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Abstract

We extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and two-dimensional 

loading problem, called PDP with two-dimensional loading constraints (2L-PDP). A set of routes of minimum 

total length has to be determined such that each request is transported from a loading site to the corresponding 

unloading site. Each request consists of a given set of 2D rectangular items with a certain weight. The vehicles 

have a weight capacity and a rectangular two-dimensional loading area. All loading and unloading operations 

must be done exclusively by movements parallel to the longitudinal axis of the loading area of a vehicle and 

without moving items of other requests. Furthermore, each item must not be moved after loading and before 

unloading.

The problem is of interest for the transport of rectangular-shaped items that cannot be stacked one on top of 

the other because of their weight, fragility or large dimensions. The 2L-PDP also generalizes the well-known 

Capacitated Vehicle Routing Problem with Two-dimensional Loading Constraints (2L-CVRP), in which the 

demand of each customer is to be transported from the depot to the customer’s unloading site.

This paper proposes two hybrid algorithms for solving the 2L-PDP and each one consists of a routing and a 

packing procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood 

search for the one-dimensional PDP and the packing procedure uses six different constructive heuristics for 

packing the items. Computational experiments were carried out using 60 newly proposed 2L-PDP benchmark 

instances with up to 150 requests.

Key words: Transportation, vehicle routing, packing, pickup and delivery.

1 Introduction

Vehicle routing problems widely arise in transportation logistics if companies are interested in op-

timizing their routes. Therefore problems like the classical capacitated vehicle routing problem 

(CVRP) and the classical pickup and delivery problem (PDP) have been investigated in the literature 

for many years. However the classical modeling does not consider constraints occurring in real world 

settings regarding the feasibility of the loading. To ensure that calculated routes can actually be im-

plemented, a two-dimensional (2D) or three-dimensional (3D) modeling of cargo and loading spaces is 

indispensable in many situations. Therefore in the last ten years a good deal of research has been done 

on integrated routing problems with 2D or 3D loading constraints. Several packing constraints, e.g. 

concerning stacking of goods, can only be considered if customer demands are viewed as sets of 3D 

items. At the same time, often any reloading effort should be avoided that is any temporary or perma-

nent repositioning or rotation of items after loading and before unloading. There are different practical 
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reasons to forbid reloading of goods during a pickup and delivery route. Absence of manpower, tight 

working time, lack of equipment and shortage of space at customer sites are some of them. Moreover, 

the goods might be fragile, extra heavy or even hazardous. A 2D modeling instead of a 3D modeling is 

sufficient if the goods to be transported can be considered as rectangular items that cannot be stacked 

due to their weight, dimensions or fragility. Such issues arise in industries where large-sized items 

have to be transported, e.g. furniture, mechanical components and household appliances.

In the following, we consider the pickup and delivery problem with two-dimensional loading con-

straints (2L-PDP). As in the classical PDP, a number of requests have to be transported from a pickup 

point to a delivery point by means of homogeneous vehicles. However, in the 2L-PDP the demands 

consist of sets of 2D items to be placed on 2D loading areas of the vehicles. All vehicles are assumed 

as rear-loaded, i.e. the goods are loaded and unloaded at the rear exclusively by movements in length 

direction of the vehicle, while moving them in width direction is not permitted in the loading or un-

loading operation. Moreover, we assume that any reloading of items after loading and before unload-

ing is not allowed.

Two hybrid algorithms for solving the 2L-PDP are proposed that consist of a routing and a packing

procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood 

search for the one-dimensional PDP and the packing procedure uses six different constructive 

heuristics for packing the items. Computational experiments are carried out using 60 newly proposed 

2L-PDP benchmark instances with up to 150 requests.

The rest of the paper is organized as follows: In Section 2, the relevant literature is reviewed, and 

the problem is formulated in Section 3. Two solution approaches are described in Section 4. 

Computational experiments are reported in Section 5. Conclusions are drawn and an outlook to further 

research is given in Section 6.

2 Related work

Up to now the 2L-PDP was only considered by Malapert et al. (2008). They proposed a constraint 

programming approach for the loading aspects of the problem but did not report any numerical results. 

Therefore, we will focus on recent papers on the classical PDP with paired pickup and delivery points 

and on VRPs with 2D and 3D loading constraints. We refer the reader to Toth and Vigo (2014) for a 

comprehensive survey on vehicle routing. Although this paper only covers two-dimensional loading 

constraints, we want to consider papers on vehicle routing problems with 3D loading constraints in the 

literature review, too. Recent surveys of integrated vehicle routing problems with 2D and 3D loading 

constraints were published by Iori and Martello (2010, 2013) and Pollaris et al. (2015).

Following the classification schema by Parragh et al. (2008), the classical PDP is characterized by 

paired pickup and delivery points, i.e. each request is associated with a special pickup and a special 

delivery point. Moreover, the PDP deals with the transportation of goods and persons. In case of pas-

senger transportation, there are often special constraints and objectives concerning the inconvenience 
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of passengers. This problem category is known as dial-a-ride problems. A further distinction can be 

made with regard to the number of available vehicles. We will consider only the multi-vehicle case, 

while the single-vehicle case, representing an immediate extension of the Traveling Salesman Problem 

(TSP), is not considered here. Furthermore, several papers deal with PDPs with multiple depots or 

a heterogeneous fleet where a certain request can only be served with a subset of the available vehicles

(see below).

The problem formulation for the classical PDP and the PDP with time windows (PDPTW) can be 

found, e.g. in Parragh et al. (2008) and in Toth and Vigo (2014). Most of the published solution 

methods are surveyed by Berbeglia et al. (2007) and Parragh et al. (2008). As the PDP generalizes the 

TSP it is NP-hard. Thus most papers have proposed heuristics and especially metaheuristics for solv-

ing the PDP. For an introduction in metaheuristic approaches, we refer the reader to Gendreau and 

Potvin (2010).

The classical PDP with time windows and multiple vehicles was first solved by Nanry and Barnes 

(2000) with a reactive tabu search approach. Mostly the minimization of the number of needed vehi-

cles is used as first optimization criterion while the minimization of the total travel distance is the sec-

ond criterion. A tabu embedded simulated annealing approach has been developed by Li and Lim 

(2001). These authors also have introduced the widely used Li-and-Lim set of benchmark instances for 

the PDPTW. Pankratz (2005) proposed a grouping genetic algorithm for the PDP while Lu and Des-

souky (2006) have developed an ingenious construction heuristic. Ropke and Pisinger (2006) present-

ed an adaptive large neighborhood search algorithm for the PDPTW which covers also multiple depots 

and heterogeneous fleets. A two-stage hybrid algorithm was presented by Bent and van Hentenryck

(2006). The first phase uses simulated annealing to decrease the number of vehicles needed. The sec-

ond phase consists of a large neighborhood search algorithm in order to reduce total travel cost.

Nagata and Kobayashi (2010) introduced a very effective guided ejection search algorithm to reduce 

the number of vehicles needed. The minimization of the total travel distance was not considered in 

their approach. Outstanding results, especially for larger instances, were achieved through the neigh-

borhood search methods by Bent and van Hentenryck (2006), by Ropke and Pisinger (2006) and by

Nagata and Kobayashi (2010).

In the capacitated vehicle routing problem with 2D loading constraints (2L-CVRP) the requests 

consist of 2D rectangular items to be transported. The vehicles have a rectangular loading area where 

the items must be placed without overlapping. Furthermore, some additional constraints like LIFO

constraint (Last In, First Out) and orientation constraint (see Section 3) are to be taken into account.

Several metaheuristic methods for solving the 2L-CVRP were published, e.g. by Gendreau et al. 

(2008), Fuellerer et al. (2009), Zachariadis et al. (2009), Duhamel et al. (2011) and Wei et al. (2015).

Iori et al. (2007) proposed an exact solution approach for the 2L-CVRP. Extensions of the 2L-CVRP 

were also considered in the literature, e.g. the 2L-VRP with time windows (Khebbache-Hadji et al., 

2013), the 2L-VRP with heterogeneous fleet (Leung et al., 2013), the 2L-VRP with backhauls 
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(Dominguez et al., 2016) and the 2L-VRP with simultaneous pickup and delivery (Zachariadis et al., 

2016).

In vehicle routing problems with three dimensional loading constraints, the items are stackable 3D 

rectangular boxes which must be placed inside the 3D loading space of a vehicle. Additional con-

straints are to observe in the 3D case, e.g. the stacking constraint (non-fragile boxes must not be 

placed above fragile boxes) and the support constraint (at least a given percentage of the base area of a

box must be supported by other boxes if the box is not placed on the floor of a loading space). The 

3L-CVRP was introduced and first solved by Gendreau et al. (2006). Further papers on 3L-CVRP 

were published, for example, by Tarantilis et al. (2009), Fuellerer et al. (2010), Wang et al. (2010),

Wisniewski et al. (2011), Bortfeldt (2012), Zhu et al. (2012), Ruan et al. (2013), Wei et al. (2014),

Zhang et al. (2015) and Tao and Wang (2015). Moura and Oliveira (2009) have first introduced and 

solved the VRP with time windows and 3D loading constraints (3L-VRPTW). A hybrid algorithm for 

solving the 3L-VRPTW was published by Bortfeldt and Homberger (2013). Zachariadis et al. (2012) 

consider a 3L-VRP with time windows where boxes are stacked on pallets, which in turn are loaded in 

vehicles. The 3L-VRP with backhauls was introduced by Bortfeldt et al. (2015). The problem was

solved with an algorithm including a neighbourhood search algorithm for routing and a tree search 

algorithm for packing boxes. The 3L-VRP with pickup and delivery was solved with a similar algo-

rithm by Männel and Bortfeldt (2016, 2017). The 3L-VRP with pickup and deliveries was already 

considered by Bartók and Imreh (2011) in a simpler fashion. These authors neglected the LIFO con-

straint and did not provide any numerical results.

3 Problem definition

Now the 2L-PDP is described more formally. There are given n requests each consisting of a 

pickup point i, a delivery point n+i and a set Ii of goods that are to be transported from i to n+i (i =

1,…,n). There are vmax identical vehicles, originally located at the single depot (denoted by 0), with a 

rectangular loading area with length L and width W and maximum weight capacity D. Let V = 

{0,1,…,n,n+1,…,2n} be the set of all nodes, i.e. pickup and delivery points including the depot. Let E

be a set of undirected edges (i,j) that connect all node pairs (0 � i, j ���n, i ��j) and let G = (V, E) be 

the resulting graph. Let travel costs cij (cij � 0) be assigned to each edge (i,j) and let the travel costs be 

symmetric, i.e. cij = cji (0 � i, j ���n, i ��j). The sets Ii include mi rectangular items Iik and item Iik has 

the length lik and the width wik (i = 1,…,n, k = 1,…,mi). m is the sum �mi (i = 1,…,n) and denotes the 

total number of items.

The loading area of each vehicle is embedded in the first quadrant of a Cartesian coordinate sys-

tem in such a way that the length and width of the loading area lie parallel to the x and y axis, respec-

tively. The placement of item Iik in a loading area is given by the coordinates xik and yik of the corner of 

the item closest to the origin of the coordinate system; in addition, a binary variable oik indicates which 

of the possible orientations of item Iik is selected (i = 1,...,n, k = 1,...,mi). oik=0 means that the item is 
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placed with its length parallel to the x-axis, while oik=1 indicates that the item is rotated by 90° and its 

length is parallel to the y-axis.

A packing plan P for a loading area comprises one or more placements and is regarded as feasible 

if the following conditions hold:

(FP1) each placed item lies completely within the loading area,

(FP2) any two items that are placed on the same truck loading area do not overlap,

(FP3) each placed items lies with its edges parallel to the edges of the loading area.

Figure 1 shows a loading area with placed items. Each vehicle is loaded and unloaded at the rear and 

empty at the beginning of a route.

A feasible route R is a sequence of 2p+2 nodes (p ���	�that starts and ends at the depot. R should 

include the pickup and delivery points of p different (among the n given) requests and each pickup 

point must precede the delivery point of the same request. A solution of the 2L-PDP is a set of v

sequences (Rl, Pl,1,…,Pl,2pl), where Rl is a route and Pl,q is a packing plan (l = 1,…,v, q = 1,…,2pl, pl

denotes the number of requests of route l). Pl,q represents the packing plan of route l after having visit-

ed its (q+1)th node, i.e. after some items were loaded or unloaded at the (q+1)th node of route l.

x
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   Figure 1: A loading area with placed items.

To be feasible, a solution must fulfill the following six conditions: 

(F1) each route Rl starts and ends at the depot and contains at least one pickup and one delivery point 

(l = 1,…,v),

(F2) each pickup point and each delivery point must occur exactly once in exactly one route,

(F3) the pickup point and the delivery point of each request lie in the same route,

(F4) each the pickup point occurs in its route before the corresponding delivery point,
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(F5) all packing plans Pl,q are feasible (l = 1,…,v, q = 1,…,2pl), i.e. fulfill conditions (FP1) – (FP3),

(F6) the packing plan Pl,q for a route Rl and its (q+1)th node contains exactly the placements for those 

items which are to be loaded but not (yet) to be unloaded at the first q+1 nodes of the route.

In addition, the following routing and packing constraints are to be satisfied:

(C1) LIFO constraint for pickup points: A packed item i of a certain request is said to be in unloading 

position if there is no packed item i’ of another request placed between i and the rear of the vehi-

cle. If the (q+1)th node of route l is a pickup point, then all items to be loaded there must be in 

unloading position in the packing plan Pl,q, i.e. after loading (l = 1,…,v, q = 1,…,2pl). 

(C2) LIFO constraint for delivery points: If the (q+1)th node is a delivery point, then all items to be 

unloaded there must be in unloading position in the packing plan Pl,q-1, i.e. before unloading (l = 

1,…,v, q = 1,…,2pl). Both LIFO constraints ensure that all items of a given request can be loaded 

or unloaded exclusively by movements parallel to the longitudinal axis of the loading area of a 

vehicle and without moving items of other requests. 

(C3) Reloading ban: Each item Iik of request i must not be moved after loading and before unloading

(i = 1,…,n, k = 1,...,mi). If the item Iik is loaded at the (q+1)th node and unloaded at the (q’+1)th

node of route l, its placement (xik, yik,, oik) must be the same in the packing plans Pl,q, Pl,q+1,…,

Pl,q’-1 (i = 1,…,n, k = 1,...,mi, l =1,…,v, 1 � q < q’ ��2pl).

(C4) Weight constraint: Each item Iik has a positive weight dik (i = 1,...,n, k = 1,...,mi) and the total 

weight of all items in a packing plan Pl,q must not exceed a maximum weight capacity D (l =

1,...,v, q = 1,…,2pl).

(C5) Route length constraint: The total distance of a route must not exceed a specified maximum dmax.

This constraint can also be understood as a route duration constraint if the vehicle velocity is set 

to a constant. 

(C6) Route number constraint: The number of routes v must not exceed the number of vehicles vmax.

Finally, the 2L-PDP consists of determining a feasible solution that meets the constraints (C1) –

(C6) and minimizes the total travel distance of all routes.

The LIFO constraint for delivery points (C2) is well-known from the 2L-CVRP. At a delivery 

point, the LIFO constraint requires that between an item A to be unloaded and the rear of the vehicle 

no item B is situated that needs to be unloaded later. Otherwise item B has to be reloaded before item

A can be unloaded by a pure movement in length direction. In Figure 1, the item I31 is in unloading 

position while the items I11 and I21 are not in unloading position because of the blocking item I31. Both 

items I41 and I42 are in unloading position because they belong to the same request.

As also pickup points occur in a pickup and delivery route, a LIFO constraint to exclude reloading 

of goods at pickup points (C1) has to be included. At a pickup point the constraint (C1) requires that 

between the position of an item A just loaded and the rear of the vehicle no item B is situated that was 

loaded at an earlier pickup point. Again, otherwise a reloading of item B would be inevitable.

It is an essential feature of 2L-PDP that the LIFO constraints for delivery and pickup points are not 
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sufficient to rule out any reloading effort. Furthermore, the reloading ban constraint (C3) has to be 

required to rule out any reloading effort. Figure 2 shows a simple example of a route and with three 

requests and one item per request. There exist feasible packings plans for both nodes P2 (items of re-

quest 1 and 2 loaded) and P3 (items of request 1 and 3 loaded). The packing plans fulfill both LIFO

constraints (C1) and (C2), but the reloading ban (C3) is violated because box I11 is rotated in the sec-

ond packing plan. In the example it is obviously impossible to implement the shown route without 

reloading box I11. Hence the LIFO constraints (C1) and (C2) alone are not sufficient to rule out any 

reloading effort and the reloading ban constraint (C3) turns out to be necessary.

Pickup and delivery route:   0 � P1 � P2 � D2 � P3 � D3 � D1 � 0

I11

Legend:   0: Depot, Pi: pickup point of request i, Dj: delivery point of request j

Transported Items:
Request 1 Request 2 Request 3

I21
I31

I 11

I 21

I11
I 31

Driver‘s
Cabin

Driver‘s
Cabin

Possible packing plans for P2:                             for P3:

Figure 2: Packing plans with reloading for a pickup-delivery-route.

Moreover in this paper a second variant of the 2L-PDP is considered where the so-called orienta-

tion constraint (C7) is added: each placed item must lie on the loading area with its length edge paral-

lel to the x-axis of the coordinate system (no rotation allowed). The original variant without the con-

straint (C7) is called in the following “Rotate” variant while the second variant is called “NoRotate”

variant. In the NoRotate variant all orientation variables oik must be equal to zero in a feasible solution.

4 Two solution approaches

In this section, two solution approaches for solving the 2L-PDP are proposed. Each solution 

approach is a hybrid algorithm and consists of two nested procedures. The outer procedure is the 

routing procedure, and the packing procedure is the inner procedure. The routing procedure is basical-

ly the same for both approaches and is designed as large neighborhood search. The two approaches 

differ in the manner how packing checks are made and how the reloading ban constraint (C3) is taken 

into account.

In the first approach, the reloading ban is ensured by the routing procedure as the solution space is 
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restricted by an additional routing constraint, the so-called independent partial route (IPR) condition. 

With this approach, called “Independent Partial Routes” (or IPR), it is possible to use conventional

packing heuristic for packing checks. In this paper, six well-known constructive packing heuristics for 

the two dimensional container loading problem are integrated in a packing procedure in order to check 

whether a certain set of items can be packed on the loading area or not. These packing heuristics are 

widely used in the literature on the 2L-CVRP (see Gendreau et al., 2008, and Zachariades et al., 2009).

In the second approach (“Simultaneous Packing”) the reloading ban constraint is observed by a 

new type of packing procedure which is able to construct a series of interrelated packing plans (see 

below). So the IPR condition is not needed in the second approach and this leads to a large extension 

of the explored solution space. Therefore, a noticeable improvement of the solution quality is expected 

with the Simultaneous Packing approach. However, with the larger solution space to be explored, a 

rising CPU-time consumption is expected, too. The main properties of both solution approaches are 

outlined in Table 1.

Table 1: Main properties of the two solution approaches.

Property 
Approach 1 

Independent Partial Routes 

Approach 2 

Simultaneous Packing 

Reloading ban constraint (C3) observed by Routing procedure Packing procedure 

Expected total travel distance Higher Lower 

Expected CPU-power consumption Lower Higher 

This section is organized as follows. In subsection one, the routing procedure is outlined. The sec-

ond subsection presents the IPR solution approach where the 2L-PDP is solved using a straightforward

packing procedure for the two-dimensional container loading problem. The implementation of the 

packing procedure itself is explained in subsection three. Finally, the subsection four presents the 

novell simultaneous packing procedure and its integration into the routing procedure.

4.1 Routing procedure

The routing procedure is derived from the (adaptive) large neighborhood search (LNS) heuristic 

for solving the PDP with time windows by Ropke and Pisinger (2006). In this paper a similar imple-

mentation of the routing procedure is used like in Männel and Bortfeldt (2016) before, thus the routing 

procedure is described in this paper only in a short fashion.

The LNS heuristics uses the „fix and optimize“-principle to construct new solutions and the neigh-

borhood structure is defined implicitly by several removal and insert operators (heuristics). To get a 

new solution, first a removal operator destroys a part of the current solution, which means that some 

requests will be removed from their routes. Subsequently, an insert operator reinserts the removed 

requests at certain positions of certain routes to get a new feasible solution. The routing procedure is 

shown in Algorithm 1. After constructing the initial solution an iterative neighborhood search is car-
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ried out until a given time limit is exceeded. The number � of requests to be removed and reinserted in 

the solution is selected randomly within each iteration. Among the four available removal and the 

three available insert heuristics, one removal and one insert heuristic are selected randomly per itera-

tion. The next solution is generated by the selected heuristics according to snext := Ih(Rh(scurr, �)). If snext

passes the acceptance test, it becomes the new current solution scurr, and the best solution sbest is updat-

ed if snext realizes a better objective function value. Otherwise, the initial solution of the next iteration 

scurr remains unchanged. For the acceptance tests, the well-known simulated annealing rule with a 

geometric cooling scheme is used. The selection probabilities for the removal and insertion heuristics 

are fix. In the following Table 2, the available heuristics are shown.

2l_pdp_lns (in: problem data, parameters, out: best solution sbest) 

construct initial solution scurr and set sbest := scurr 

while  stopping criterion is not met  do  

  select number of requests to be removed � 

  select removal heuristic Rh and insertion heuristic Ih 

  determine next solution: snext := Ih(Rh(scurr, �)) 

  check acceptance of snext 

  if  snext is accepted  then  

   scurr := snext 

   if  f(scurr) < f(sbest)  then  sbest := scurr  

 return  sbest

Algorithm 1: LNS-based routing algorithm for the 2L-PDP.

Table 2: Removal and insertion heuristics of the LNS heuristic for 2L-PDP.

Heuristic Description 

Random removal RhR Removes iteratively requests that are selected at random. 

Shaw removal RhS Removes iteratively requests that are related in terms of location and weight. 

Worst removal RhW Removes iteratively a request whose removal leads to the largest cost (total travel distance)  

reduction. 

Tour removal RhT Removes all requests from a randomly chosen route. If less than � requests are removed  

in this way, further requests will be removed with Shaw removal. 

Greedy insertion IhG Inserts iteratively requests into the solution such that the increase of the cost function is minimal.  

Regret-2 insertion IhR2 Inserts iteratively requests into the solution such that the gap in the cost function between  

inserting the request into its best and its second best route is maximal. 

Regret-3 insertion IhR3 Inserts iteratively requests into the solution such that the sum of two gaps in the cost function is 

maximal. The first gap results from inserting the request into its best and its second best route, 

while the second gap results from inserting the request into its best and its third best route. 

4.2 IPR solution approach

In the IPR solutions approach, we want to use a conventional packing procedure for the two di-

mensional container loading problem to solve to the 2L-PDP. For an arbitrarily chosen route, the pack-
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ing procedure has to deliver feasible packing plans for each node in the route. Each packing plan must 

contain exactly the items loaded on the vehicle when it is leaving the corresponding node and, fur-

thermore, fulfill the conditions (FP1) – (FP3) and the packing related constraints (C1) – (C3) and (C7) 

(if necessary). In the IPR solution approach, we want to keep the packing effort low by adding a fur-

ther routing constraint. This IPR constraint allows us to not to do packing checks for all nodes of a 

route but to restrict the packing checks to a few selected nodes within the route only. The packing plan 

for the other nodes can be derived from the packing plans for the selected nodes.

Definition 1: For a given node x in a 2L-PDP route, the corresponding request sequence rs(x) is 

defined as follows. rs(x) contains exactly the requests which are loaded and not yet unloaded when the 

vehicle is leaves the node x. The order of the requests in rs(x) is given by the order of the correspond-

ing pickup nodes within the route.

Example 1: Considering the route 0 � �1 � �2 � �1 � �3 � �4 � �3 � �2 � �4 � 0, the 

corresponding request sequences of the nodes P4 and D3 are (2, 3, 4) and (2, 4), respectively. 

Definition 2:

(i) We consider a sequence (i1,...,is,is+1,...,i2s) of 2s nodes (s > 0). This sequence is called “IPR block”, 

if its first s elements are pickup points and its last s elements are the corresponding delivery points 

and if, furthermore, the delivery points lie in inverse order of their corresponding pickup points. 

More formally, it should hold the following three conditions:

� ip ��iq for each p, q � (1,...,s) with p ��q

� 1 � ip ���� for each p � (1,...,s)

� i2s-p+1 = ip + n for each p � (1,...,s)

(ii) A 2L-PDP route is called “IPR route” if it consists of one or more IPR blocks (plus the depot at 

the beginning and the end of the route).

(iii) We say that a solution of the 2L-PDP fulfills the IPR constraint if all contained routes are IPR 

routes.

Obviously a 2L-PDP route is an IPR route if and only if the two following conditions hold:

(1) if the vehicle visits a delivery point, then all delivery points for all items on the loading area will 

be visited before another pickup take place and

(2) all delivery points lie in inverse order of their corresponding pickup points, i.e. if i and j are two 

arbitrarily chosen requests from the route and Pi lies before Pj, then Di must lie behind Dj in the 

route.



11

Example 2: The route 0 � �1 � �2 � �2 � �3 � �3 � �1 � 0 is not an IPR route because 

the vehicle does not become empty after visiting delivery point D2 and before visiting pickup point 

P3. The route 0 � �3 � �4 � �5 � �4 � �5 � �3 � 0 is not an IPR route because the delivery 

points D4 and D5 do not lie in inverse order of their corresponding pickup points. The route 

0 � �1 � �2 � �2 � �1 � �3 � �4 � �5 � �5 � �4 � �3 � �6 � �6 � 0 is an IPR route 

consisting of three IPR blocks. The pickup points P2, P5 and P6 are called “last pickup” points be-

cause they are the last in the row of consecutive pickup points and are followed by a delivery point. 

Obviously, each IPR block contains exactly one last pickup point.

Definition 3: We consider an arbitrarily chosen pickup node from a 2L-PDP route with the corre-

sponding request sequence rs = (i1,...,is) (s > 0, 1 � ip ��� for each p � (1,...,s)). We say that a packing 

plan for the request sequence rs fulfills the cumulative LIFO constraint (CLC) if for each p and q with 

1 ����������	 no item of request ip lies between an item of iq and the rear of the vehicle, i.e. if no load-

ing operation of an later loaded item of iq is blocked by an earlier loaded item of ip.

Proposition 1: Let be given an IPR route consisting of one or more IPR blocks and let exist pack-

ing plans observing conditions (FP1) – (FP3), (C7) (if necessary) and (CLC) for the request sequence 

of each last pickup point of each IPR block. Then feasible packing plans in terms of 2L-PDP exist for 

all nodes in the route which fulfill:

(i) for pickup points the conditions (FP1) – (FP3), the orientation constraint (C7) (if necessary) and 

the LIFO constraint for pickup points (C1),

(ii) for delivery points the conditions (FP1) – (FP3), the orientation constraint (C7) (if necessary) and 

the LIFO constraint for delivery points (C2) and

(iii) observe (collectively) the reloading ban constraint (C3).

Proof:

(i) In the following, the given packing plans for the last pickup points will be called “master plans”. 

Each master plan contains placements for all requests belonging to its corresponding IPR block.

Thus for each pickup node in the route, a packing plan can be derived by simply removing place-

ments for items not yet loaded from the corresponding master plan. Obviously, the derived plans 

will contain the correct items and fulfill the conditions (FP1) – (FP3) together with constraint (C7) 

(if necessary). Because the cumulative LIFO constraint (CLC) is stronger than the LIFO con-

straint for pickup points (C1) all derived plans fulfill also the constraint (C1) too.

(ii) As in the proof of (i) for each delivery node, a packing plan can derived by simply removing 

placements for items already unloaded from the corresponding master plan. Obviously, these de-

rived plans again will contain the correct items and fulfill the conditions (FP1) – (FP3) together 

with constraint (C7) (if necessary). Finally we want to prove the LIFO constraint for delivery 
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points (C2) indirectly and assume that (C2) would not hold. In this case would exist requests A

and B belonging to the same IPR block such that delivery point DA would lie before DB in the 

route and an the unloading operation of an item a of request A would be blocked by an item b of 

request B. Because of the structure of the IPR blocks, the pickup point PA would lie behind the 

pickup point PB, i.e. both items a and b would be also contained in the packing plan of PA. Since 

all packing plans for nodes of the same IPR block are derived from one master plan, the items a

and b would hold the same positions in all plans. Hence the item b would block the loading opera-

tion of item a at pickup point PA, which would lead to a violation of constraint (C1).

(iii) If an IPR route is given, each item must only be stowed in packing plans of one IPR block. As 

shown in (i) and (ii), all packing plans for the other pickup and delivery points of an IPR block 

will be derived from the packing plan for the last pickup point by simply removing items. Hence, 

the positions of all items that occur in multiple packing plans remain unchanged. 


The outcome of Proposition 1 is, that in case of IPR routes, the cumulative LIFO constraint 

(CLC) is sufficient that constraints (C1) – (C3) hold. Furthermore, we show in the following Proposi-

tion 2 that constraints (C1) and (C3) are sufficient for the (CLC) constraint to hold, i.e. in case of IPR 

routes (CLC) and (C1) – (C3) are equivalent. So the inclusion of the (CLC) constraint neither restricts

the search space additionally, nor leads to a loss of solution quality in case of the IPR solution ap-

proach.

Proposition 2: Let be given a 2L-PDP route and let packing plans exist for all pickup points in the 

route. Let all these plans fulfill the LIFO constraint for delivery points (C1) and the reloading ban 

constraint (C3). Then all these packing plans also fulfill the cumulative LIFO constraint (CLC).

Proof: We assume that the (CLC) constraint would not hold. Then would exist requests A, B and C

(with pickup point PA lying before PB and PB before PC) and items a (of A) and b (of B) such that item 

a would lie between item b and the rear of the vehicle in the packing plan for pickup point PC. Because 

of the reloading ban constraint (C3), these items would hold the same placements in the packing plan 

for the earlier pickup point PB too, i.e. in this packing plan item a would also lie between item b and 

the rear of the vehicle. Thus the LIFO constraint for pickup points (C1) would be violated at pickup 

point PB. 


Finally, in this section, it is to discuss how the packing procedure will be integrated into the rout-

ing procedure. In general, the LNS heuristic removes some requests (i.e. pairs of a pickup and a deliv-

ery point) of the route and reinserts some new requests. In case of the 2L-PDP, it is impossible that a

route loses their “packability” by removing requests from the route. Thus, packing checks are integrat-

ed in insertion heuristics exclusively (and not in removal heuristics). The integration of the packing 
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procedure into the insertions heuristics takes place according to two principles. First, one-dimensional 

checks are made before 2D packing checks are carried out. Second, all possible insertions are first 

evaluated and sorted by cost before the "expensive" packing checks are made. By this technique, 

called "evaluating first, packing second", the packing effort is kept low since the packing checks can 

be aborted each time after a few (2D-)feasible insertions have been detected. The packing checks are 

made “on demand”, i.e. the packing check for a certain insert possibility is not made until all other 

insertion possibilities for the same request and the same route with lower insertion costs have been 

checked in terms of packing. Whenever for a certain pair of request and route a packable insertion 

possibility is found, then all other insertions possibilities for this pair of request and route with higher 

insertion costs can be neglected from further packing checks. In this context, “packable insertion pos-

sibility” means that the route which would result from the implementation of the insert possibility is 

feasible in terms of packing. For more details about the integration of the packing checks into the in-

sertion heuristics, the reader is referred to Männel and Bortfeldt (2016).

4.3 Packing procedure for IPR solution approach

In the last section, it was shown that in case of restriction to IPR routes a conventional packing 

procedure is sufficient to ensure the existence of feasible packing plans for the 2L-PDP. The packing 

procedure must be applied only to the corresponding request sequences of the last pickup points of the 

routes. It has to deliver packing plans which fulfill the conditions (FP1) – (FP3), the constraint (C7) (if 

necessary) and the cumulative LIFO constraint (CLC). As described before, then it is ensured that 

packing plans for all nodes satisfying the constraints (C1) – (C3) can be derived.

In this section, the packing procedure packing_check_rs is introduced and it is described how the 

procedure performs the packing check for a certain request sequence rs = (i1,…,is). The procedure is 

similar to Zachariades et al. 2009. The packing procedure uses six constructive heuristics H1 – H6 and 

five orderings Ord1 – Ord5 for the items shown in Table 3 and 4, respectively. To observe the cumula-

tive LIFO constraint (CLC), the items are ordered corresponding to the position of their request in the 

request sequence as primary criterion. The packing procedure is shown in Algorithm 2.

    Table 3: Heuristics used in the packing procedure.

Heuristic Description Main idea for choosing the item and the allocation point 

H1 Bottom-Left Fill (Chazelle 1983) Minimize the allocation points x-coordinate first and y-coordinate second 

H2 Left-Bottom Fill (Chazelle 1983) Minimize the allocation points y-coordinate first and x-coordinate second 

H3 Touching Perimeter (Lodi et al. 1999) 
Maximize the sum of the items common edges with other items and the 

loading area edges 

H4 Touching Perimeter No Walls (Lodi et al. 1999) Maximize the sum of the items common edges with other items 

H5 Min Area heuristic (Zachariadis et al. 2009) Minimize the size of the allocation points corresponding rectangular surface 

H6 
LBFH (Lowest Reference Line Best Fit heuristic) 

(Leung et al. 2011) 

Uses predictive strategy with changing the placing order of items, the best 

fitting item for the lowest rectangular space will be chosen 
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    Table 4: Characteristics of the orderings used in the packing procedure.

Ordering First criterion Second criterion Third criterion 

Ord1 position of request in rs area l*w (descending) longer side max(l,w) (descending) 

Ord2 position of request in rs width w (descending)  length l (descending) 

Ord3 position of request in rs length l (descending) width w (descending) 

Ord4 position of request in rs ratio of longer to shorter side max(l,w) / min(l,w) (descending) area l*w (descending) 

Ord5 position of request in rs ratio of longer to shorter side max(l,w) / min(l,w) (ascending) area l*w (descending) 

 

packing_check_rs (in: request sequence rs, out: boolean result) 

if  cache.contains(rs)  then      // if rs was already checked => take result from cache 

return  cache.get-result(rs) 

for  u := 1 to 5  do  

 is := build-item-sequence(rs, Ordu)   // build item sequence for rs using ordering Ordu 

for  v := 1 to 6  do  

   if  heuristic Hv can pack item sequence is  then 

       cache.set-result(rs, true)   // save positive result for rs in cache and return 

     return true    

 cache.set-result(rs, false)    // all (u, v)-pairs were tried without success  

  return false       // save negative result for rs in cache and return 

Algorithm 2: Packing procedure packing_check_rs.

The procedure packing_check_rs takes a request sequence as input and returns a boolean value 

(true or false) indicating whether a feasible packing plan was found or not. First, the procedure checks 

if the request sequence is contained in the packing cache, which means that it was already checked. In

this case the result is taken from the cache and the procedure terminates. Otherwise two nested loops 

are executed, the outer loop iterates over the orderings and the inner loop iterates over the heuristics. 

In each iteration of the outer loop, first the item sequence for the current ordering is built and then up

to six heuristics are applied. The procedure terminates with result “true” if one heuristic can pack the 

item sequence is, otherwise the procedure returns “false” after all 30 combinations of heuristics and 

orderings were tried without success. In both cases, the result is saved in the packing cache before 

leaving the procedure. The usage of the packing cache provides a large speedup of the algorithm be-

cause the retrieval of the check result from the cache is 100 to 1000 times faster than the repetition of 

the packing check with the six heuristics and five orderings.

In the following, the packing heuristic H1 (Bottom-Left Fill) is explained in detail. Central compo-

nent of this heuristic is posList, a set of so-called allocation points (positions where the lower left cor-

ner of new items can be placed). Initially, posList contains only the position (0, 0). The items will be 

placed “item by item”, respecting the item sequence which was created by the ordering in advance. 

Each time after an item was placed, the set posList will be updated, no more usable allocation points 

will be removed and new allocation points will be added. The new allocation points are so-called ex-

treme points (see Crainic et al. 2008) generated by projection of the upper left corner of the placed 
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item into –y direction and of the lower right corner into –x direction. The allocation points emerge 

where the projections “hit” the sides of already placed items or the loading area. Thereby, each projec-

tion can create more than one new allocation points. In Figure 3 is shown a loading area with some 

placed items. The allocation points are marked as bold circles.

In the Bottom-Left Fill heuristic the position for placing an item is selected from posList as fol-

lows. All allocations points in posList are checked if the considered item can be placed feasible at this 

allocation point, i.e. without overlapping or violating the cumulative LIFO loading constraint.

Amongst all feasible allocation points, the one with the lowest x-coordinate is selected, ties are broken 

by the lowest y-coordinate. Thus, the Bottom-Left Fill heuristic tends to generate packing plans con-

sisting of strips parallel to the y-axis. If for one item no feasible placement can be found, then the heu-

ristic terminates without success, otherwise the heuristic terminates successfully when all items are

placed. In case of the original 2L-PDP problem variant (Rotate), each allocation point is considered 

twice, one time for placing the item in original orientation and a second time for a placing it in rotated 

orientation, while in the second problem variant (NoRotate) only the original orientation is considered.

       

x

y
          Figure 3: Allocation points marked as bold circles.

The Left-Bottom Fill heuristic H2 works like the heuristic H1 with the only difference, that 

amongst all feasible placements the allocation point with the lowest y-coordinate will be selected, ties 

are broken by the lowest x-coordinate. Thus, the Left-Bottom Fill heuristic tends to build packing 

plans made up by strips parallel to the x-axis. This approach can be useful if an extra long item must 

be loaded late. 

In case of the Touching Perimeter heuristic H3 for each feasible allocation point in posList, the to-

tal touching perimeter value of the inserted item is calculated. The touching perimeter is evaluated as 

the sum of the common edges of the inserted item with the edges of the already inserted items and the 

edges of the loading area. The item is placed at that allocation point which reaches the maximal touch-

ing perimeter value. The Touching Perimeter heuristic tends to initially place the items at the edges of 

the loading area and later fill the inner parts of it.
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The Touching Perimeter No Walls heuristic H4 uses the same principle like H3, but the touching 

perimeter is calculated only considering common edges of the item to place with already placed items, 

common edges with the loading area are not taken into account. Thus, this heuristic tends to fill the 

inner part of the loading area earlier and cover its edges later.

In case of the Min Area heuristic H5, the size of its corresponding rectangular surface area is calcu-

lated for each feasible allocation point. The loading position selected is the one yielding the minimum 

surface area. Figure 4 shows an example of a loading area with two arranged items (dotted) and three 

possible allocation points. The corresponding rectangular surface areas are shown as squared. The 

main goal of the heuristic is achieving a high degree of utilization of the vehicle’s loading areas.

x

y

x

y

x

y

Allocation point 1 Allocation point 2 Allocation point 3

Figure 4: Example of corresponding loading areas.

The last heuristic H6 is the LBFH heuristic (Lowest Reference Line Best Fit heuristic). The LBFH 

heuristic determines in each iteration first the lowest non-occupied rectangular space (with minimum 

x-coordinate). Then all not yet placed items of the currently processed request are tested whether they

fit into the considered space. Fitting items furthermore score “fitness points” if they fill out the com-

plete width of the considered space or if their upper edge reaches the same x-value like the adjacent 

items placed on the left or right of the considered space. Finally, the item with the best fitness value 

gets placed. Ties are broken by the items position in the sequence is. The main goal of the LBFH heu-

ristic is to make the best use of the available space and reduce waste. To do so the heuristic uses a pre-

dictive strategy and changes the placing order of items belonging to the same request. For more de-

tails, the reader is referred to Leung et al. (2011).

The order of the six heuristics H1 to H6 is chosen so that the most simple heuristics (with smallest

computational effort) Bottom-Left Fill and Left-Bottom Fill are tried first in the packing procedure 

packing_check_rs. If they fail to construct a feasible packing plan, they are followed by the more 

complex heuristics Touching Perimeter, Touching Perimeter No Wall, Min Area and LBFH.

4.4 Simultaneous Packing approach

In section 4.2, we introduced the IPR solution approach which heavily restricts the solution space 

by incorporating two additional requirements, namely (1) and (2), to the routes to satisfy the packing 
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related constraints (C1) – (C3) and (C7) (if necessary). Now we want to introduce the Simultaneous 

Packing approach which drops the additional requirement (1) and allows the algorithm to explore a 

much larger solution space.

Definition 4:

(i) A 2L-PDP route is called “LIFO route” if the condition holds that each two delivery points in the 

route lie in inverse order of their corresponding pickup points. More formally, if i and j are two 

arbitrarily chosen requests from the route and Pi lies before Pj, then Di must lie behind Dj in the 

route.

(ii) A partial route of a LIFO route is called “LIFO route block” (LRB) if the vehicle is empty when 

arriving at the first node and empty when leaving the last node of the partial route and if, further-

more, the vehicle does not become empty within the partial route.

(iii) We say that a solution of the 2L-PDP fulfills the LIFO route condition if all of its contained routes 

are LIFO routes.

Example 3: The route 0 � �1 � �2 � �2 � �3 � �4 � �4 � �5 � �5 � �3 � �1 � �6 �

�7 � �7 � �6 � 0 is a LIFO route consisting of two LIFO route blocks. The first LRB starts at P1

and ends at D1, while the second LRB starts at P6 and ends at D6. The first LRB contains three last 

pickup points P2, P4 and P5 with the corresponding request sequences (1, 2), (1, 3, 4) and (1, 3, 5).

The second LRB contains only one last pickup point P7 with the request sequence (6, 7).

In the Simultaneous Packing approach, we want to continue applying the idea of restricting the 

packing checks to the last pickup points within the route. The packing plans for the other nodes should

be derived from the packing plans for the last pickup points. Thus it is to investigate under which addi-

tional circumstances the existence of packing plans for the last pickups in a route can ensure that fea-

sible packing plans for all nodes of the route exist.

Proposition 3: Let be given a LIFO route consisting of one or more LIFO route blocks and let ex-

ist packing plans observing conditions (FP1) – (FP3), (C7) (if necessary) and (CLC) for the request 

sequences of all last pickup points of the route. Furthermore, let these packing plans fulfill the reload-

ing ban constraint (C3), i.e. each item should hold the same placement in all plans containing this 

item. Then feasible packing plans in terms of 2L-PDP exist for all nodes in the route which fulfill:

(i) for pickup points the conditions (FP1) – (FP3), the orientation constraint (C7) (if necessary) and 

the LIFO constraint (C1),

(ii) for delivery points the conditions (FP1) – (FP3), the orientation constraint (C7) (if necessary) and 

the LIFO constraint (C2) and

(iii) observe (collectively) the reloading ban constraint (C3).
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Proof:

(i) Each pickup point which is not a last pickup is followed by a sequence of one or more consecu-

tive pickup points. This sequence of pickup points ends with a last pickup point which is followed 

by a delivery point. We call this last pickup point “corresponding last pickup point” of the original 

pickup point. Thus for each pickup point a packing plan can be derived by simply removing 

placements for items not yet loaded from the packing plan of the corresponding last pickup point.

Obviously, the derived plans will contain the correct items and fulfill the conditions (FP1) – (FP3) 

together with constraint (C7) (if necessary). Since the cumulative LIFO constraint (CLC) is 

stronger than the LIFO constraint for pickup points (C1), all derived plans fulfill the constraint 

(C1), too.

(ii) For each delivery point in a LIFO route, the “corresponding last pickup point” is found as follows. 

We consider all pickup points lying in the route before the regarded delivery point and choose the 

last of them as corresponding last pickup point. Obviously, for each delivery point exists at least 

one pickup point lying in the route before it. Furthermore, the so selected pickup point is a last 

pickup point because it directly precedes the regarded delivery point or there are only delivery 

points located between them. Thus for each delivery point, a packing plan can be derived by simp-

ly removing placements for items already unloaded from the packing plan of its corresponding 

last pickup point. The derived packing plans will contain the correct items and fulfill the condi-

tions (FP1) – (FP3) together with constraint (C7) (if necessary). Finally, the proof of the LIFO 

constraint for delivery points (C2) can take place indirectly like the proof of Proposition 1 be-

cause in case of LIFO routes, it is still ensured that delivery points lie in invers order of their cor-

responding pickup points. Thus a violation of constraint (C2) would result in a violation of con-

straint (C1) at a pickup point.

(iii) The packing plans for all nodes will be generated by simply removing placements from the pack-

ing plans of the last pickup points. Since these original packing plans of the last pickup points ob-

serve reloading ban constraint (C3), the derived plans will fulfill it too. 


In section 4.2, it was shown that in case of IPR routes the inclusion of the cumulative LIFO con-

straint (CLC) does not lead to an additional restriction of the search space. In case of LIFO routes, it 

holds the same. The proof is not presented here because it is almost identical to the proof of Proposi-

tion 2.

The outcome of Proposition 3 is that the concept of packing checks from the IPR approach (only 

performing packing checks for the request sequences of the last pickup points) can be taken over to the 

Simultaneous Packing approach. However, the packing procedure now must additionally ensure the 

reloading ban constraint for the last pickup points. This check must be made per LIFO route block 

because only last pickup points contained in the same LIFO route block have common requests and 

common items. Thus for last pickup points which do not belong to the same LRB, the reloading ban



19

constraint is observed automatically.

Example 3 (continued): To check the LRB �1 � �2 � �2 � �3 � �4 � �4 � �5 � �5 �

�3 � �1 in terms of packing for the 2L-PDP the following steps must be performed:

� finding packing plans for the three request sequences (1, 2), (1, 3, 4), (1, 3, 5),

� checking if the items of request 1 hold the same placements in all three plans,

� checking if the items of request 3 hold the same placements in the second and third plan.

To check the whole LIFO route from Example 3 in terms of packing for the 2L-PDP, it furthermore has 

to be checked (independently) if a feasible packing plan for the request sequence (6, 7) exists. Since

the second LRB �6 � �7 � �7 � �6 contains only one last pickup point, there are no interdepend-

encies between packing plans of the second LRB to observe. The packing plans for the individual 

points in the route can be derived as follows from the plans of the last pickup points:

� for P1, D2 from the plan of P2 (request sequence (1, 2)),

� for P3, D4 from the plan of P4 (request sequence (1, 3, 4)),

� for D5, D3, D1 from the plan of P5 (request sequence (1, 3, 5)),

� for P6, D7, D6 from the plan of P7 (request sequence (6, 7)).

Proposition 4: Let rs1 and rs2 be two request sequences with p+q and p+s requests, respectively 

(p, q, s > 0). Furthermore, let the first p requests of both request sequences be identically:

rs1 = (i1,...,ip,ip+1,...,ip+q), rs2 = (i1,...,ip,ip+q+1,...,ip+q+s). If v and u (v � {1,...,6}, u � {1,...,5}) exist such

that the heuristic Hv can pack both request sequences using the ordering Ordu, then the resulting pack-

ing plans for both request sequences fulfill the reloading ban constraint, i.e. the items of requests 

{i1,...,ip} hold the same placements in both plans.

Proof: Let j be the total number of items belonging to the first p identical requests {i1,...,ip} of the 

request sequences rs1 and rs2. Then the corresponding item sequences is1 and is2 contain j identical 

items at the beginning (after getting ordered by Ordu). When the heuristic Hv constructs the packing 

plan for both item sequences, obviously the first j identical items are getting the same placements be-

cause the heuristics do not look forward, i.e. to determine the placements for the first j items, only the

properties (length and width) of these items are taken into account. The heuristics do not take into 

account the number, length or width of further items in is1 and is2 holding positions greater than j. To-

gether with the fact that H1–H6 do not contain any stochastic components, this ensures identical 

placements for the first j items in both packing plans. 


With Proposition 4 it becomes clear, that to check a LRB in terms of packing for the 2L-PDP, it is 

sufficient to find a certain heuristic Hv and a certain ordering Ordu such that the pair (Hv, Ordu) can 

pack successfully the request sequences of all last pickup points of the considered LRB. Now the 

packing procedure packing_check_rs for the IPR routes can be enhanced to the procedure 
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packing_check_lrb which checks a LRB in terms of packing for the 2L-PDP.

In Algorithm 3, the packing procedure packing_check_lrb is shown in detail. The procedure uses 

the cache cache-lrb to speed up the search. The procedure checks first if the input lrb is contained in 

cache-lrb. In this case, the result is taken from the cache and the procedure terminates. Otherwise, the 

procedure builds up the array rs-arr of all request sequences of last pickup points of lrb. Then the pro-

cedure tries to find a (u, v)-pair for which Hv can construct packing plans for all elements of rs-arr

using the ordering Ordu. For this purpose, the procedure uses three nested loops over the orderings, the 

heuristics and the item sequences. Each time a new ordering will be processed, the item sequence ar-

ray is-arr will be built up. It contains the ordered item sequences for the request sequences of rs-arr.

To speed up the packing procedure, this step will be done before entering the loop over the heuristics. 

In the most inner loop, the elements of is-arr are getting packing checked with heuristic Hv. The bool-

ean variable ok indicates whether all item sequences could be packed successfully using the (Hv, Or-

du)-pair. In case of ok=true the procedure ends with result=true because packing plans fulfilling the 

reloading ban constraint for all last pickup points of lrb were found. Otherwise ok=false signals that at 

least one item sequence could not be packed with heuristic Hv using ordering Ordu. In this case, the 

procedure continues with the next heuristic or the next ordering. If there are no further (Hv, Ordu)-pairs 

remaining, the procedure ends with result=false. Before leaving the procedure, the overall packing

result for lrb is saved in cache-lrb.

packing_check_lrb (in: lifo route block lrb, out: boolean result) 

 if  cache-lrb.contains(lrb)  then 

  return  cache-lrb.get-result(lrb) 

 rs-arr := build-request-sequences(lrb)  // build request sequences for all last pickup points in lrb   

 for  u := 1 to 5  do       // loop over u (orderings)  

  is-arr := { }      // allocate empty array for item sequences 

 for  j := 1 to sizeof(rs-arr)  do 

   is-arr[j] := build-item-sequence(rs-arr[j], Ordu) // build corresponding item sequences for request seq. 

  for  v := 1 to 6  do      // loop over v (heuristics) 

  ok := true 

 for  j := 1 to sizeof(is-arr)  do   // loop over j (item sequences) 

       if  heuristic Hv can not pack item sequence is-arr[j]  then 

     ok := false    // set ok to false to neglect (u, v)-pair 

   break inner for loop    // break for loop over index j 

   if  ok = true  then 

    cache-lrb.set-result(lrb, true)   // Hv + Ordu have checked all request-seq. with success 

    return  true    // save positive result in cache-lrb and return 

 cache-lrb.set-result(lrb, false)    // all (u, v)-pairs were tried without success 

 return false       // save negative result in cache-lrb and return 

Algorithm 3: Packing procedure packing_check_lrb.



21

Finally, it should be mentioned that the procedure packing_check_lrb does not save packing plans 

during the search process for already checked LRBs, because this would consume too much memory. 

In the cache-lrb (beside the LRB itself and its checking result) only the values u and v are saved, i.e. 

the numbers of the heuristic Hv and the ordering Ordu which were able to construct feasible packing 

plans for all last pickup points of the considered LRB. When the stopping criterion in the LNS routing 

procedure is met and the search is getting aborted, the packing plans for all last pickup points in the 

best solution are reconstructed by the appropriate packing heuristic Hv in combination with the appro-

priate ordering Ordu.

5 Computational experiments

The section is organized as follows. In the first part we test our solution approach against well-

known 2L-CVRP instances to check whether we can reach the solution quality of the best so far exist-

ing algorithms for the 2L-CVRP. Since the 2L-CVRP is a special case of the 2L-PDP, where all 

pickups take place in the depot and after performing one delivery, no other pickup may follow in the 

route, our solutions approach can be used to solve 2L-CVRP instances, too. We use a modified version 

of the first hybrid algorithm (IPR) to meet the special requirements of the 2L-CVRP. In the 2L-CVRP 

there is to construct only one packing plan for each route with no LIFO constraint for pickup points 

(C1) and no reloading ban constraint (C3) to observe. Thus the two additional requirements to the 

routes (see section 4.2) can be dropped in this test, while LIFO constraint of the 2L-CVRP is ensured 

by the packing procedure.

In the second part, 60 new benchmark instances with up to 150 requests and 433 items are intro-

duced. In the third part, which is the main part of this section, the two new solution approaches “Inde-

pendent Partial Routes” and “Simultaneous Packing” are tested against the new instances. The test 

results will be compared with two lesser constrained problem variants, namely the “Unrestricted” and 

“One Dimensional” (1D). In the Unrestricted variant, we assume that at each node any reloading can 

be made without any cost or time consumption, hence both LIFO constraints (C1) and (C2) and the 

reloading ban constraint (C3) will be neglected in this variant. In the 1D variant, we drop furthermore 

the requirement to construct feasible packing plans, hence it is only required that the total area of all 

items loaded on the vehicle does not exceed the total area of the loading area, without considering if a 

feasible packing exists. Thus, the 1D variant is identical to the classical PDP with two scalar capacity 

conditions (weight and area). For both 1D variant and Unrestricted variant, we use a modified version 

of the IPR hybrid algorithm where the two additional requirements to the routes are dropped. In the 1D 

variant no packing checks will be done at all, while in the Unrestricted variant there will be construct-

ed feasible packing plans for all nodes in a route. These packing plans do not need to meet the LIFO 

constraint for pickup points, thus the first criterion in all orderings (see section 4.1) is neglected in this 

variant.

Both hybrid algorithms are implemented in Java programming language using Eclipse IDE. All the 
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experiments have been conducted on a PC with Intel Core i7-6700K (4.0 GHz, 32 GB RAM) running 

Windows 10 operating system. The identical chosen parameter setting for the routing procedure LNS 

of both hybrid algorithms is shown in Table 5. All parameter values were determined based on limited 

computational experiments using a trial and error strategy.

Table 5: Parameter setting for the LNS routing procedure.

Parameter Description Value 

rmin lower bound for no. of removed customers 0.04·n 

rmax upper bound for no. of removed customers 0.4·n 

w start temperature control parameter 0.005 

c rate of geometrical cooling 0.9999 

p(RhR), p(RhS) 

p(RhW), p(RhT) 

probability of Random / Shaw removal  

 probability of Worst / Tour removal  

0.3, 0.4 

0.1, 0.2 

p(IhG), p(IhR2), p(IhR3) probability of Greedy / Regret-2 / Regret-3 insert 0.1, 0.6, 0.3 

wr1, wr2 weights of relatedness formula for Shaw removal  9, 2 

5.1 Computational results for 2L-CVRP

Gendreau et al. (2008) have introduced 36 CVRP problems containing up to 255 customers. For 

each of these CVRP problems, they created five 2L-CVRP instances by considering different classes 

of item characteristics (Class 1–5). Thereby, the instances of Class 1 are pure CVRP problems, where-

as the 144 instances of Classes 2–5 are “real” 2L-CVRP problems. For these instances, each item be-

longs to one of three possible shape categories with equal probability, while the number of items de-

manded by a customer is determined as random value from a given interval. The details of the items 

characteristics are shown in Table 6. The average number of items per customer rises from 1.5 for 

instances of Class 2 up to 3 items per customer for instances of Class 5.

Table 6: The item characteristics for 2L-CVRP instances of Class 2–5.

Class
Item-Number 

mi

Vertical Homogeneous Horizontal

Length Width Length Width Length Width

2 [1, 2] [0.4L, 0.9L] [0.1W, 0.2W] [0.2L, 0.5L] [0.2W, 0.5W] [0.1L, 0.2L] [0.4W, 0.9W]

3 [1, 3] [0.3L, 0.8L] [0.1W, 0.2W] [0.2L, 0.4L] [0.2W, 0.4W] [0.1L, 0.2L] [0.3W, 0.8W]

4 [1, 4] [0.2L, 0.7L] [0.1W, 0.2W] [0.1L, 0.4L] [0.1W, 0.4W] [0.1L, 0.2L] [0.2W, 0.7W]

5 [1, 5] [0.1L, 0.6L] [0.1W, 0.2W] [0.1L, 0.3L] [0.1W, 0.3W] [0.1L, 0.2L] [0.1W, 0.6W]

Our hybrid algorithm, in the following denoted with “LNS+6CH”, was tested five times against 

each of the 144 instances considering the problem variant with LIFO constraint and fixed orientation

(“NoRotate”) allowing up to one hour CPU time. The results are first averaged over the five runs and 

then averaged over the Classes 2–5 for each of the 36 problems. In Table 7, the results for the 

LNS+6CH hybrid algorithm are compared to those obtained by 
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� ACO with 3 hours CPU time (Fuellerer et al., 2009), Pentium IV 3.2 GHz,

� EGTS + LBFH (Leung et al., 2011), Intel Core 2 Duo 2.0 GHz,

� PRMP (Zachariadis et al., 2013), Intel Core 2 Duo E6600 2.4 GHz,

� VNS (Wei et al., 2015), Intel Xeon E5430 with a 2.66 GHz.

Table 7: Results for 2L-CVRP (averaged over Classes 2–5).

Prob-

lem 

ACO EGTS + LFBH PRMP VNS LNS+6CH 

ttd-avg    rt-avg gap

% 

ttd-avg  rt-avg gap 

 % 

ttd-avg  rt-avg gap 

% 

ttd-avg rt-avg gap 

% 

ttd-avg  rt-avg gap 

% 

1 295.10 8.9 2.79 303.40 3.2 5.68 287.09 1.4 0.00 287.52 4.5 0.15 298.01 5.6 3.80 

2 345.28 0.7 0.31 345.23 1.3 0.30 344.21 1.0 0.00 344.21 0.6 0.00 345.23 5.0 0.30 

3 383.12 3.7 0.45 387.89 5.0 1.70 381.40 1.3 0.00 381.43 1.5 0.01 384.58 5.0 0.83 

4 441.11 3.6 0.26 443.25 2.4 0.75 439.97 1.6 0.00 440.27 1.0 0.07 442.14 5.0 0.49 

5 383.21 15.7 0.21 387.60 4.6 1.36 382.39 2.6 0.00 382.39 4.2 0.00 386.80 6.0 1.15 

6 500.76 5.2 0.26 502.25 3.5 0.55 499.48 5.6 0.00 499.48 1.7 0.00 502.88 5.0 0.68 

7 705.64 14.3 0.49 715.54 8.3 1.90 702.27 5.3 0.01 702.18 12.3 0.00 711.31 5.4 1.30 

8 713.33 19.9 2.26 716.36 8.3 2.69 699.55 7.0 0.28 697.58 21.2 0.00 713.12 7.4 2.23 

9 616.69 5.8 0.28 621.23 4.3 1.02 615.93 6.2 0.16 614.95 3.7 0.00 615.94 5.0 0.16 

10 701.65 61.6 2.01 731.69 23.3 6.38 688.63 55.0 0.12 687.80 115.8 0.00 711.32 20.5 3.42 

11 736.53 71.5 1.57 762.83 38.0 5.20 725.83 75.3 0.10 725.11 54.5 0.00 748.82 23.8 3.27 

12 617.07 8.6 0.41 622.35 7.9 1.27 615.23 7.1 0.12 614.52 7.5 0.00 620.41 5.1 0.96 

13 2598.46 76.3 1.75 2647.88 30.8 3.69 2554.93 119.6 0.05 2553.76 53.5 0.00 2617.70 25.4 2.50 

14 1050.48 202.3 1.93 1075.04 49.0 4.31 1030.61 637.1 0.00 1033.12 416.5 0.24 1054.56 67.4 2.32 

15 1223.03 172.5 3.09 1223.19 65.8 3.10 1193.88 68.2 0.63 1186.38 298.5 0.00 1210.15 57.5 2.00 

16 701.72 9.4 0.10 703.74 13.0 0.39 701.01 14.2 0.00 701.01 3.4 0.00 704.75 5.0 0.53 

17 865.56 7.5 0.17 869.93 16.1 0.68 865.33 40.9 0.15 864.06 4.4 0.00 864.57 5.0 0.06 

18 1073.34 362.1 1.52 1096.57 67.8 3.72 1061.29 95.1 0.38 1057.27 396.5 0.00 1078.03 120.7 1.96 

19 779.29 149.8 2.05 798.20 61.7 4.53 767.13 188.3 0.46 763.62 297.5 0.00 779.68 49.9 2.10 

20 544.79 1322.6 2.34 559.17 232.5 5.05 535.89 1660.9 0.67 532.31 921.8 0.00 544.18 440.9 2.23 

21 1061.44 1284.6 2.63 1084.98 179.0 4.91 1043.12 420.2 0.86 1034.25 1003.0 0.00 1055.95 428.2 2.10 

22 1086.84 904.9 2.45 1113.64 152.3 4.97 1068.35 524.3 0.71 1060.87 1107.8 0.00 1085.37 301.6 2.31 

23 1100.68 1490.3 2.96 1130.13 215.3 5.72 1080.59 519.5 1.09 1068.99 953.0 0.00 1094.16 496.8 2.35 

24 1158.06 389.6 2.03 1177.28 132.7 3.72 1143.88 1064.3 0.78 1135.05 841.3 0.00 1157.30 129.9 1.96 

25 1428.74 3007.9 3.07 1470.11 373.2 6.06 1403.33 2319.5 1.24 1386.16 1306.0 0.00 1423.94 1002.6 2.73 

26 1427.91 4379.0 4.98 1431.32 499.0 5.23 1374.49 1491.2 1.05 1360.19 1240.3 0.00 1387.02 1459.4 1.97 

27 1400.46 1898.3 2.79 1445.64 371.4 6.10 1378.13 4163.8 1.15 1362.50 1242.3 0.00 1396.34 632.8 2.48 

28 2734.60 10800.8 2.70 2808.10 979.8 5.46 2677.71 8640.1 0.57 2662.59 2423.3 0.00 2683.39 3600.0 0.78 

29 2361.32 10800.9 4.80 2396.78 1150.4 6.37 2273.25 5484.3 0.89 2253.26 2672.8 0.00 2309.20 3600.0 2.48 

30 1906.16 10800.7 4.10 1983.48 1699.0 8.32 1858.69 4676.9 1.51 1831.09 2502.0 0.00 1876.39 3600.0 2.47 

31 2431.13 10800.8 4.18 2497.25 4368.2 7.02 2370.77 5845.4 1.59 2333.55 2760.8 0.00 2390.12 3600.0 2.42 

32 2400.06 10800.6 4.96 2438.65 2445.8 6.65 2332.28 9433.2 2.00 2286.62 2664.0 0.00 2337.85 3600.0 2.24 

33 2467.61 10800.6 4.72 2543.24 2053.7 7.93 2404.52 5662.5 2.04 2356.37 2614.5 0.00 2413.23 3600.0 2.41 

34 1272.29 10800.7 5.84 1276.27 3443.5 6.17 1231.90 13141.8 2.48 1202.10 2825.8 0.00 1241.73 3600.0 3.30 

35 1612.42 10800.7 10.00 1606.38 4560.8 9.59 1500.97 8989.6 2.40 1465.77 3053.0 0.00 1593.32 3600.0 8.70 

36 1846.66 10800.8 5.39 1850.50 3667.1 5.61 1774.94 10059.6 1.30 1752.16 3282.5 0.00 1891.36 3600.0 7.94 

Avg  2.55   4.28   0.69   0.01   2.25 



24

The allowed CPU time for LNS+6CH is set to one third of the CPU time consumed by the ACO 

algorithm of Fuellerer et al. (2009) but not less than 5 seconds. For each algorithm, the average total 

travel distance and average computation time (averaged over Classes 2–5) are provided. For each

problem, the minimum average total travel distance value is marked in bold. The gap in percent is 

calculated as (avg-ttd / min-avg-ttd – 1)*100%.

The results show that LNS+6CH performs better than the “older” algorithms ACO (0.30%) and 

EGTS + LFBH (2.03%) but cannot reach the solution quality of the “newer” algorithms PRMP 

(1.56%) and VNS (2.24%). Nevertheless, these gaps are small and the computation times used for 

LNS+6CH are comparable to those of the other algorithms, so LNS+6CH can be considered as “state 

of the art” procedure for solving the 2L-CVRP. 

5.2 Benchmark instances for 2L-PDP

The 60 new 2L-PDP instances were generated based on the 2L-CVRP instances by Gendreau et al. 

(2008). First 20 2L-CVRP instances with 25 to 150 customers were selected as shown in Table 8. 

Table 8: 2L-CVRP instances used to create new 2L-PDP benchmark instances.

Average item count 

per request 

Customer count 

25 50 75 100 150 

1.5 09-2 19-2 21-2 25-2 30-2 

2.0 09-3 19-3 21-3 25-3 30-3 

2.5 09-4 19-4 21-4 25-4 30-4 

3.0 09-5 19-5 21-5 25-5 30-5 

For each of the selected 2L-CVRP instances, three 2L-PDP instances were created with different 

characteristics regarding the distribution of pickup and delivery points of the requests. In the first vari-

ant "Random", the sites are uniformly distributed in a rectangular section of the plane, while they are 

clustered in the other variants. In the second variant "Mixed clusters", individual clusters may contain 

pickup as well as delivery points, while only sites of one sort can occur in an individual cluster of the 

third variant "Pure clusters". The three types of 2L-PDP instances are denoted by the suffixes “-Rnd”, 

“-Mix” and “-Pur”, e.g. the instances constructed based on 09-2 are denoted with 09-2-Rnd, 09-2-Mix 

and 09-2-Pur.

As in the original 2L-CVRP instances, each four 2L-PDP instances for the same problem number 

and the same distribution variant (e.g. 09-2-Rnd to 09-5-Rnd) share the same node set. The item sets,

the requests weights and the dimension of the loading areas (L = 40, W = 20) were taken over from the 

original instances without any change (see Table 9). The vehicles weight capacity was slightly adapted 
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to ensure that the weight constraint (C4) does not become redundant but a good utilization of the load-

ing area is still possible and the packing task is not too easy. The maximum route length was defined 

so that best solutions found by the hybrid algorithms contain a reasonable number of routes (from 3 to 

15 routes depending on the size of the instance). The characteristics of the 2L-PDP instances are sum-

marized in Table 9. The instances are offered at the website

http://www.mansci.ovgu.de/Forschung/Materialien.html.

Table 9: Overview of the new 2L-PDP benchmark instances.

Parameter Value Remark 

Total number of instances  60  

Request number per instance 25 / 50 / 75 / 100 / 150 12 instances each 

Node number per instance 50 / 100 / 150 / 200 / 300 12 instances each 

Average number of items per request 1.5 / 2.0 / 2.5 / 3.0 15 instances each 

Distribution variants of pickup / delivery points Random / Pure Cluster / Mixed Cluster 20 instances each 

5.3 Computational results for the 2L-PDP

The detailed results for the 2L-PDP instances regarding total travel distance (ttd) are presented in 

Table 10 and 11. The structure for both tables is identical, Table 10 covers the “Rotate” variant where 

90° rotations of the items are allowed, while Table 11 corresponds to the “NoRotate” variant with the 

additional constraint (C7).

Table 10: Results (travel distances) for different variants of 2L-PDP  (“Rotate” variant).

Instance 1D Unrestricted Simultaneous Packing Independent Partial Routes 

type 
req. 

n 

items

m 

CPU 

sec 
avg-ttd avg-ttd   gap %  

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 

09-2 25 40 30 786.63 823.83 4.70 156.62 962.75 22.97 - 1007.82 28.41 - 

09-3 25 61 30 812.82 849.68 4.58 158.31 971.18 19.95 - 999.83 23.25 - 

09-4 25 63 30 801.42 845.59 5.37 145.94 995.88 24.76 - 1017.64 27.33 - 

09-5 25 91 30 772.90 785.15 1.54 185.65 900.69 16.77 - 975.16 25.96 - 

19-2 50 82 60 1215.46 1283.19 5.53 175.56 1527.66 26.03 - 1595.75 31.31 - 

19-3 50 103 60 1257.50 1299.03 3.30 183.71 1548.52 23.43 - 1603.02 27.67 - 

19-4 50 134 60 1277.66 1339.93 4.91 178.30 1580.34 23.70 - 1655.35 29.44 - 

19-5 50 157 60 1113.60 1136.04 1.99 268.14 1410.24 26.86 - 1495.82 33.92 - 

21-2 75 114 120 1659.17 1745.65 5.45 201.10 2086.47 25.66 - 2113.70 27.40 - 

21-3 75 164 120 1845.22 1952.08 5.72 182.00 2236.64 20.96 - 2259.65 22.28 - 

21-4 75 168 120 1683.96 1735.30 2.98 191.06 2098.60 24.43 - 2126.25 26.06 - 

21-5 75 202 120 1560.33 1596.65 2.39 258.28 1970.56 26.13 - 2024.57 29.64 - 

25-2 100 157 300 2254.38 2398.23 6.39 176.77 2878.46 27.57 - 2944.73 30.60 - 

25-3 100 212 300 2258.33 2348.21 3.97 204.74 2844.93 25.84 - 2909.35 28.81 - 

25-4 100 254 300 2274.79 2350.94 3.36 190.97 2842.27 24.92 - 2913.71 28.19 - 

25-5 100 311 300 2009.49 2043.85 1.71 271.30 2654.88 31.81 - 2736.86 36.05 - 

30-2 150 225 900 3018.56 3169.07 5.00 191.66 3844.96 27.32 - 3900.22 29.20 - 
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30-3 150 298 900 3182.12 3313.98 4.15 190.92 3958.25 24.37 - 4027.43 26.60 - 

30-4 150 366 900 3144.45 3251.56 3.41 194.16 3913.52 24.43 - 3953.07 25.74 - 

30-5 150 433 900 2772.60 2821.62 1.72 274.09 3540.44 27.61 - 3613.64 30.34 - 

Average      3.91 198.96  24.78   28.41  

Table 11: Results (travel distances) for different variants of 2L-PDP (“NoRotate” variant).

Instance 1D Unrestricted Simultaneous Packing Independent Partial Routes 

type 
req. 

n 

items

m 

CPU 

sec 
avg-ttd avg-ttd   gap %  

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 

09-2 25 40 30 786.63 888.97 12.77 127.93 1015.79 29.61 - 1049.79 33.72 - 

09-3 25 61 30 812.82 894.75 9.79 153.85 1021.14 25.96 - 1060.53 30.56 - 

09-4 25 63 30 801.42 892.24 10.93 106.92 1013.19 26.90 - 1027.84 28.63 - 

09-5 25 91 30 772.90 785.12 1.59 180.01 901.34 16.85 - 979.45 26.51 - 

19-2 50 82 60 1215.46 1340.42 10.41 179.32 1594.17 31.72 - 1651.59 36.14 - 

19-3 50 103 60 1257.50 1347.99 7.27 180.90 1609.69 28.31 - 1653.40 31.92 - 

19-4 50 134 60 1277.66 1371.68 7.40 162.01 1628.44 27.71 - 1684.76 31.88 - 

19-5 50 157 60 1113.60 1152.01 3.43 231.37 1437.16 29.42 - 1534.23 37.52 - 

21-2 75 114 120 1659.17 1810.71 9.27 203.86 2172.99 30.97 - 2219.16 33.90 - 

21-3 75 164 120 1845.22 1993.00 7.97 177.08 2311.73 25.08 - 2338.55 26.57 - 

21-4 75 168 120 1683.96 1771.38 5.12 170.97 2140.80 26.98 - 2172.33 28.86 - 

21-5 75 202 120 1560.33 1632.27 4.70 229.42 2004.40 28.31 - 2043.14 30.89 - 

25-2 100 157 300 2254.38 2526.46 12.11 170.78 3005.40 33.20 - 3088.52 36.98 - 

25-3 100 212 300 2258.33 2443.66 8.19 192.45 2963.90 31.14 - 3025.99 33.99 - 

25-4 100 254 300 2274.79 2406.40 5.78 175.17 2929.75 28.80 - 2988.75 31.53 - 

25-5 100 311 300 2009.49 2075.81 3.31 233.85 2683.32 33.21 - 2770.52 37.70 - 

30-2 150 225 900 3018.56 3315.24 9.88 171.31 3990.33 32.15 - 4028.47 33.45 - 

30-3 150 298 900 3182.12 3434.56 7.94 177.21 4094.93 28.69 - 4148.72 30.42 - 

30-4 150 366 900 3144.45 3344.72 6.38 185.50 4048.24 28.72 - 4084.07 29.93 - 

30-5 150 433 900 2772.60 2865.08 3.29 243.84 3602.58 29.87 - 3668.91 32.38 - 

Average      7.38 182.69  28.68   32.17  

In the leftmost column of both tables, the instance types are listed. The next three columns show 

the number of requests, the number of items and the allowed CPU time, which varies from 30 to 900 

seconds depending on the size of the instance (apart from that, the allowed computation time for the 

1D variant is set to only 20% of the normal value). The fifth column shows the total travel distances 

for the 1D variant for which only the weight constraint (C4), and the routing constraints (C5) and (C6)

are considered and no packing check will be done (only the total item area will still be checked). In the 

following nine columns, the total travel distances, the gaps and the reloading quantities are indicated 

for the Unrestricted variant and also for the two hybrid algorithms (Simultaneous Packing / Independ-

ent Partial Routes) for the original problem variant. In the Unrestricted, variant the constraints (C1) –

(C3) are omitted while the others constraints, especially the need to find valid packing plans, are still 

in force. In this variant reloading effort at each pickup or delivery point can occur, i.e. temporary or 

permanent changes of placements of items which do not belong to the loaded / unloaded request may 

happen. In the Simultaneous Packing and Independent Partial Routes solution approach all constraints 
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are in force as described in Chapter 3, where all reloading effort is ruled out by the constraints (C1) –

(C3). In the Simultaneous Packing approach, the reloading ban constraint is enforced by a new type of 

packing procedure, while in the Independent Partial Routes approach the reloading ban constraint (C3) 

is enforced by an additional routing condition instead of the simultaneous packing checks which re-

duces the numerical effort but restricts the search space more. All presented total travel distances are 

mean values over five runs. To keep the tables compact the results are averaged, furthermore, over all 

instances of the same type, e.g. “09-2” stands for the three 2L-PDP instances which are derived from 

the original 2L-CVRP instance 09-2. The corresponding gaps are calculated as

(ttd – ttd1D) / ttd1D * 100 (%). The reloading effort is given as percentage of the total item area (= sum 

of the area of all items in the instance). If an item is reloaded, say, at three nodes in the route, then the 

area of the item is counted three times. Thus it may occur that the reloading effort exceeds 100%. In 

the last lines of Tables 10 and 11, the gap values of the 2L-PDP variants are averaged over the 60 in-

stances. Detailed results for each single instance are presented in Tables 13 and 14 of appendix A.

Summarizing the results for the “Rotate” problem variant, we can state that the travel distances in-

crease significantly increases if the 2L-PDP instances are solved instead of the corresponding 1D-PDP 

instances. For the Unrestricted variant, the total travel distances grow on average by 3.91% compared 

to the 1D case. For the original problem variant, the mean gap is even higher and amounts to 24.78%

(Simultaneous Packing approach) and 28.41% (Independent Partial Routes approach), respectively. 

For the Unrestricted variant arises a reloading effort of 198.96% on average, which means that each 

item was reloaded (on average) nearly two times during its route, while for the two new hybrid algo-

rithms for the original problem variant no reloading effort occurs by definition. So we come to the 

conclusion that avoiding any reloading effort leads to increase of the travel costs of approximately 

20% or the other way round, we can save approximately 20% of the travel costs if we are willing to 

pay this in form of the additional reloading effort. The comparison between the two new hybrid algo-

rithms shows that the more complex Simultaneous Packing approach performs 2.83% (124.78% to 

128.41%) better than the simpler Independent Partial Routes approach if no reloading is allowed. This 

result coincides with the expectation formulated in section 4 (see Table 1).

For the “NoRotate” problem variant, the results regarding total travel distance show gaps which 

are approximately 4% points larger than in the “Rotate” variant. This result is plausible because the 

packing task without the possibility to rotate items is more difficult to solve. This leads to an addition-

al restriction of the solution space and an increase of the best objective function value. In case of omit-

ting the constraints (C1) – (C3), the “NoRotate” problem variant shows a smaller reloading effort 

(182.69% to 198.96%) because the longer routes lead to generally “less occupied” loading areas and to 

less situations where reloading effort can occur. Furthermore, the results of the “NoRotate” variant 

confirm the conclusions we made in the previous paragraph.

In Table 12, the average computing times to find the best solution and the average total number of 

iterations executed are shown for the two new hybrid algorithms. Again the results are averaged over 
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all instances of the same type, while the detailed results are presented in Table 15 of Appendix A. The 

times are given as absolute values and as percentages of the allowed computing time per instance. In 

the last column the ratio of executed iterations of both hybrid algorithms is shown (iterationsSP / itera-

tionsIPR). All values are averaged over five runs. The results show that the simpler Independent Partial 

Routes approach only needs 44.78% of the computing time on average to find the best solution while 

the Simultaneous Packing approach needs 48.63% to find the best solution. The comparison of total 

executed iterations shows that the Simultaneous Packing approach can execute only approximately 

40% of the iterations of the other approach in the same computing time. This shows that the Simulta-

neous Packing approach is more expensive in terms of CPU usage than the Independent Partial Routes 

approach because of the more complex packing algorithm. On the other hand, there may be still poten-

tial for further improvements with the Simultaneous Packing approach if more CPU time would be 

allowed (especially for the instances with 150 requests). Again, this result coincide with the expecta-

tion formulated in section 4 (see Table 1).

Table 12: Total iteration numbers and computing times to find the best solution (“Rotate” variant).

Instance Independent Partial Routes Simultaneous Packing 
Ratio 

    iterations type 
req. 

n 

items

m 

CPU 

sec 

 Runtime    

to best 

Runtime to 

best in % 

Total     

iterations 

 Runtime    

to best 

  Runtime to 

best in % 

Total     

iterations 

09-2 25 40 30 3.93 13.10 743407.67 3.38 11.27 316799.00 0.43 

09-3 25 61 30 5.57 18.58 760754.67 4.41 14.69 325637.33 0.43 

09-4 25 63 30 5.04 16.79 737302.00 4.85 16.16 322605.67 0.44 

09-5 25 91 30 4.69 15.63 744638.00 1.75 5.83 281710.67 0.38 

19-2 50 82 60 20.80 34.67 318347.67 18.74 31.23 121372.67 0.38 

19-3 50 103 60 16.93 28.21 319906.33 24.49 40.82 125209.33 0.39 

19-4 50 134 60 19.87 33.12 312806.33 23.58 39.29 124830.00 0.40 

19-5 50 157 60 12.88 21.46 267537.00 17.10 28.49 95587.33 0.36 

21-2 75 114 120 56.77 47.31 228759.33 69.26 57.72 85333.33 0.37 

21-3 75 164 120 70.48 58.73 250279.67 70.77 58.98 101774.67 0.40 

21-4 75 168 120 66.60 55.50 204657.00 73.52 61.26 71585.67 0.35 

21-5 75 202 120 59.60 49.67 178960.33 71.32 59.43 63674.33 0.35 

25-2 100 157 300 177.60 59.20 357548.33 195.71 65.24 141081.33 0.39 

25-3 100 212 300 179.42 59.81 347215.00 198.79 66.26 141376.00 0.41 

25-4 100 254 300 184.13 61.38 330252.00 160.52 53.51 137278.00 0.42 

25-5 100 311 300 169.64 56.55 265729.67 181.00 60.33 103366.33 0.39 

30-2 150 225 900 626.13 69.57 389412.33 661.43 73.49 152337.67 0.39 

30-3 150 298 900 630.90 70.10 378192.67 725.95 80.66 163377.33 0.43 

30-4 150 366 900 634.83 70.54 354757.67 717.30 79.70 149151.33 0.42 
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30-5 150 433 900 500.48 55.61 286010.67 614.65 68.29 111248.33 0.39 

Average     44.78   48.63  0.40 

6 Conclusions and future work

In this paper, the vehicle routing problem with pickup and delivery (PDP) has been extended to an 

integrated vehicle routing and loading problem with 2D rectangular items to be transported in homo-

geneous vehicles on a rectangular 2D loading area (2L-PDP). In the problem formulation, we focused 

on the question under which conditions any reloading effort, i.e. any movement of items after loading 

and before unloading, can be avoided. It turned out that the LIFO constraints for pickup and delivery 

points are not sufficient. Instead, the new reloading ban constraint was required to rule out any reload-

ing effort.

Two solution approaches implemented as hybrid algorithms consisting of a routing and a packing 

procedure were proposed to tackle the 2L-PDP. In the first solution approach (Independent Partial 

Routes), a large neighborhood search procedure for routing is combined with a packing procedure 

using six well-known constructive packing heuristics. To ensure the LIFO constraint at delivery points

and the reloading ban constraint the search space must be restricted to routes which are fulfilling two 

additional requirements (1) and (2) (see Section 4.2). In the second more complex solution approach

(Simultaneous Packing), basically the same routing procedure is combined with a new type of packing 

procedure which is able to construct a series of interrelated packing plans fulfilling the reloading ban 

constraint (see Section 4.4). Therefore, in the second approach the additional requirement (1) to the 

routes can be dropped. 

The hybrid algorithms were tested with the well-known 2L-CVRP instances by Gendreau et al.

(2008) and reached a good solution quality compared to the best 2L-CVRP solution methods available. 

For testing the hybrid 2L-PDP algorithms, 60 2L-PDP instances with up to 150 requests and up to 433

items were introduced. The results for the 2L-PDP variants are plausible in that the second approach 

performs nearly 3% better than the first solution approach on average. Neglecting LIFO and reloading 

ban constraints (Unrestricted variant) would lead to a reduction of around 20% of the total travel dis-

tance. Put differently, ruling out any reloading has to be paid by a 20% increase of travel distance.

In future research, a packing procedure based on the second solution approach should be devel-

oped, which is able to observe the LIFO constraint for delivery points, too. This would allow to drop 

also the additional requirement (2) so that a further improvement of the solution quality could be ex-

pected.
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Table 13: Results (travel distances) for different variants of 2L-PDP  (“Rotate” variant, complete results).

Instance 1D Unrestricted Simultaneous Packing Independent Partial Routes 

name 
req. 

n 

items

m 

CPU 

sec 
avg-ttd avg-ttd   gap %  

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 

09-2-Rnd 25 40 30 704.24 733.44 4.15 220.87 944.26 34.08 – 944.43 34.11 – 

09-2-Mix 25 40 30 828.46 885.71 6.91 154.00 1025.23 23.75 – 1098.42 32.59 – 

09-2-Pur 25 40 30 827.21 852.33 3.04 95.01 918.75 11.07 – 980.59 18.54 – 

09-3-Rnd 25 61 30 727.29 755.03 3.81 167.18 944.26 29.83 – 949.75 30.59 – 

09-3-Mix 25 61 30 881.69 892.55 1.23 167.03 1034.77 17.36 – 1115.25 26.49 – 

09-3-Pur 25 61 30 829.47 901.47 8.68 140.71 934.50 12.66 – 934.50 12.66 – 

09-4-Rnd 25 63 30 709.10 730.40 3.00 174.54 945.28 33.31 – 945.28 33.31 – 

09-4-Mix 25 63 30 847.03 905.10 6.86 145.93 1045.78 23.46 – 1111.18 31.19 – 

09-4-Pur 25 63 30 848.14 901.27 6.26 117.35 996.58 17.50 – 996.46 17.49 – 

09-5-Rnd 25 91 30 706.07 709.09 0.43 205.65 869.40 23.13 – 869.40 23.13 – 

09-5-Mix 25 91 30 821.05 833.10 1.47 155.85 955.09 16.33 – 1098.32 33.77 – 

09-5-Pur 25 91 30 791.58 813.27 2.74 195.45 877.58 10.86 – 957.75 20.99 – 

19-2-Rnd 50 82 60 1123.94 1212.26 7.86 197.88 1590.74 41.53 – 1594.11 41.83 – 

19-2-Mix 50 82 60 1434.45 1517.19 5.77 181.75 1733.38 20.84 – 1865.05 30.02 – 

19-2-Pur 50 82 60 1087.98 1120.11 2.95 147.06 1258.88 15.71 – 1328.09 22.07 – 

19-3-Rnd 50 103 60 1188.44 1224.59 3.04 227.07 1613.54 35.77 – 1612.66 35.70 – 

19-3-Mix 50 103 60 1484.52 1534.46 3.36 191.25 1748.10 17.76 – 1839.38 23.90 – 

19-3-Pur 50 103 60 1099.54 1138.03 3.50 132.82 1283.92 16.77 – 1357.02 23.42 – 

19-4-Rnd 50 134 60 1213.39 1246.89 2.76 200.90 1633.25 34.60 – 1641.95 35.32 – 

19-4-Mix 50 134 60 1480.96 1554.61 4.97 177.80 1794.54 21.17 – 1917.66 29.49 – 

19-4-Pur 50 134 60 1138.63 1218.30 7.00 156.21 1313.23 15.33 – 1406.45 23.52 – 

19-5-Rnd 50 157 60 1060.30 1079.21 1.78 327.44 1544.18 45.64 – 1544.28 45.65 – 

19-5-Mix 50 157 60 1304.16 1334.05 2.29 271.72 1562.40 19.80 – 1761.23 35.05 – 

19-5-Pur 50 157 60 976.34 994.85 1.90 205.26 1124.14 15.14 – 1181.94 21.06 – 

21-2-Rnd 75 114 120 1767.76 1828.34 3.43 225.93 2338.90 32.31 – 2340.32 32.39 – 

21-2-Mix 75 114 120 1799.79 1877.38 4.31 231.19 2172.83 20.73 – 2209.18 22.75 – 

21-2-Pur 75 114 120 1409.95 1531.23 8.60 146.17 1747.68 23.95 – 1791.59 27.07 – 

21-3-Rnd 75 164 120 1971.75 2053.05 4.12 195.62 2465.74 25.05 – 2464.34 24.98 – 

21-3-Mix 75 164 120 1968.64 2134.77 8.44 191.60 2374.29 20.61 – 2407.09 22.27 – 

21-3-Pur 75 164 120 1595.27 1668.42 4.59 158.80 1869.91 17.22 – 1907.51 19.57 – 

21-4-Rnd 75 168 120 1743.98 1817.47 4.21 207.66 2341.08 34.24 – 2323.37 33.22 – 

21-4-Mix 75 168 120 1815.20 1871.71 3.11 209.61 2174.64 19.80 – 2244.16 23.63 – 

21-4-Pur 75 168 120 1492.70 1516.72 1.61 155.89 1780.08 19.25 – 1811.23 21.34 – 

21-5-Rnd 75 202 120 1630.90 1659.14 1.73 280.62 2237.01 37.16 – 2250.07 37.96 – 

21-5-Mix 75 202 120 1728.91 1765.75 2.13 262.50 2067.03 19.56 – 2154.49 24.62 – 

21-5-Pur 75 202 120 1321.19 1365.06 3.32 231.73 1607.64 21.68 – 1669.15 26.34 – 

25-2-Rnd 100 157 300 2417.89 2559.98 5.88 200.45 3104.05 28.38 – 3106.46 28.48 – 

25-2-Mix 100 157 300 2223.29 2380.69 7.08 199.64 2948.81 32.63 – 3081.46 38.60 – 

25-2-Pur 100 157 300 2121.95 2254.02 6.22 130.20 2582.53 21.71 – 2646.27 24.71 – 

25-3-Rnd 100 212 300 2423.59 2528.47 4.33 206.07 3105.41 28.13 – 3098.09 27.83 – 

25-3-Mix 100 212 300 2196.52 2274.95 3.57 242.74 2906.68 32.33 – 3045.32 38.64 – 

25-3-Pur 100 212 300 2154.88 2241.20 4.01 165.41 2522.70 17.07 – 2584.63 19.94 – 

25-4-Rnd 100 254 300 2471.34 2545.58 3.00 191.98 3088.07 24.95 – 3095.72 25.26 – 

25-4-Mix 100 254 300 2186.82 2269.58 3.78 231.34 2886.40 31.99 – 3035.13 38.79 – 
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25-4-Pur 100 254 300 2166.21 2237.66 3.30 149.58 2552.36 17.83 – 2610.30 20.50 – 

25-5-Rnd 100 311 300 2146.53 2185.33 1.81 269.22 2946.79 37.28 – 2929.42 36.47 – 

25-5-Mix 100 311 300 1981.35 2013.81 1.64 308.35 2733.71 37.97 – 2889.13 45.82 – 

25-5-Pur 100 311 300 1900.61 1932.41 1.67 236.32 2284.15 20.18 – 2392.03 25.86 – 

30-2-Rnd 150 225 900 3212.91 3357.04 4.49 192.59 4125.77 28.41 – 4127.65 28.47 – 

30-2-Mix 150 225 900 2941.75 3085.51 4.89 246.16 3888.60 32.19 – 3989.23 35.61 – 

30-2-Pur 150 225 900 2901.00 3064.66 5.64 136.23 3520.50 21.35 – 3583.79 23.54 – 

30-3-Rnd 150 298 900 3319.29 3458.27 4.19 195.97 4218.74 27.10 – 4224.18 27.26 – 

30-3-Mix 150 298 900 3085.68 3237.63 4.92 232.76 3999.59 29.62 – 4158.31 34.76 – 

30-3-Pur 150 298 900 3141.39 3246.05 3.33 144.04 3656.44 16.40 – 3699.78 17.78 – 

30-4-Rnd 150 366 900 3323.61 3432.26 3.27 206.47 4189.11 26.04 – 4181.14 25.80 – 

30-4-Mix 150 366 900 3038.70 3126.83 2.90 229.36 3910.82 28.70 – 4021.36 32.34 – 

30-4-Pur 150 366 900 3071.03 3195.58 4.06 146.64 3640.62 18.55 – 3656.72 19.07 – 

30-5-Rnd 150 433 900 2955.31 3051.51 3.26 275.64 3889.38 31.61 – 3892.39 31.71 – 

30-5-Mix 150 433 900 2660.34 2700.66 1.52 322.03 3577.25 34.47 – 3731.25 40.25 – 

30-5-Pur 150 433 900 2702.15 2712.68 0.39 224.58 3154.68 16.75 – 3217.27 19.06 – 

Average      3.91 198.96  24.78   28.41  

      Table 14: Results (travel distances) for different variants of 2L-PDP (“NoRotate” variant, complete results).

Instance 1D Unrestricted Simultaneous Packing Independent Partial Routes 

name 
req. 

n 

items

m 

CPU 

sec 
avg-ttd avg-ttd   gap %  

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 

09-2-Rnd 25 40 30 704.24 762.44 8.27 136.43 977.09 38.74 – 977.09 38.74 – 

09-2-Mix 25 40 30 828.46 951.79 14.89 148.06 1065.49 28.61 – 1107.33 33.66 – 

09-2-Pur 25 40 30 827.21 952.69 15.17 99.29 1004.77 21.47 – 1064.96 28.74 – 

09-3-Rnd 25 61 30 727.29 752.41 3.45 162.73 963.25 32.44 – 963.25 32.44 – 

09-3-Mix 25 61 30 881.69 977.87 10.91 161.75 1086.04 23.18 – 1147.82 30.18 – 

09-3-Pur 25 61 30 829.47 953.98 15.01 137.09 1014.14 22.26 – 1070.50 29.06 – 

09-4-Rnd 25 63 30 709.10 737.21 3.96 152.77 958.60 35.19 – 958.60 35.19 – 

09-4-Mix 25 63 30 847.03 989.50 16.82 87.39 1074.08 26.81 – 1111.18 31.19 – 

09-4-Pur 25 63 30 848.14 950.02 12.01 80.60 1006.88 18.72 – 1013.73 19.52 – 

09-5-Rnd 25 91 30 706.07 716.79 1.52 189.33 869.40 23.13 – 869.40 23.13 – 

09-5-Mix 25 91 30 821.05 823.11 0.25 188.69 957.04 16.56 – 1098.42 33.78 – 

09-5-Pur 25 91 30 791.58 815.46 3.02 162.02 877.58 10.86 – 970.54 22.61 – 

19-2-Rnd 50 82 60 1123.94 1256.20 11.77 198.62 1651.75 46.96 – 1657.00 47.43 – 

19-2-Mix 50 82 60 1434.45 1561.96 8.89 195.70 1782.44 24.26 – 1897.36 32.27 – 

19-2-Pur 50 82 60 1087.98 1203.09 10.58 143.66 1348.33 23.93 – 1400.42 28.72 – 

19-3-Rnd 50 103 60 1188.44 1258.80 5.92 201.45 1650.19 38.85 – 1651.61 38.97 – 

19-3-Mix 50 103 60 1484.52 1586.18 6.85 186.91 1824.13 22.88 – 1870.79 26.02 – 

19-3-Pur 50 103 60 1099.54 1198.98 9.04 154.32 1354.76 23.21 – 1437.80 30.76 – 

19-4-Rnd 50 134 60 1213.39 1275.84 5.15 186.71 1659.92 36.80 – 1666.77 37.36 – 

19-4-Mix 50 134 60 1480.96 1591.69 7.48 173.25 1819.19 22.84 – 1932.04 30.46 – 

19-4-Pur 50 134 60 1138.63 1247.50 9.56 126.07 1406.21 23.50 – 1455.46 27.83 – 

19-5-Rnd 50 157 60 1060.30 1093.82 3.16 276.44 1563.10 47.42 – 1567.80 47.86 – 

19-5-Mix 50 157 60 1304.16 1352.91 3.74 228.17 1578.70 21.05 – 1792.71 37.46 – 
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19-5-Pur 50 157 60 976.34 1009.30 3.38 189.50 1169.67 19.80 – 1242.20 27.23 – 

21-2-Rnd 75 114 120 1767.76 1914.73 8.31 219.04 2427.36 37.31 – 2450.61 38.63 – 

21-2-Mix 75 114 120 1799.79 1951.98 8.46 226.31 2251.38 25.09 – 2297.14 27.63 – 

21-2-Pur 75 114 120 1409.95 1565.43 11.03 166.22 1840.23 30.52 – 1909.73 35.45 – 

21-3-Rnd 75 164 120 1971.75 2089.50 5.97 189.03 2519.17 27.76 – 2521.73 27.89 – 

21-3-Mix 75 164 120 1968.64 2177.43 10.61 190.37 2468.48 25.39 – 2514.22 27.71 – 

21-3-Pur 75 164 120 1595.27 1712.05 7.32 151.83 1947.55 22.08 – 1979.70 24.10 – 

21-4-Rnd 75 168 120 1743.98 1842.86 5.67 186.36 2380.33 36.49 – 2378.51 36.38 – 

21-4-Mix 75 168 120 1815.20 1919.86 5.77 192.46 2211.61 21.84 – 2271.51 25.14 – 

21-4-Pur 75 168 120 1492.70 1551.43 3.93 134.09 1830.46 22.63 – 1866.97 25.07 – 

21-5-Rnd 75 202 120 1630.90 1693.52 3.84 242.49 2266.97 39.00 – 2269.90 39.18 – 

21-5-Mix 75 202 120 1728.91 1803.61 4.32 248.00 2107.93 21.92 – 2164.75 25.21 – 

21-5-Pur 75 202 120 1321.19 1399.67 5.94 197.78 1638.30 24.00 – 1694.79 28.28 – 

25-2-Rnd 100 157 300 2417.89 2678.67 10.79 177.22 3248.80 34.36 – 3260.42 34.85 – 

25-2-Mix 100 157 300 2223.29 2516.00 13.17 189.28 3048.13 37.10 – 3215.23 44.62 – 

25-2-Pur 100 157 300 2121.95 2384.71 12.38 145.85 2719.28 28.15 – 2789.91 31.48 – 

25-3-Rnd 100 212 300 2423.59 2631.36 8.57 209.89 3224.03 33.03 – 3215.21 32.66 – 

25-3-Mix 100 212 300 2196.52 2368.35 7.82 212.11 2991.48 36.19 – 3130.54 42.52 – 

25-3-Pur 100 212 300 2154.88 2331.26 8.19 155.34 2676.20 24.19 – 2732.23 26.79 – 

25-4-Rnd 100 254 300 2471.34 2620.74 6.05 176.39 3165.64 28.09 – 3155.20 27.67 – 

25-4-Mix 100 254 300 2186.82 2289.26 4.68 211.66 2956.18 35.18 – 3090.57 41.33 – 

25-4-Pur 100 254 300 2166.21 2309.21 6.60 137.48 2667.44 23.14 – 2720.49 25.59 – 

25-5-Rnd 100 311 300 2146.53 2210.69 2.99 237.91 2976.51 38.67 – 2983.29 38.98 – 

25-5-Mix 100 311 300 1981.35 2052.81 3.61 274.93 2783.52 40.49 – 2908.70 46.80 – 

25-5-Pur 100 311 300 1900.61 1963.95 3.33 188.71 2289.93 20.48 – 2419.58 27.31 – 

30-2-Rnd 150 225 900 3212.91 3475.64 8.18 175.50 4265.40 32.76 – 4257.73 32.52 – 

30-2-Mix 150 225 900 2941.75 3261.25 10.86 206.96 4051.89 37.74 – 4151.40 41.12 – 

30-2-Pur 150 225 900 2901.00 3208.83 10.61 131.48 3653.69 25.95 – 3676.27 26.72 – 

30-3-Rnd 150 298 900 3319.29 3575.52 7.72 181.68 4320.93 30.18 – 4329.80 30.44 – 

30-3-Mix 150 298 900 3085.68 3365.50 9.07 207.16 4138.23 34.11 – 4252.08 37.80 – 

30-3-Pur 150 298 900 3141.39 3362.66 7.04 142.79 3825.63 21.78 – 3864.27 23.01 – 

30-4-Rnd 150 366 900 3323.61 3525.60 6.08 197.54 4324.26 30.11 – 4291.85 29.13 – 

30-4-Mix 150 366 900 3038.70 3219.18 5.94 217.04 4042.58 33.04 – 4161.23 36.94 – 

30-4-Pur 150 366 900 3071.03 3289.39 7.11 141.92 3777.89 23.02 – 3799.13 23.71 – 

30-5-Rnd 150 433 900 2955.31 3092.13 4.63 247.94 3931.38 33.03 – 3909.83 32.30 – 

30-5-Mix 150 433 900 2660.34 2732.56 2.71 299.78 3637.44 36.73 – 3809.21 43.19 – 

30-5-Pur 150 433 900 2702.15 2770.56 2.53 183.80 3238.91 19.86 – 3287.70 21.67 – 

Average      7.38 182.69  28.68   32.17  

Table 15: Total iteration numbers and computing times to find the best solution (“Rotate” variant, complete results).

Instance Independent Partial Routes Simultaneous Packing 
Ratio 

    iterations name 
req. 

n 

items

m 

CPU 

sec 

 Runtime    

to best 

Runtime to 

best in % 

Total     

iterations 

 Runtime    

to best 

  Runtime to 

best in % 

Total     

iterations 

09-2-Rnd 25 40 30 3.14 10.47 677510 4.13 13.77 301744 0.45 
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09-2-Mix 25 40 30 1.79 5.97 859628 1.87 6.23 343621 0.40 

09-2-Pur 25 40 30 6.86 22.87 693085 4.14 13.80 305032 0.44 

09-3-Rnd 25 61 30 7.66 25.53 676485 3.46 11.53 296549 0.44 

09-3-Mix 25 61 30 3.42 11.40 870142 1.94 6.47 356203 0.41 

09-3-Pur 25 61 30 5.64 18.80 735637 7.82 26.07 324160 0.44 

09-4-Rnd 25 63 30 3.69 12.30 658966 3.80 12.67 293943 0.45 

09-4-Mix 25 63 30 1.50 5.00 858187 5.32 17.73 358785 0.42 

09-4-Pur 25 63 30 9.92 33.07 694753 5.42 18.07 315089 0.45 

09-5-Rnd 25 91 30 2.50 8.33 660934 0.93 3.10 256483 0.39 

09-5-Mix 25 91 30 7.54 25.13 869122 2.54 8.47 335365 0.39 

09-5-Pur 25 91 30 4.03 13.43 703858 1.78 5.93 253284 0.36 

19-2-Rnd 50 82 60 18.15 30.25 301668 27.04 45.07 121480 0.40 

19-2-Mix 50 82 60 29.48 49.13 377188 7.55 12.58 147204 0.39 

19-2-Pur 50 82 60 14.77 24.62 276187 21.63 36.05 95434 0.35 

19-3-Rnd 50 103 60 25.65 42.75 307649 26.88 44.80 124157 0.40 

19-3-Mix 50 103 60 9.89 16.48 365401 10.74 17.90 154127 0.42 

19-3-Pur 50 103 60 15.24 25.40 286669 35.86 59.77 97344 0.34 

19-4-Rnd 50 134 60 18.80 31.33 291448 16.73 27.88 123299 0.42 

19-4-Mix 50 134 60 22.12 36.87 369146 29.31 48.85 150056 0.41 

19-4-Pur 50 134 60 18.70 31.17 277825 24.69 41.15 101135 0.36 

19-5-Rnd 50 157 60 12.59 20.98 227995 16.64 27.73 98035 0.43 

19-5-Mix 50 157 60 9.83 16.38 342502 23.82 39.70 113064 0.33 

19-5-Pur 50 157 60 16.21 27.02 232114 10.83 18.05 75663 0.33 

21-2-Rnd 75 114 120 55.08 45.90 226599 62.27 51.89 99188 0.44 

21-2-Mix 75 114 120 55.68 46.40 269231 69.27 57.73 94611 0.35 

21-2-Pur 75 114 120 59.56 49.63 190448 76.24 63.53 62201 0.33 

21-3-Rnd 75 164 120 57.04 47.53 265594 58.88 49.07 119277 0.45 

21-3-Mix 75 164 120 74.63 62.19 276408 75.12 62.60 113066 0.41 

21-3-Pur 75 164 120 79.77 66.48 208837 78.32 65.27 72981 0.35 

21-4-Rnd 75 168 120 36.28 30.23 220580 59.64 49.70 89828 0.41 

21-4-Mix 75 168 120 72.46 60.38 232932 80.12 66.77 75745 0.33 

21-4-Pur 75 168 120 91.05 75.88 160459 80.79 67.33 49184 0.31 

21-5-Rnd 75 202 120 80.05 66.71 179722 52.74 43.95 82425 0.46 

21-5-Mix 75 202 120 40.37 33.64 205508 92.29 76.91 69756 0.34 

21-5-Pur 75 202 120 58.39 48.66 151651 68.93 57.44 38842 0.26 

25-2-Rnd 100 157 300 166.90 55.63 360736 211.72 70.57 153021 0.42 

25-2-Mix 100 157 300 186.16 62.05 396084 188.72 62.91 150189 0.38 

25-2-Pur 100 157 300 179.73 59.91 315825 186.68 62.23 120034 0.38 

25-3-Rnd 100 212 300 211.22 70.41 346793 225.58 75.19 151316 0.44 

25-3-Mix 100 212 300 128.54 42.85 381004 189.64 63.21 148064 0.39 

25-3-Pur 100 212 300 198.51 66.17 313848 181.15 60.38 124748 0.40 

25-4-Rnd 100 254 300 163.23 54.41 329294 141.33 47.11 151164 0.46 

25-4-Mix 100 254 300 139.60 46.53 372671 184.21 61.40 144303 0.39 

25-4-Pur 100 254 300 249.57 83.19 288791 156.02 52.01 116367 0.40 

25-5-Rnd 100 311 300 182.83 60.94 243853 221.73 73.91 105327 0.43 

25-5-Mix 100 311 300 112.10 37.37 338184 135.55 45.18 122609 0.36 

25-5-Pur 100 311 300 214.00 71.33 215152 185.72 61.91 82163 0.38 

30-2-Rnd 150 225 900 588.85 65.43 387306 748.72 83.19 169808 0.44 
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30-2-Mix 150 225 900 639.49 71.05 438919 481.07 53.45 160988 0.37 

30-2-Pur 150 225 900 650.04 72.23 342012 754.51 83.83 126217 0.37 

30-3-Rnd 150 298 900 761.26 84.58 363763 773.34 85.93 175194 0.48 

30-3-Mix 150 298 900 528.54 58.73 428842 666.94 74.10 168398 0.39 

30-3-Pur 150 298 900 602.89 66.99 341973 737.58 81.95 146540 0.43 

30-4-Rnd 150 366 900 626.66 69.63 340395 821.90 91.32 159951 0.47 

30-4-Mix 150 366 900 513.93 57.10 416217 539.58 59.95 164887 0.40 

30-4-Pur 150 366 900 763.90 84.88 307661 790.42 87.82 122616 0.40 

30-5-Rnd 150 433 900 591.70 65.74 270265 525.86 58.43 127891 0.47 

30-5-Mix 150 433 900 357.22 39.69 362924 581.38 64.60 122701 0.34 

30-5-Pur 150 433 900 552.52 61.39 224843 736.71 81.86 83153 0.37 

Average     44.78   48.63  0.40 
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