from inventory balance equation (13) yields 

                                            � �         ( )
λ 1

t t t t i
i 1

Q F S I D E Y Q
�

�
�

� �
� � � � �� �

� �
�                                    
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Using expected yields from (2) and the !Q calculation from (12), the expected inventory formula in 

(32) can easily be derived.  

Concerning the variance of Q, it already has been shown in Lemma 5 that 
2
Qσ  does not depend 

on the lead time λ . With regard to the variance of the inventory level I, however, this independence 

property does not hold. That is shown in the following Lemma 12. 

LEMMA 12: The variance for the inventory level under a strictly linear control rule  

with M<2, lead time λ 0�  and binomial yield is given as: 

 
� �� �
� �

 2 2
D D2 2

I D 22

M σ 1 p μ1σ σ λ 1
M 1 1 M

� � �� �� � � � �� �
� � � �

  (34) 

For stochastically proportional yield with 
2 2

1Z M
# � �  the variance of the inventory level is given as:

  

 
� �

� �
 2 2 2 2

D Z D2 2
I D 22 2 2

Z

M σ ρ μ1σ σ λ 1
M 1 1 M M ρ

�� �� � � � �� �
� � � � �

  (35) 

Proof: Appendix VIII 

Again it is evident that the critical stock S only has an impact on the mean inventory level I!

Since the variance of the inventory level is also known for positive lead time, NormS �
 can be computed 

using 

 
11

Norm D N IS
M

b
b h

� � � �
� ��

� �� � �&� �
� � � �
 ! "   

and GammS �
 using (17) where the Gamma distributed random variable X  has a mean � �1/ DM� !  

and standard deviation I" as given in (34) or (35). For the choice between the two approaches we still 

need the skewness of the distribution of the inventory level as described in Section 3.2. 

LEMMA 13: Under binomial yield, a strictly linear control rule and positive lead time 0 �   the 

skewness of the inventory level is given as 
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 (36) 

with  

� � � � � � � � � �
� � � �� �        ,

Θ
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BI D D D I D D D2
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and with Iσ  from (34). 

Under the same assumptions and stochastically proportional yield we obtain 

� �
       ,

,

Θ

3 2 2D
D I D3 3 2 3

2

I 3
I

3

3 D SP3 2 3
Z 3 Z

1 3μ 1 1 1μ λ λ 1 σ σ1M M M Mλ 1
1 Mγ

1σ λ 1
Mμ

3M 1 M 3M ρ F μ
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� �� �
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               (37) 

with  

� �� � � �� � ,Θ
/

2 2
2 2 2 2 2 2 2 3I D

SP D Z D D D 3 D2

σ σ3μ M 1 M M ρ μ M 1 M μ σ M μ
λ 1 1 M

� �� ��
� � � � � � � �+ ,� �� �� �� �

 

where I"  is given as in (35). 

Proof: Appendix IX 

The same decision rule is applied as in case of zero lead time to determine an approximate 

critical level S ��
. 

4.3 Numerical study 

In this part of the numerical study we test the performance of our approaches, the Markov chain 

approach as well as the steady state solution, for positive lead time. We consider the same instances as 

in Section 3.3. for lead times  For our comparison we first computed the near optimal 

critical level (
MS ) using the Markov chain approach and the approximated critical level S ��

according to formula (18) with the corresponding moments for the scenario with positive lead times. 
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Then we simulated the inventory system with both critical levels and we additionally determined the 

optimal critical level S*
 by exhaustive search where the average costs are estimated by simulation. We 

compare the average costs of our approaches with the optimal simulated costs and report the relative 

difference for instance i as 

 
� � � �

� �
*

, *
 100%M

M
sim sim

S i
sim

C S C S

C S

�
� �)    

for the Markov chain approach and 

 
� � *

*,

( )
   100%

( )

sim sim

S i
sim

C S C S
C S��

�� �
� �)    

for the other approach. The average and the maximum deviation are defined similar as in Section 3.3. 

For the binomial yield model we have computed 162 (270) instances for normal (gamma) distributed 

demand and we summarized the results in Table 4. 

 

Table 4: Results for binomial yield and positive lead time 

 Normal demand Gamma demand 

 Markov Chain Steady-State Markov 
Chain Steady-State 

Para 
meter Value 

Av. 
Rel.  
dev. 

Max. 
Rel. 
dev. 

Av. 
Rel.  
dev. 

Max. 
rel. 
dev. 

Av. 
Rel.  
dev. 

Max. 
rel. 
dev. 

Av. 
Rel.  
dev. 

Max. 
rel. 
dev. 

##D 

0.1 0.20 1.83 0.26 1.66 0.16 1.40 0.17 1.40 

0.2 0.00 0.16 0.07 0.76 0.01 0.15 0.11 0.72 

0.3 0.01 0.17 0.06 0.47 0.02 0.28 0.09 0.54 

0.5     0.01 0.09 0.02 0.19 

0.75     0.02 0.08 0.02 0.09 

p 
0.5 0.00 0.06 0.12 0.86 0.01 0.11 0.07 0.57 

0.7 0.01 0.11 0.19 1.66 0.02 0.60 0.13 1.40 

0.9 0.20 1.83 0.07 0.93 0.11 1.40 0.05 0.72 

Lead 
time 

2 0.07 1.83 0.24 1.66 0.01 0.14 0.16 1.40 

5 0.05 1.38 0.11 0.63 0.03 1.40 0.06 0.53 

10 0.10 1.06 0.04 0.51 0.09 1.14 0.03 0.36 

Critical 
ratio 

b/(h+b) 

0.85 0.04 1.06 0.15 1.66 0.03 0.95 0.07 1.39 

0.90 0.09 1.38 0.18 0.86 0.03 1.05 0.07 0.57 

0.95 0.04 0.99 0.14 1.41 0.04 1.14 0.08 0.88 

0.97 0.06 0.97 0.08 0.85 0.04 1.10 0.06 0.54 

0.99 0.09 1.56 0.14 0.76 0.03 0.91 0.11 0.72 

0.995 0.11 1.83 0.08 0.51 0.09 1.40 0.11 1.40 

Total  0.07 1.83 0.13 1.66 0.04 1.40 0.08 1.40 
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The performance of both approximations is excellent, but the Markov chain  approach is even 

better. The optimal critical level is found with the approximation based on the Markov chain in 85% 

of the instances with normal demand and in about 65% in case of gamma distributed demand while 

for the approach based on the steady-state approximation the numbers are a little bit lower, 57% for 

normally distributed demand and about 49% for gamma demand distribution. The approximation 

based on the Markov chain works better with increasing demand variability. Similar as in case of zero 

lead time, the steady state approximation NormS ��
 is always chosen in case of normal distributed 

demand, because the symmetric demand and the little skewness of the binomial distribution seem to 

result in a nearly normally distributed inventory level. Under gamma distributed demand this can only 

be observed for small demand variability. 

The results for the 864 instances with stochastically proportional yield are presented in Table 5 

 

Table 5: Results for stochastic proportional yield and positive lead time 

 Normal demand Gamma demand 

 Markov 
Chain Steady-State Markov Chain Steady-State 

Para 
meter Value 

Av. 
Rel.  
dev. 

Max. 
Rel. 
dev. 

Av. 
Rel.  
dev. 

Max. 
rel. 
dev. 

Av. 
Rel.  
dev. 

Max. 
rel. 
dev. 

Av. 
Rel.  
dev. 

Max. 
rel. 
dev. 

##D 

0.1 0.81 20.31 0.23 5.85 0.64 12.01 0.22 6.20 

0.2 0.32 6.61 0.09 0.86 0.24 4.75 0.07 0.61 

0.3 0.10 1.42 0.09 1.42 0.09 0.80 0.11 1.19 

0.5     0.05 0.31 0.18 4.46 

0.75     0.03 0.22 0.42 9.98 

(!Z,#Z) 

(0.85;0.1) 0.15 2.75 0.05 0.59 0.06 1.66 0.03 0.53 

(0.85;0.2) 1.48 20.31 0.39 5.85 0.75 12.01 0.20 6.20 

(0.75;0.2) 0.60 8.27 0.12 0.86 0.28 2.85 0.06 0.68 

(0.5;0.2) 0.03 0.64 0.07 1.03 0.01 0.20 0.11 1.07 

(0.5;0.4) 0.03 0.49 0.03 0.27 0.03 0.61 0.41 7.19 

(0.5;0.5774) 0.18 0.63 0.17 0.63 0.13 0.72 0.39 9.98 

Lead 
time 

2 0.68 20.31 0.24 5.85 0.30 12.01 0.34 9.98 

5 0.35 7.96 0.10 2.11 0.19 7.47 0.18 7.19 

10 0.21 3.36 0.07 0.81 0.14 3.69 0.08 3.05 

Critical 
ratio 

b/(h+b) 

0.85 0.04 0.39 0.13 1.03 0.03 0.39 0.08 1.07 

0.90 0.05 0.35 0.04 0.34 0.04 0.31 0.03 0.29 

0.95 0.13 1.34 0.07 0.66 0.10 1.31 0.07 0.67 

0.97 0.24 2.23 0.07 0.54 0.15 2.11 0.10 1.54 

0.99 0.76 8.16 0.21 3.66 0.37 7.80 0.33 5.41 

0.995 1.26 20.31 0.30 5.85 0.58 12.01 0.60 9.98 

Total  0.41 20.31 0.14 5.85 0.21 12.01 0.20 9.98 
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While both approximations work very well, it can be seen that the steady-state approximation 

outperforms the approximation based on the Markov chain. In case of normally (gamma) distributed 

demand the maximum relative deviation is quite large for the Markov chain approach. However, only 

in 6 (4) instances a larger deviation than 5% is observed and only for very high service levels (99% 

and 99.5%). Similar, only one (normal demand) and four (gamma demand) instances have a larger 

deviation than 5% in case of the steady-state approximation. Thus, we can conclude that, for practical 

relevant parameter instances the relative deviations are more than acceptable and our approximations 

which are easy to implement show a very good performance. 

5  Summary and Outlook 

From a practical point of view, it is evident that linear-inflation policies are the most attractive 

candidates for production and inventory control in systems with stochastic demand and random yield. 

The two approaches for policy parameter determination presented in this paper are superior to all 

other approaches developed so far. This is first because they can be used in a wide field of problem 

instances including relevant circumstances like non-zero lead times and binomial yields where most 

others cannot be applied. Second, in almost all cases both approaches reveal a very high performance 

level compared to the optimal linear-inflation rule of the two-parameter type. Third, the computational 

effort of parameter determination is competitive to other available approaches. The steady-state 

approach with its closed-form solution can be applied as spread-sheet application, and the Markov 

chain approach basically only needs the solution of a linear equation system.  

Both approaches also have the potential to be used for optimizing the yield inflation factor as 

second policy parameter since our analysis is valid for arbitrary inflation parameters. It is a matter of 

future research to investigate if structural solution properties can be found and exploited for easing 

parameter optimization in this context so that the high effort of simple numerical search procedures 

can be avoided. A major open problem area refers to the question how the inventory position within a 

linear-inflation policy should be defined under random yield if lead time is larger than one. First, the 

consideration of open orders by including expected yields as suggested in our approach is not the only 

viable way. Second, if multiple open orders from different periods have to be taken into account it 

will, in general, not be optimal to aggregate them to a single inventory position because each order 

contributes to the yield risk specifically. Up to now, only the approach in Inderfurth and Vogelgesang 

(2013) addresses this issue and gives a suggestion how to incorporate the separate yield risks of 

multiple open orders within a linear-inflation rule. However, it needs much more research in this field 

to find out how the structure of an optimal linear policy in the case of non-zero lead time might look 

like and to develop approaches for determining the (most likely more than two) parameters of this 

policy structure.   
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Appendix I 

Evaluation of the cost function ( )IC μ  in (5) 

Cost function  � � � � ( )I I I
0

C μ h b xφ x dx bμ
�

� � ��  can be integrated by terms via 

                         

resulting in 

                                      
0

( ) ( ) (1 ( ))I IC h b x dx b! !
�

� � �& �� . 

After standardizing the inventory variable we receive  

                                   ( ) ( ) (1 ( )  ) -
I

I

I I N IC h b z dz b!
"

! " !
�

�
� � �&�  

from which the first-order derivative is given by 

                                     
( )

( )(1 ( ))I I
N

I I

dC h b b
d

�
� � �& �

! !
! "

 

Eventually, first-order optimization condition ( ) 0I IdC d �! ! leads to the solution  

     1 ( )I
N

I

b
h b

�& � �
�

!
"

  in (6).  

For a symmetric distribution function it holds that 

1I I
N N

I I

! !
" "

&
� � � �
� � � �
� � �
� �&

�
�  so that we immediately find the solution 

I
N

I

b
h b

� �
�� �

�
&

� �
!
"

  in (7). 
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Appendix II 

Proof of Lemma 4:  

Considering the standardization of the inventory variable, the general optimality condition 

1 ( )I
N

I

b
h b

�& � �
�

!
"

 in (6) can be rewritten as  

                                        � �01 P N I I
bI

h b
" ! �� '�

�
. 

Since, by definition, N I I II σ μ� �  we get for the original inventory variable 

                            � � � � � �1 P P P0 0 0
bI I I

h b
� � � � �'�

�
'  

From the definition ( )I T S X� �  in (15) we directly find that 

-  � � � �P ( ) 0 P ( )
bX T S X T S

b h
� ' � ' �

�
 as given in (16).  

 

Appendix III 

Proof of Lemma 5: 

A:  Qσ derivation for binomial yield 

A.1:  Lead time λ 00  

The derivation is based on the time development of order quantities 

t t 1 t 1 t 1Q Q FY Q FD� � �� � �( )                            (A1) 

which results from inserting the inventory balance equation in (13) in form of 

� �1 2 1 1t t t tI I Y Q D� � � �� � �  into the control rule ( )t t 1Q F S I( )tF( t( )1  from (9).  

Exploiting (A1)  and noting that t 1Q �  and t 1D �  are independent, we find 

� �[ ] ( ) 2 2
t t 1 t 1 DV Q V Q FY Q F σ� �� � �  

Furthermore, it holds  
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� � � �( ) [ ]t 1 t 1 t 1E Q FY Q 1 Fp E Q� � �� � � .  

Additionally, for binomially distributed yield we have [ ( )] ( )t 1 t 1V Y Q p 1 p Q� �� �  so that we get 

� � � � � �

� �

� �
                             

                             

( ) ( ) ( )

( ) ( ) [ ]

[ ] [ ] [ ( )]

22
t 1 t 1 t 1 t 1 t 1 t 1

22 2 2 2
t 1 t 1 t 1 t 1 t 1

2 2 2 2 2
t 1 t 1 t 1

V Q FY Q E Q FY Q E Q FY Q

E Q 2FQ Y Q F Y Q 1 Fp E Q

E Q 2FpE Q F E V Y Q F p

� � � � � �

� � � � �

� � �

� �� � � � � �� �

� �� � � � � �� �

� � � � � �
� � � � � �
� �

                             

                             

[ ] [ ]

[ ] [ ] ( ) ]

[ ] ( ) /

22 2
t 1 t 1

2 2 2 2
t 1 t 1 t 1

2 2
t 1 D

E Q 1 Fp E Q

1 Fp E Q E Q F E p 1 p Q

1 Fp V Q F p 1 p μ p

� �

� � �

�

� � �

� � � � � �

� � � �

 

Thus, noting that M FpFp  we finally find the following expression under steady-state conditions, i.e. 

 [ ] [ ]tV Q V Q t� . ,  

� �[ ] [ ] ( )2 2 2 2
D DV Q 1 M V Q F 1 p μ F σ� � � � � . 

From that we receive the variance formula for the order quantity as shown in (19): 

-    � � � �
� �

 
    

( )2 2
D D

2

F σ 1 p μ
V Q

1 1 M

� �
�

� �
 . 

It is obvious that this variance is only feasible and finite if the denominator is larger than zero. Thus a 

necessary condition for the stability of the steady-state development of order quantities is given by 

M 22 . 

 A.2:  Lead time λ 11  

This derivation is based on the time development of order quantities 

� � � �( )t t 1 t λ t λ t 1Q 1 Fp Q F pQ Y Q FD� � � �� � � � �       (A2) 

which results from applying the order quantity formula in (33) to the binomial yield case with 

[ ]tE Q p� .  

Based upon the tQ  formula in (A2) for λ 1� , we can derive the steady-state variance of Q in the 

following way: 

� � � �
� � � � � �        

[ ] [ ( ) ]

[ ] [ ( )] [ , ( ) ]
t t 1 t λ t λ t 1

2 2 2 2
t 1 t λ t λ t 1 t λ t λ D

V Q V 1 Fp Q F pQ Y Q FD

1 Fp V Q F V pQ Y Q Cov 1 Fp Q F pQ Y Q F σ
� � � �

� � � � � �

� � � � �

� � � � � � � �
 

Evaluating single terms results in  
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� �[ ( )] [ ( ) ] [ ( )] ( )2 2
t λ t λ t λ t λ t λ t λ DV pQ Y Q E pQ Y Q E pQ Y Q 1 p μ� � � � � �� � � � � � �    

where 

[ ( )]t λ t λE pQ Y Q 0� �� �  and 

� �
� �                                   

                                   

[ ( ) ] [ ] [ ( )] [ ( ) ]

[ ] [ ] [ ] [ ( )]
[ ( ) ] ( ) /

2 2 2 2
t λ t λ t λ t λ t λ t λ

2 2 2 2 2 2
t λ t λ t λ t λ

t λ D

E pQ Y Q p E Q 2 pE Q Y Q E Y Q

p E Q 2 p E Q p E Q E V Y Q
E p 1 p Q p 1 p μ p

� � � � � �

� � � �

�

� � � � �

� � � � �

� � � � ( ) D1 p μ� �

 

Additionally, we find 

� � � � � � � �
� � � �                                                                  

[ , ( ) ] [ ( ) ]

[ ] [ ( ) ]
t 1 t λ t λ t 1 t λ t λ

t 1 t λ t λ

Cov 1 Fp Q F pQ Y Q E F 1 Fp Q pQ Y Q

E 1 Fp Q E F pQ Y Q
� � � � � �

� � �

� � � � �

� � �
. 

Due to � �[ ( ) ]t λ t λE p Q Y Q 0� �� � � , the covariance term equals zero, 

 i.e. � � � �[ , ( ) ]t 1 t λ t λCov 1 Fp Q F pQ Y Q 0� � �� � � , so that for the steady state variance the following 

expression holds where Fp is replaced by M: 

� �[ ] [ ] ( )2 2 2 2
D DV Q 1 M V Q F 1 p μ F σ� � � � � � � � � . 

Thus, we finally get the variance formula described in (19).  

-    � � � �
� �

 
    

( )2 2
D D

2

F σ 1 p μ
V Q

1 1 M

� �
�

� �
  

and see that this variance is independent of the lead time λ  and identical to the formula for λ 0� .  

The same holds for the steady-state stability condition M 22 .  

B:  Qσ derivation for stochastically proportional yield 

B.1:  Lead time λ 00  

The derivation is based on the time development of order quantities that, corresponding to the 

binomial yield case in (A1), under stochastically proportional yield is expressed by  

� �t t 1 t 1 t 1 t 1 t 1 t 1 t 1Q Q FZ Q FD 1 FZ Q FD� � � � � � �� � � � � �      (A3) 

In the following we apply the variance rule for the product of independent random variables X and Y: 

                    � � � � � �� � � � � � � �2 2V X Y V X E X V Y V X E Y� � � � � �  
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From applying the above variance rule to the tQ  formula in (A3) with � �t 1X 1 F Z �� � �  and 

t 1Y Q ��  and by noting that all random variables in (A3) are independent, we get 

� � � � � �[ ] [ ] [ ]22 2 2 2 2
Z Z DV Q F σ V Q E Q 1 Fμ V Q F σ� � � � � . 

Finally, noting that [ ] /D ZE Q μ μ�  and replacing ZF μ�  by M and 
2 2

ZF σ�  by 
2 2

ZM ρ yields 

� � � �[ ] [ ]22 2 2 2 2 2
Z Z D DV Q ρ V Q 1 M V Q F ρ μ F σ� � � � � . 

Thus we receive the following variance formula shown in (20): 

-    � � � �
� �

 
     

2 2 2 2
D Z D

2 2 2
Z

F σ ρ μ
V Q

1 1 M M ρ

�
�

� � �
 . 

Like in the case of binomial yield, it is obvious that this variance only is feasible and finite if the 

denominator is larger than zero. Thus, here a necessary condition for the stability of the steady-state 

development of order quantities is given by 
2
ZM 2 1 ρ/ 2
Z2 1 ρ/ . 

B.2:  Lead time λ 11  

This derivation is based on the time development of order quantities 

� � � �t Z t 1 Z t λ t λ t 1Q 1 Fμ Q F μ Z Q FD� � � �� � � � �       (A4) 

which results from applying the order quantity formula in (33) to the stochastically proportional yield 

case with [ ]t ZE Q μ� .  

Based upon the tQ  formula in (A4), we can derive the steady-state variance of Q in the following 

way: 

� � � �
� � � � � � � �        

[ ] [ ]

[ ] [ ] [ , ]

t Z t 1 Z t λ t λ t 1

2 2 2 2
Z t 1 Z t λ t λ Z t 1 Z t λ t λ D

V Q V 1 Fμ Q F μ Z Q FD

1 Fμ V Q F V μ Z Q Cov 1 Fμ Q F μ Z Q F σ
� � � �

� � � � � �

� � � � �

� � � � � � � �
Evaluating single terms results in  

� � � �[ ] [ ] [ ] [ ]2 2 2 2 2
Z t λ t λ Z t λ t λ Z t λ Z DV μ Z Q σ V Q E Q σ V Q ρ μ� � � � �� � � � �   and 

 

� � � � � � � �
� � � �                                                             

[ , ] [ ]

[ ] [ ]
Z t 1 Z t λ t λ Z t 1 t λ Z t λ

Z t 1 Z t λ t λ

Cov 1 Fμ Q F μ Z Q E F 1 F μ Q Q μ Z
E 1 Fμ Q E F μ Z Q

� � � � � �

� � �

� � � � � �

� � �
. 

Due to [ ]Z t λE μ Z 0�� �  we find that the covariance term equals zero, 
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 i.e. � � � �[ , ]Z t 1 Z t λ t λCov 1 Fμ Q F μ Z Q 0� � �� � � , so that for the steady-state variance the following 

expression holds 

� �[ ] [ ] [ ]2 2 2 2 2 2 2 2
Z Z Z D DV Q 1 Fμ V Q F σ V Q F ρ μ F σ� � � � � . 

where we additionally exploit that ZFμ M�  and 
2 2 2 2

Z ZF σ M ρ� . 

From that we finally receive the variance formula in (20)  

-    � � � �
� �

 
     

2 2 2 2
D Z D

2 2 2
Z

F σ ρ μ
V Q

1 1 M M ρ

�
�

� � �
  

and see that this variance is the same as in the case λ 0�  and, thus, is completely independent of  the 

lead time λ . 

From that it additionally follows that under stochastically proportional yield in any lead time case the 

necessary condition for the stability of the steady-state development of order quantities is given by 

2
ZM 2 1 ρ/ 2
Z2 1 ρ/ . 

Appendix IV 

Proof of Lemma 7: 

A:  Iγ derivation for binomial yield und lead time λ 00  

The derivation departs from skewness definition  

� �3
I

I 3
I

E I μ
γ

σ

� ��� ��           (A5) 

where we make use of the inventory parameters for Iμ  and 
2
Iσ  from (10) and (21) 

D
I

μμ S
M

� �    and    
� �
� �

2
2 D D
I 2

σ 1 p μ
σ

1 1 M
� �

�
� �

        

and of the order quantity parameters for Qμ  and 
2
Qσ  according to (12) and (19) 

D
Q

μμ
p

�     and    
2 2 2
Q Iσ F σ� . 

For the third central moment of I we have 
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� �3 3 2 3
I I I IE I μ E I 3μ σ μ� � � �� � � �� �� � .        (A6)

Furthermore, due to /I S Q F� �  we find 

� � � �/
2 3

33 3 2
2 3

E Q E QE Q
E I E S Q F S 3S 3S

F F F
� � � �� � � �� �� � � � � � � �� � � � . 

Noting that Fp MM , with Q Dμ F μ M�  and 
2 2 2 2 2 2

Q Q I QE Q σ μ F σ μ� � � � � �� �  we get  

32
3 3 2 2D D

I 2 3

E Qμ μE I S 3S 3S σ
M M F

� �� � � �� � � � � � �� �� �
� �

.       

From (A6) it can be derived that 

� �

                     

3 32
3 3 2 2 2D D D D

I I I2 3

33 2
D I D

3 3

E Qμ μ μ μE I μ S 3S 3S σ 3 S σ S
M M F M M

E Qμ σ μ3
M M F

� �� � � � � �� �� �� � � � � � � � � � �� � � � � �� � � � � �� �
� �� �� � �

 (A7) 

Next we evaluate 
3E Q� �� � , considering that � �t t 1 t 1 t 1Q Q FY Q FD� � �� � �   holds 

� �� � � �� �
� �� �              

3 23
t t 1 t 1 t 1 t 1 t 1

2 2 3 3
t 1 t 1 t 1 t 1

E Q E Q FY Q 3E Q FY Q FD

3E Q FY Q F D E F D

� � � � �

� � � �

� � � �� � � � � � �� � � � � �
� � � �� � � � �� �

   (A8) 

The different terms in (A8) can be expressed as follows (note that  and t 1 t 1Q D� �  are independent) 

exploiting the following moments of � �Y Q  under a binomial distribution: 

� �E Y Q pQ�� �� � , 

� � � �2 2 2E Y Q p 1 p Q p Q� � � � �� �  and 

� � � �� � � �3 2 2 3 3E Y Q p 1 p 1 2 p Q 3p 1 p Q p Q� � � � � � � �� � . 

Thus, we find the following expressions 

� �� � � � � � � �

� � � �� � � �

� � � � � � � �� �

    

    

3 2 33 2 2 3
t 1 t 1

3 3 2 2 2 2 3 3 3 2 2 3 3 3

3 3 2 3
D

E Q FY Q E Q 3Q FY Q 3QF Y Q F Y Q

E Q 3FpQ 3F p 1 p Q 3F p Q F p 1 p 1 2 p Q 3F p 1 p Q F p Q

1 M E Q 3M 1 M F 1 p E Q F 1 p 1 2 p μ

� �
� � � �� � � � � �� �� �

� �� � � � � � � � � � � �� �

� � � �� � � � � � � �� � � �
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� �� � � � � �

� �

� � � �

    

    

2 22 2
t 1 t 1 t 1 D

2 2 2 2 2 2
D

2 2 3 2
D D

E Q FY Q FD Fμ E Q 2FQY Q F Y Q

Fμ E Q 2FpQ F p 1 p Q F p Q

1 M Fμ E Q F 1 p μ

� � �
� � � �� � � � �� �� �

� �� � � � � �� �

� �� � � �� �

 

and 

� �� � � � � � � � /2 2 2 2 2 2 2
t 1 t 1 t 1 D D DE Q FY Q F D F E D E 1 Fp Q 1 M F σ μ μ p� � �� � � �� � � � � �� �� �� �� �  

Altogether, inserting these expressions in (A8) yields 

� � � � � � � �� � � � � �
� � � �� �

� � � � � � � �� �� � � �/ 0
� � � �� �

              

           

              

,

/

/ /

33 3 2 2 2 2
D D D D

3 2 3 3
D D 3 D

3 3 3 2 2 2 2 2
D I D D D D

3 2
D

E Q 1 M E Q 3 1 M F 1 p M 1 M μ E Q 3 1 M F σ μ μ p

3F 1 p μ F 1 p 1 2p μ F μ

1 M E Q 3 1 M F 1 p M 1 M μ σ μ M μ σ μ M

F 3 1 p μ 1 p 1 2p μ

� � � � � �� � � � � � � � � �� � � � � �
� � � � � � �
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Isolating for 
3E Q� �� �  results in 

� �
� � � � � �� �� � � �
� � � �� � ,

/ /2 2 2 2 23
D I D D D D3

3 2
D D 3 D

3 1 M 1 p M 1 M μ σ μ M μ σ μ MFE Q
1 1 M 3 1 p μ 1 p 1 2p μ μ

� 1� �� � � � � � � �2 2� �� � � 	 3� � � � � � � � � �2 2
 4
      

Finally, from inserting in (A7) we get 
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By inserting this expression in the skewness measure (A5) we directly find the Iγ  formula shown in (23). 

B:  Iγ derivation for stochastically proportional yield und lead time λ 00  

Next to the skewness definition in (A5) this derivation relies on the Iμ , Qμ , 
2
Iσ , and 

2
Qσ  formulas 

given in (10), (12), (22), and (20). 

The derivation of � �3
IE I μ� ��� �  is the same as in (A7) for binomial yield, i.e. 
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       (A9) 

 For evaluating 
3E Q� �� �  we consider that t t 1 t 1 t 1 t 1Q Q FZ Q FD� � � �� � �   holds and get 

� � � �

� �              

3 23
t t 1 t 1 t 1 t 1 t 1 t 1 t 1

2 2 3 3
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 (A10) 

The different terms in (A10) can be expressed as follows (note that  and ,t 1 t 1 t 1Q Z D� � �  are 

independent) 
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and 
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2
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t 1 t 1 t 1 t 1 Z Q D D D D D

Z

FE Q FZ Q F D 1 Fμ μ F μ σ 1 M μ μ σ
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Altogether, inserting these expressions in (A10) yields 
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Isolating for 
3E Q� �� �  results in 
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Finally, from inserting in (A9) we get 
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By inserting this expression in the skewness measure (A5) we directly get the Iγ  formula shown in (24). 

    

Appendix V 

Proof of Lemma 8: 

Let us define with Y  the inventory position after ordering. Then the average costs can be 

reformulated as 
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 (A11) 

For a fixed value of F  the optimal S  has to satisfy the following conditions 

 ( , 1) ( , ) 0  and ( , 1) ( , ) 0C F S C F S C F S C F S� � � � � �    

We first consider the difference related to 1S �  and S of the first term in (A11) 
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The difference of the second term in (A11)  is given as: 
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 Thus, we obtain the following condition 
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This is equivalent with 
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what is equivalent to condition (31) in Lemma 8. The smallest value of S  satisfying the inequality is 

the optimal S  for a given value of F . 
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Appendix VI 

Proof of Lemma 9: 

For binomial yield the variance of the correction can be computed as 

 

2

1 1 1

2

1 1

2

1 1 1 1

0

2 2 2

1 1

0

2 2 2 2

1 1 1

[ ] ( )

( )

( ) ( )

2 ( ) ( ) ( )

[ ] 2 [ ] (1 ) [

[ ]

[( ) ]

[( ) ]

[ ]

R t t t

t t

t t t t
q

t t
q

t t t

VAR R VAR pQ Y Q

E pQ Y Q

E pQ Y Q Q q P Q q

E p q pqY q Y q Q q P Q q

p E Q p E Q p p E Q

   

  

    

  

  

" � � � � � �

� � � �

��

� � � � � � � �
�

��

� � � �
�

� � � � �

� � �

� �

� � � �

� � � � �

� � � �

�

�
2 2

1

1

] [ ]

(1 ) [ ] (1 )

t

t D

p E Q
p p E Q p

  

 !
� � �

� �

�

� � � �

   

For stochastically proportional yield we obtain 
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Thus, the respective formulas of Lemma 9 are verified. 

Appendix VII 

Proof of Lemma 10: 

In general, for the variance of a sum of random variables t iR �   it holds that 

               
1 1 2 1

0 0 0 1

2 [ ][ ] [ ]t i t i t i t j
i i i j i

VAR R VAR R COV R R
    � � � �
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� �� � ��  . 
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For the correction variables t iR �  as defined in (27), however, the covariances can be shown to be 

equal to zero, because all values t iQ �  and t kQ � are independent as long as i k λ� � ,  
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Thus Lemma 10 is proven.  

Appendix VIII 

Proof of Lemma 12: 

A:  Iσ derivation for binomial yield under lead time λ 11  

In order to find an expression for the variance of I, we exploit the order equation in (33) which for 

binomial yield is  
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and thus can be transformed into 
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Due to the independence of tD  and the above Q values, as variance we find 
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Since all values t iQ �  and t kQ � are independent as long as i k λ� � , we get as variance term  
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�+ ,� �

� �  and find for the steady state variance [ ]V I  
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 (A12) 

Finally, after inserting [ ] 2
QV Q σ�  from (19), the steady-state variance of I results in 
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which easily can be seen to be identical to the variance formula (34) in Lemma 12. 

B:  Iσ derivation for stochastically proportional yield under lead time λ 11  

For the start, the derivation is completely identical to that for the binomial yield case. It only has to be 

considered that instead of p the expected yield rate equals Zμ  so that analogously to (A12) for the 

variance of I we get 
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Thus, after inserting [ ] 2
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which easily can be seen to be identical to the variance formula (35) in Lemma 12. 

Appendix IX 

Proof of Lemma 13: 

A:  Iγ derivation for binomial yield under lead time λ 11  

The derivation departs from skewness definition given by 

� �3
I

I 3
I

E I μ
γ

σ

� ��� ��          

 (A13) 

where we make use of the inventory expressions for Iμ  and 
2
Iσ  from (32) and (34) 
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and of the order quantity expressions for Qμ  and 
2
Qσ  according to (12) and (19) 

D
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p
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Q Iσ F σ� . 

For the third central moment of I we have 
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In order to calculate 3E I� �� �  we need to take the expectations of A, A2
 and A3
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For A2
 we get 
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where jQ  and kQ can be seen as iid random variables. 

Thus A2
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Due to independence of all respective Qt variables the expectation of A2
 is given by 
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For A3
 we find 

 

3 2λ 1 λ 1 λ 1
3 3 2 3

t i t t i t t i t2 3
i 1 i 1 i 1

1 1 1A p Q 3 Q Q 3 Q Q Q
M M M

� � �

� � �
� � �

� �� � � �� � � �� �� � � �� �� � � �� �
� � �  

where we can further evaluate 

� � � �� � � �� �� � � �

� �� � � �

+

           

3 2 3 2
Q Q Q

3 3

3 2 3
Q Q2 3

3λ 1 E Q 3 λ 1 λ 2 μ E Q λ 1 λ 2 λ 3 μ μ λ 1 E Q
ME A p

3 3 1λ 1 λ 2 μ λ 1 μ E Q E Q
M M M

� �� � � � � �� � � � � � � � � �� � � � � �� �
� � � � �� �

� �� � � �� � � � � �� �� � � �� �

 

Noting that 2 2 2
Q QE Q μ σ� � � �� �  and Q Dpμ μ� , after some algebra the above expectation can be 

reformulated as follows 
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  (A16)  

For determining 3E I� �� �  we now evaluate the different terms of I3
 from (A15). 

We start with 

� � � � ,
3 3 2 2 2

D D D 3 DE S D S 3S μ 3S μ σ μ� �� � � � � �� � .       

As second term we evaluate  

� � � � � � � �2 2 2 2 2
D D D D

1E 3 S D A 3E S D E A 3 S 2Sμ μ σ λ 1 μ
M

� �� � � �� � � � � � � � � � � �� �� � � � � �
.  

For the third term we find 
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M M M

� � � �� � � �� � � �
� �� �� � � �� � � � � � � � �� � � �� �� �� � � �� �� �
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The expectation of the last term in (A15) finally is given by (A16). 

After considering all parts of 3E I� �� �  we turn to the second and third term of � �3
IE I μ� ��� �  in (A14). 

For the second term we simply get 

2 2
I I D I

13μ σ 3 S λ μ σ
M

� �� �� � � � �� �� �� �� �
.         

As third term we find 

      

3
3
I D

3 2 2 2 3 2 3
D D D2 2 3

1μ S λ μ
M

1 2 1 3 3 1S 3S λ μ 3S λ λ μ λ λ λ μ
M M M M M M

� �� �� � � � � �� �� �� �� �
� � � � � �� � � � � � � � � � �� � � � � �
� � � � � �

  

Summing up all parts of 3E I� �� � , it first turns out that all expressions which depend on S will cancel down. 

Thus the following expression remains 

� � � � � �

� �� � � � � �                    

                    

,
3 2 2 2 2 2

I 3 D D D D D D Q2 2

23 3 3
D3 2

2 2
D Q

1 2 1 1E I μ μ 3 μ σ λ 1 μ 3μ λ 1 λ 1 μ λ 1 p σ
M M M M

1 3 3p λ 1 E Q μ λ λ 1 λ 2 λ 1 λ 1
M M M

μ p σ

� �� �� � � � � �� �� � � � � � � � � � � � � � � �� � � � � �� �� �� � � � � � � �� �� �
� � � �� �� � � � � � � � � � �� � � �� �� � � �

� � �� � � � 2 3 2 3
D I D2 2 3

3 3 1 3 3 13 λ 1 λ 2 λ 1 3 λ μ σ λ λ λ μ
M M M M M M

� �� � � � � �� � � � � � � � � � �� � � � � �� �� � � � � �� �

 

Exploiting that from the 
2
Qσ   and 

2
Iσ   formulas we find that 

/

2 2
2 2 I D

Q 2

σ σp σ
λ 1 1 M

�
�

� �
, 

after some algebra and rearrangement of terms we come to the following expression for the 

numerator of the skewness measure in (A13) 

� �

                       

,

3 2 33 3 2 2
I 3 D D D I D D3

2 2

3 3
3

1 1 1λ 11 M M ME I μ μ μ λ 3μ σ 3μ σ1 1M λ 1 λ 1
M M

1p λ 1 E Q
M

� � �
� �� �� � � � � � � �� �� � � � � � � �

� � � �� � �� � � �� �

  (A17) 

Now we still have to evaluate the 
3E Q� �� �  term in (A17). To this end we revert to the order quantity 

formula � � � �t t 1 t λ t λ t 1Q 1 M Q MQ FY Q FD� � � �� � � � � .  
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Using as abbreviation  � � � �t 1 t λ t λB 1 M Q MQ FY Q� � �� � � �  , we can formulate 

3 3 2 2 2 3 3
t t 1 t 1 t 1Q B 3B F D 3BF D F D� � �� � � � � .       (A18) 

We will evaluate the expectation of 
3
tQ  term by term. Thereby, we start with considering 

� �� � � �� � � � � �� � � � � �3 2 2 33 2 3
t 1 t λ t 1 t λ t λ t 1 t λ t λ t λB 1 M Q MQ 3 1 M Q MQ FY Q 3 1 M Q MQ F Y Q F Y Q� � � � � � � � �� � � � � � � � � �

 

Taking the expectation and exploiting that Fp M� we get 

� � � � � �

� � � � � �

� � � � � �

           

            

3 23 3 2 2 2 3 3
Q Q

2 2 2 2 3 3 2 2
Q Q Q

2 3 3 2 2 3 3 2
Q

E B 1 M E Q 3 1 M Mμ E Q 3 1 M M μ E Q M E Q

3 1 M Mμ E Q 6 1 M M μ E Q 3M E Q 3 1 M M μ E Q

3 1 M MF 1 p μ 3M E Q 3M F 1 p E Q M E Q 3M F 1

� � � � � � � � � �� � � � � � � �� � � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � �� � � � � � � �� � � � � � � �

� �� �            

2

2
Q

p E Q

MF 1 p 1 2 p μ

� �� �� �
� � �

 

After some algebra we find 

� � � � � � � �� �33 3 2 2
Q QE B 1 M E Q 3 1 M MF 1 p μ MF 1 p 1 2p μ� � � �� � � � � � � �� � � �    

2B  is given by 

� � � � � � � � � � � �222 2 2 2 2
t 1 t 1 t 1t λ t λ t λ t λ t λ t λB 1 M Q M Q F Y Q 2 1 M MQ Q 2 1 M FQ Y Q 2MFQ Y Q� � �� � � � � �� � � � � � � � �

The expectation of 
2B  then is given by 

� � � � � � � �
� � � � � � � � � �           

22 2 2 2 2 2 2 2 2 2
Q Q Q

2 22 2 2 2 2
Q Q Q D

E B 1 M E Q M E Q MF 1 p μ M E Q 2 1 M Mμ 2 1 M Mμ 2M E Q

1 M E Q F p 1 p μ 1 M μ σ F 1 p μ

� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � �

� �� � � � � � � � �� �
so that the expected value of the second term in (A18) equals 

� � � � � �� �22 2 2 2
D Q Q DE 3B F D 3Fμ 1 M μ σ F 1 p μ� �� � � � � �� �       

The expected value of B is just given by 

� � � � � �Q Q Q QE B 1 M μ Mμ Mμ 1 M μ� � � � � �  

so that the third term in (73) is equal to 

� � � � � �2 2 2 2 2 2 2
Q D DE 3BF D 3E B F E D 3 1 M F μ μ σ� � � �� � � �� � � �      

The last term’s expectation is simply 

,
3 3 3

3 DE F D F μ� � �� �            
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Tying all 3E Q� �� �  terms from (A18) together yields 

� � � � � � � �� �

� � � � � � � � � �           ,

33 3 2 2
Q Q

2 2 2 3 2 2 2 2 3
D Q Q D Q D D 3 D

E Q 1 M E Q 3 1 M MF 1 p μ MF 1 p 1 2p μ

3F 1 M μ μ σ 3F 1 p μ 3F 1 M μ μ σ F μ

� � � �� � � � � � � � �� � � �

� � � � � � � � �
 

Solving for 3E Q� �� �  and noting that Q Dμ μ p�  and � � � �/2 2 2 2 2
Q I Dσ σ σ p λ 1 1 M� � � �  results in  

� �
� � � � � � � � � �
� � � �� � ,

/
2 2 2 2 23

D D D I D D D23
3

3 2 3 3
D D 3 D

1 M3M 1 M μ M 1 p μ 1 M μ σ σ M μ σ1 p λ 1 1 ME Q
1 1 M 3M 1 p μ M 1 p 1 2p μ M μ

� 1�� �� � � � � � � � �2 2� �� �� � � � � �	 3� � � � 2 2� � � � � �
 4

 

Inserting this 
3E Q� �� �  expression into the � �3

IE I μ� ��� �  formula in (A17) finally yields 

� �
� �, Θ

3
3 3 2 2D

I 3 D D I D BI33 3 2 3

2

λ 1 1 M1 3μ 1 1 1E I μ μ λ μ λ 1 σ σ1M M M M 1 1 Mλ 1
M

� �� �� � � � � �� �� � � � � � � � � � � �� � � � � �+ ,� � � � � � � � � �� �� �
   

and with    

� � � � � � � � � �
� � � �� �   ,

Θ
/

2 2 2 2 2
BI D D D I D D D2

3 2 3
D D 3 D

1 M3M 1 M μ M 1 p μ 1 M μ σ σ M μ σ
λ 1 1 M

M 1 p 3μ 1 2p μ M μ

�� �� � � � � � � � � �� �� �� �
� � � � �

   

Inserting this result in the Iγ  formula (A13), we immediately arrive at the skewness expression (36) 

of Lemma 13. 

 B:  Iγ derivation for stochastically proportional yield under lead time λ 11  

Next to the skewness definition in (A13) this derivation relies on the Iμ , Qμ , 
2
Iσ , and 

2
Qσ  formulas 

given in (32), (12), (35), and (20). 

The derivation of � �3
IE I μ� ��� �  is the same as in (A17) for binomial yield so that after replacing the 

expected yield rate p by  we have 

 

� �

                       

,

3 2 33 3 2 2
I 3 D D D I D D3

2 2

3 3
Z 3

1 1 1λ 11 M M ME I μ μ μ λ 3μ σ 3μ σ1 1M λ 1 λ 1
M M

1μ λ 1 E Q
M

� � �
� �� �� � � � � � � �� �� � � � � � � �

� � � �� � �� � � �� �

 

(A19) 
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 For evaluating 
3E Q� �� �  we have to consider the order quantity formula 

� � � �t t 1 t λ t λ t 1Q 1 M Q M FZ Q FD� � � �� � � � � .  

Using for abbreviation  � � � �t 1 t λ t λB 1 M Q M FZ Q� � �� � � �  , we can formulate 

3 3 2 2 2 3 3
t t 1 t 1 t 1Q B 3B F D 3BF D F D� � �� � � � � .       (A20) 

We will evaluate the expectation of 
3
tQ  term by term. Thereby, we start with 

� � � � � �

� � � �� �
� �� �

           

           ,

3 23 3 2
Z Q

2 2 2 2 2
Z Z Z Q

3 2 2 2 2 3 3
Z Z Z 3 Z

E B 1 M E Q 3 1 M M Fμ μ E Q

3 1 M M 2MFμ F μ σ μ E Q

M 3M Fμ 3MF μ σ F μ E Q

� � � � � �� � � � � �� � � � � �

� �� � � � � �� �

� �� � � � � � �

      

Exploiting that ZFμ M� and doing some algebra eventually yields 

� �� �
� � � �           

,
3 2 2 3 3

Z 3 Z

2 2 3 2
Z Q Q Q

E B 1 3M 1 M 3MF σ F μ E Q

3 1 M F σ μ μ σ
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� � �
      

For the expectation of 
2B  we find 

� � � �� � � �� �
� �� �� �           

22 2 2 2 2 2 2 2
Z Q Z Z Z

2 2 2 2 2
Z Q Q

E B 1 M E Q 2 1 M M Fμ μ M 2MFμ F μ σ E Q

1 M F σ μ σ
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� � � �
 

so that the expected value of the second term in (A20) equals 

� �� �� �22 2 2 2 2
D Z Q QE 3B F D 3Fμ 1 M F σ μ σ� �� � � � �� � .       

The expected value of B is just given by 

� � � � � � � �Q Z Q QE B 1 M μ M Fμ μ 1 M μ� � � � � �  

so that the third term in (A20) is equal to 

� � � � � �2 2 2 2 2 2 2
Q D DE 3BF D 3E B F E D 3 1 M μ F μ σ� � � �� � � �� � � � .     

The last term’s expectation is simply 

,
3 3 3

3 DE F D F μ� � �� � .           

Tying all 
3E Q� �� �  terms according to (A20) together yields 
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� �� � � � � �
� �� �� � � � � �           

,

,

3 2 2 3 3 2 2 3 2
Z 3 Z Z Q Q Q

2 2 2 2 2 2 2 2 3
D Z Q Q Q D D 3 D

E Q 1 3M 1 M 3MF σ F μ E Q 3 1 M F σ μ μ σ

3Fμ 1 M F σ μ σ 3 1 M μ F μ σ F μ

� � � �� � � � � � � � �� � � �

� � � � � � � �
 

Solving for 3E Q� �� �  and noting that Q D Zμ μ μ�  and � �2 2 2 2 2 2
Q Q D Z Q Zμ σ μ μ σ μ� � �  results in  

� �

� � � �
� �� �� �
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,

,

2 2 3 2 2
Z D D Z Q

3
23 2 2 2 2 2Z

D Z Z D Z Q2 2 3
Z 3 Z

2 2 2 2 3 3
D Z D D Z 3 D

3 1 M F σ μ μ μ σ
1 μE Q 3μ μ F 1 M F σ μ μ σ

3M 1 M 3MF σ F μ
3 1 M μ μ F μ σ μ F μ

� 1� � �
2 22 2� � � � � � � � �	 3� � � � � 2 2
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 4

 

This expression can be exploited further by using Zμ F M� , 
2 2 2 2

Z ZF σ M ρ�  and 

� � � �/2 2 2 2 2
Z Q I Dμ σ σ σ λ 1 1 M� � � �  so that we get 

� �
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� �� �

,
,

/

2 2
2 2 2 2 I D3

Z D 23 3Z
D 3 D3 2 3

Z 3 Z 2 2 2
D D

σ σM 1 M M ρ μ1 μ λ 1 1 ME Q 3μ M μ
3M 1 M 3M ρ F μ

M 1 M μ σ

� 1� �� ��
� � � �2 2+ ,� �2 2� �� � � � �� �	 3+ ,� � � � � 2 2+ ,� � �2 2� �
 4

  

Inserting this in the � �3
IE I μ� ��� �  formula in (A19) finally yields 

� �

� �
                       

,

,

Θ

3 3 2 2D
I 3 D D I D3 3 2 3

2

3

SP3 2 3
Z 3 Z

1 3μ 1 1 1E I μ μ μ λ λ 1 σ σ1M M M Mλ 1
M

1λ 1
M

3M 1 M 3M ρ F μ
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� �
� �

� � �

    

and with   � �� � � �� � ,Θ
/

2 2
2 2 2 2 2 2 2 3I D

SP D Z D D D 3 D2

σ σ3μ M 1 M M ρ μ M 1 M μ σ M μ
λ 1 1 M

� �� ��
� � � � � � � �+ ,� �� �� �� �

   

Inserting this result in the Iγ  formula (A13), we immediately arrive at the skewness expression of 

Lemma 13. 
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