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Modelling of the Creep-damage under the Reversed Stress States

by Considering Damage Activation and Deactivation

H. Altenbach, C.-X. Huang, K. Naumenko

Based on the experimental results of copper at 2500C by Murakami and Sanomura (1985), the isotropic and

anisotropic damage models as well as the mechanism of the damage activation or deactivation are established

and coupled in one constitutive equation. With the help of the finite element method the creep—damage behavior

of copper under dyferent stress states is simulated.

Yhe stress state under combined tension and torsion is discussed in detail. In the cases of the spontaneous

reversal ofthe shear stress the rotation of the principal directions of the stress tensor leads to a delayed rotation

of the principal strain directions, therefore, a change ofthe damage state (close or reopen of the micro—cracks)

is induced. This phenomenon is modelled by the anisotropic damage model considering the mechanism of the

damage activation and deactivation. The predictions are compared with those based on the isotropic model as

well as the anisotropic model without the activation mechanism.

1 Introduction

Engineering structures operating at elevated temperatures (higher than 0.3—0.4 times the melting temperature)

show atypical creep behavior accompanied by time—dependent creep deformations and damage processes induced

by the nucleation and the growth of microscopic cracks and cavities. The evolution of such material damage

influences the mechanical state of material. On the last stage before the creep rupture the rapid changes in the

stress and the strain state are the consequences observed in many experiments, Riedel (1987).

The main problem arising by creep damage simulation is the formulation of a suitable material model which is

able to describe the sensitivity of creep deformation and damage rates to the stress level, the stress state, etc. Such

a model has to extrapolate correctly the creep data usually available from uniaxial short-term creep tests (under

constant stresses) and realized for narrow stress ranges to the in-service conditions (varying stresses). In addition,

the change of the damage state induced by the loading changes has to be considered.

A lot of experimental observations (eg. Betten et al., 1995; Murakami and Sanomura, 1985) show various dis—

agreements between the experimental results and the numerical simulations based on the isotropic damage con—

cept. In fact the stress state and the evolution of damage affect each other. The orientation of the principal direction

of the applied stress tensor (or the applied strain tensor) determines, on one hand, the initial orientations of the

cavities and micro—cracks nucleated on grain boundaries and settles the tendency of the anisotropic damage evolu-

tion of the materials. Besides, the opened micro~cracks may close as well as the closed micro-cracks may reopen

if the stress state changes, Qi and Bertram (1997). On the other hand, the anisotropic properties of the material

deterioration result in the redistribution of the stresses different from the isotropic behavior . Since the nature of

damage is generally anisotropic the isotropic phenomenon of the material damage may be treated as the special

state of the damage anisotropy. Conversely, the isotropic damage models can be extended to models considering

the damage induced anisotropy (e.g. Betten, 1983; Cordebois and Sidoroff, 1983; Benallal, 2000; Murakami and

Ohno, 2000; Murakami and Ohno, 1981).

Murakami and Sanomura (1985) tested copper at 250°C under varying loading and formulated a model based on

a second rank damage tensor in order to describe the creep responses. Although the anisotropic damage model

provides better predictions compared with the isotropic one, significant deviations were observed in the case of

reversed torsion. As a possibility of the modification the contribution of the creep rates to the damage growth was

discussed.

In this paper we put our attention to another possibility for proceeding modification by introducing the mecha-

nism of the damage activation and deactivation in the constitutive model, so that the fact of the state change of

the micro-cracks induced by the loading changes can be described, i.e., the damage still exists but the loading

condition can render it inactive. For the representation of this mechanism Hansen and Schreyer (1995) proposed
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a phenomenological model. Based on this approach, it is possible to couple the damage model and the mecha—

nism of the damage activation and deactivation into the constitutive equation for the creep-damage behavior under

varying loads. In our study we implement these coupled models into a finite element code in order to solve the

initial-boundary value problem. By modelling the creep tests of the copper at 2500C under combined tension and

torsion we can compare the validity of different creep-damage models.

2 Creep-damage Models

If we employ the conventional creep laws of McVetty type, Finnie and Heller (1959), together with the power law

damage equation ( Kachanov, 1958; Rabotnov, 1969) the constitutive model for isotropic creep behavior can be

formulated as
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where the first term in equation (1-1) represents the primary creep and the second term is for secondary and tertiary

creep of the Norton—Kachanov type. ovM is the von Mises equivalent stress, s is the stress deviator. Equation (1-2)

represents the evolution of the isotropic damage parameter 0). seq is used in the form proposed by Leckie and

Hayhurst (1977) with the maximum principal stress (51, 12(3) is the second invariant of the stress deviator. t* is a

fictitious time that should be eliminated for problems of variable stresses, Murakami and Sanomura (1985). A1,

m, r, A2, n2, B, k and l are material constants. Note, the dimensions of A1 and A2 depend on the values of the

exponents n1 and n2. In equation (1-3) 0L can be used as an influence or weighting factor. The creep equation

fulfills the incompressibility condition.

The effective stress based on the isotropic damage concept by Rabotnov (1969) has the form

N 1

oz—o1_@ (2)

By applying the effective stress 6 the damage evolution equation (1-2) can be transformed into its equivalent form
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where 6M, s, 68g, 61 and [2(5) are the effective von Mises equivalent stress, the effective stress deviator, the

effective damage equivalent stress, the effective maximum principal stress and the second effective stress deviator,

respectively.

Based on the isotropic damage concept anisotropic damage models are proposed mostly by introducing the concept

of the effective stress tensor as well as the tensor of material constants, Altenbach et a1. (1995). According to

Lemaitre and Chaboche (1990) the effective stress tensor can be formulated as

62M~6 (4)
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where M is a forth rank tensor depending on the current damage state. Cordebois and Sidoroff (1983) proposed

the following expression

M:[I——Q]’%/\[I—Q]’% (5)

where] represents a second rank identity tensor, 9 is a second rank damage tensor. The composition denoted by

the wedge /\ is defined byA /\B = aijbk1(ei®ek ®ej ®ei) for an orthonormal basis ei. In the principal coordinate

system of the damage tensor, the matrix form of equation (4) is given by
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where 6,-1- and 6,7 are the components ofc and Ö, respectively, and (21,02 and Q3 denote the principal values

of the damage tensor Q. In addition to (4) and (5), Zheng and Betten (1996) and Betten (2001) have discussed

several effective stress tensors in more detail.

To express the evolution of anisotropic damage Chaboche (1982) suggested a representation of the damage tensor

as follows:

(2 z dR (a)

The evolution of the scalar d can be described by using equation (3-1) after substituting the effective stress tensor

(4):

d : B<6eq>k<56q>lik (9)

The evolution equation of the anisotropic damage tensor has the following form

Q : d'R : B<aeq)k(oeq>l"kk (10)

The direction tensor R is defined as

R:(l~k,)S++k,-I ngrgl (11)

where the second term represents the isotropic evolution. The anisotropic part can be expressed by the tensor S1

that contains the direction of the positive effective stresses

S=T-6-TT
(12)

where the transformation tensor T contains the eigenvectors n61; i : 1,2, 3 (i.e. Ti]- : nqi, n9” is the j—th component

of the i—th eigenvector), so that the effective stress tensor is transformed into the diagonal form. The positive

direction may be filtered by means of the McAulcy—brackets and normalized by the maximal principal tensile stress

3;“. After the retransformation into the original coordinate system we have the normalized positive direction of

the effective stress as follows

1
T

StzT -(S)~T +

Smut

 

(13)
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Introducing the effective stress tensor Ö and the damage tensor Q into the second part of the creep constitutive

equation (1-1) we obtain
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3 Mechanism of the Damage Activation and Deactivation

The damage may still exist but eventually does not affect the stiffness of the material, i,e., the damage effects may

be activated or deactivated according to the stress and strain state. If the micro—cracks are open, the inner surfaces

of them are expected to be stress free, the damage is active and the effective stress is higher than the usual stress.

If the micro—cracks are closed under compression, the effective stress is equal to the usual stress, and thus, the

damage becomes inactive, Qi and Bertram (1997). In the uniaxial case the damage is active, if

c the total strain 8 is positive, because the micro-cracks are open,

0 the elastic strain 88’ is positive, because the damaged material with closed micro-cracks (8 is negative) can

not be in tension.

This relationship may be described by an activation function W“

to“ :mwa(s‚se’) Wage”) : 1 — [1 —H(g)][1 —H(s€’)] (15)

where H(x) is the Heaviside function, Hansen and Schreyer (1995). to is the damage parameter. to“ is the active

damage parameter.

To extend the uniaxial activation function W” to multi-axial stress states, one can consider the spectral decompo—

sition of the elastic strain tensor 581 and the total strain tensor 8

3
el 1:]

eel z Z Eflngl ®n91 e =
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3
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where 8;] and E] are the I-th eigenvalues, n81 and n91 are the corresponding I-th eigenvectors of 5‘,” and 8[, re—

spectively. By means of the Heaviside function the crack opening/closing mechanism can be described with the

following tensors

3 el e] 3
Qel,+ : 2H(E;I>nsl ®n81 Q+ : 2H(81)n9[ ®ngl

(i7)
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where Q+ and (2817+ are the tensors defining the positive directions of the total strain tensor and of the elastic

strain tensor, respectively. The positive spectral projection operators (forth rank tensors) for the elastic and the

total strains are defined as

PE“ : Qe’v+ /\ Qelv+ P+ : Q+ /\ Qt (18)

The positive projection of the elastic and the total strain tensors are then given by

Eel‚+ : Pel,+ „Eez 8+ : p+ „E (19)

An active damage tensor is defined as follows

(2“ = W“ „Q, where W“ : I — (1 —k„‚) (I — 13+). (I — P6“) (20)

and I is the fourth rank unit tensor. If the parameter kg = l, W“ is transformed into the unit tensor 1, in this

case the damage is always active; if ka : O, the mechanism of the damage activation and deactivation is included.
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Replacing the damage tensor (2 by the active damage one Q“ in equation (5) the active effective stress tensor has

the form

6=M--0’,where M=[I—Q”]’%/\[I—Q“]“% (21)

similar to (5), however, M in (5) is different from M in (21).

By applying the active damage tensor and the active effective stress tensor we have the creep-damage constitutive

model which consists of

o the elastic and creep model, equation (14),

the damage activation and deactivation by Hanson and Schreyer, equation (20),

the active effective stress tensor, equation (21),

o the damage operator by Cordebois and Sidoroff, equation (6),

o the evolution equation by Kachanov and Rabotnov, equation (10). as well as the direction formulation by

Chaboche, equation (11).

4 Theoretical Prediction and Comparison with Experimental Results

The validity of the models may be analyzed by comparing with the experimental results. Therefore, we apply the

constitutive equation for elastic and creep behavior coupled with three damage models as follows:

0 the isotropic damage model (Kachanov-Rabotnov model with k,- = 1 in equation (11) ),

o the anisotropic damage model 1 (with k,. : 0 in equation (11) and ka : 1 in equation (20) ) as well as

o the active anisotropic damage model 2 (with k,. = 0 in equation (11) and k0 = 0 in equation (20) ).

Murakami and Sanomura (1985) identified the material constants for copper at 250°C from creep curves under

constant tension stresses as follows: E = 87900 MPa. v = 0.333, A1 z 4.61 ~10’6 MPa””, m z 1.98, r : 0.11

h‘l ,A2 = 12-1040 MPa-"2/h, n2 = 3.43, B = 5.52 - 10*”) MPa’llh, l = 3.46 and k z 3.46. The weighting

factor on = 0.75 is suggested by Murakami and Sanomura (1985) for the isotropic damage model, and 0L : 0.68

for the anisotropic damage model. In the case of the uniaxial tensile loads (with ex : 693,606, 520,400 and

35.0 MPa, respectively) the introduced material models (the model with a scalar damage parameter (1) as well as

the model (14) with anisotropic damage (10) with or without activation (20)) provide the same predictions. The

simulation results based on these three models agree well with the experimental data, Figure 1.

In order to discuss the validity of different models in multi-axial cases, we performed the modelling of creep

behavior under the combined constant tension and reversed torsion. The corresponding experimental results can

be found in Murakami and Sanomura (1985). The tests were performed on tubular specimens loaded by tensile

stress 6;; and the shear stress Txy. The corresponding values were specified in such a manner that the value of the

damage equivalent stress (seq 2 (x0; + (1 — 006W 2 6* was constant and equal to 45 MPa. After the time period

t z 480 h the reversal of the shear stress was realized so that the direction of the first principal stress was rotated on

A6. Three series of tests were performed with A0 = 300,600, 80°. Figures 2, 3 and 4 show the time variations of

the creep strain components. The lines with symbols marked by number 1 represent the experimental data. Those

marked by numbers 2, 3 and 4 represent the numerical predictions by the isotropic model, the anisotropic model

1 and model 2, respectively. According to the results of the experiments the rupture times for A6 = 300,600 and

80° are 13;], z 992, 1360 and 1504 h, respectively. Since the damage growth is dominantly controlled by the first

principal stress the damage evolution after the shear stress reversal will take place on the rotated surface elements.

This explains the reason for the prolongation of the rupture time with the increase of A0. This fact has been

confirmed by micrographic observations of damaged copper tubes, Trampczynski et a1. (1981). Therefore, the

isotropic damage concept underestimate the rupture times, see Figures 2 - 4 and Table 1. The predictions of the

rupture times rät-‚l = 850, 1176 and 1342 h by anisotropic model 1 for A0 z 300,60o and 80°, respectively, show

similar trends to those of the experiments. The results are better compared to the isotropic model. The anisotropic
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Figure 1. Simulations of Uniaxial Creep Curves of Copper at 250°C, the Experimental Results from Murakami

              

and Sanomura (1985)
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model 2 predicts the rupture times @an = 854, 1268 and 1567 h for A6 : 30°‚ 60° and 80°, respectively. These

predictions are more accurate compared to the anisotropic model 1, for instance, in the case of 0 z 80° the ratio

of the predicted rupture time to the corresponding experimental value is 15m4/ 12W = 1.04.

Finally, we discuss now the creep response of the damaged material. The experiments show that the shear creep

rates after stress change at 480 h are reduced always by 30 w 50 percent in comparison with the minimum creep

rates before the stress change, Figures 2 - 4. The anisotropic model 1 describes the creep behavior up to the stress

change better than the isotropic model, but its prediction of the succeeding creep has to be modified. Compared

to the anisotropic model 1, the model 2 leads to better predictions of the creep response. In the case of A0 2 80°,

for instance, the predictions of creep strains by the anisotropic model 2 are significantly improved, Figure 4.

     

Experiment Isotropic model Anisotropic model 1 Anisotropic model 2

Life times 1;”, [h] t;va [h] gm [h] an” [h]

A0 : 300 992 771 850 854

A0 : 600 1360 773 1176 1268

A0 = 800 1504 773 1342 1567

Proportion I *aw /t*exp 11:0 /’.:xp 1371121/ 12x72 IZHFZ/[Äx’p

A6 = 300 1 0.78 0.85 0.86

A0 : 60° 1 0.57 0.86 0.93

A9 : 80° 1 0.51 0.89 1.04

       

Table 1. Comparison of the Rupture Times Obtained by Different Models with Experimental Results

In addition, we discuss the evolution of the damage parameter (D according to the isotropic model and the damage

components Qij as well as according to the anisotropic models 1 and 2, respectively. The equivalent stress

öeq which controlls the damage evolution is not the same in the isotropic and anisotropic models. In the last

case öeq becomes additionally direction dependent. As a result the rate of the damage components QU- by the

anisotropic models is generally smaller than that of the damage parameter a) in the isotropic model, see Figure

5(a), and a longer life time is predicted by the anisotropic model 1. Figure 5(b) shows the time variations of the

damage components Qij and of the activated damage components Q?!- by the anisotropic model 2. Compared to

the anisotropic model 1 the rates of the damage components (2U are further reduced and lead to longer life time.

The crosses of the curves for ij and for result from the damage deactivation caused by the delayed rotation

of the principal strains and the redistribution of the strain components after the stress change at 480 h.

5 Conclusions

The purpose of this paper was the numerical study of creep behavior of copper under complex stress states by

using different damage models. By comparing with experimental results the following conclusion can be given:

0 Three concepts for description of the creep-damage process (the isotropic concept as well as two anisotropic

concepts with or without the activation mechanism) can be conveniently included in one constitutive model.

In the case of the multi—axial stress states the anisotropic models lead to much better predictions than the

isotropic model.

0 The rotation of the principal stress induced by the reversed loading leads to the redistribution of the strains

and induces the state change of the micro-cracks. To describe this phenomenon the active damage tensor

and active effective stress tensor are applied. The numerical modelling shows an improvement of predicted

rupture times and creep curves.

0 Further modification of the anisotropic model with the mechanism of the damage activation and deactivation

is still necessary, because the hardening phenomenon must be taken into account especially for the varying

loads.
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