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Free Convection over 3 Vertical Flat Plate with a Variable Wall

Temperature and Internal Heat Generation in a Porous Medium

Saturated with a Non-Newtonian Fluid

T. Grosan, 1. Pop

A boundary-layer analysis is performed in this paper for the free convection flow over a vertical flat plate

embedded in a porous medium saturated by a power-law non-Newtonian fluid. It is assumed that the

temperature is a function of the distance from the origin, and that there is an internal heat source within the

porous medium. Similarity solutions are derivedfor the governing equations and then used to study the eflects of

the power-law temperature parameter and power-lawfluid index on the heat transfer characteristics.

1 Introduction

The subject of thermal convection in porous media has gained increasing research interest during the past several

decades. This is due to the presence of porous media in a wide range of geophysical and engineering applications

of current interest. These applications include, but are not limited to, geothermal energy extraction drying

processes (wood and food products), groundwater contamination, thermal energy storage, heat pipes, building

insulation, separation processes in chemical industry, filtration processes heat transfer enhancement especially in

high heat flux applications such as cooling of electronic equipment, to name just a few applications. Review of

the extensive work that has gone into this subject is available in the recent books by Ingham and Pop (1998),

Nield and Bejan (1999), Vafai (2000), and Pop and Ingham (2001).

However, a number of fluids, which could come in contact with porous media, show non—Newtonian flow

behaviour, especially in ceramic processing, enhanced oil recovery and filtration, see Nakayama and Shenoy

(1993).

Thermal convection in a fluid saturated porous medium with internal energy sources is very important in the

theory of thermal ignition when heat sources within the fluid saturated porous medium are driven by an

exothermic chemical reaction. Here the thermal gradients originated by the chemical reaction can be the driving

force for the onset of free convection, which markedly enhance the rate of heat transfer in comparison to a purely

conductive mechanism. The purpose of this paper is the analytical study of the free convection flow over a

vertical surface with variable surface temperature, placed in a fluid-saturated porous medium with a non-

Newtonian fluid and containing a uniform internal heat source. Appropriate transformation of variables are

attempted in order to seek similarity solution of the governing equations. These equations are solved numerically

using the shooting technique.

2 Basic Equations

We start from the conservation equations of mass, momentum (Darcy), and energy for a porous medium

saturated with a non-Newtonian power—law fluid model, originally suggested by Christopher and Middelman

(1965) and later modified by Dharmadhikari and Kale (1985). Under the Boussinesq and boundary layer

approximation, the basic equation can be written as
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where x and y are the Cartesian co—ordinates along and normal to the plate, respectively, u and v are the velocity

components along the x and y axes, T is the fluid temperature, To, is the temperature of the ambient fluid, g is the

acceleration due to gravity, p is the density, ß is the coefficient of thermal expansion, 04,, is the effective thermal

diffusivity, vii is the modified kinematic viscosity, C,, is the specific heat at constant pressure, qw is the internal

heat generation, n is the power law index and K*(n) is the modified permeability, which is given by
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where d is the particle diameter and E is the porosity. We notice that n < l corresponds to pseudoplastic fluids, n

= 1 to Newtonian fluids and n > 1 to dilatant fluids.

   

Darmadhikari and Kale

(1985 )

We assume that the temperature of the plate varies as a power function of the coordinate x along the plate, see

Cheng and Minkowycz (1977). Thus, the boundary conditions of equations (1) — (3) are

v = 0 T = Tm+AxÄ on y = 0 (5)

u —> O T ——> Tcm as y —> 00

whereA and Ä are positive constants.

To solve equations (1) — (3), we introduce the following similarity variables
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where l// is the stream function which is defined in the usual way as u = dip/By and v = -ö wax, and Ra,r is the

generalised local Rayleigh number which is defined as

l
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In order that similarity solutions of equations (1) — (3) exist, we assume, following Crepeau and Clarksean

(1994), that the internal heat generation is given by

k T‚—T _
qw = i324)“er

(8)

where km is the effective thermal conductivity of the porous medium. On using (6) and (8), equations (2) and (3)

reduce to the following ordinary differential equations

(f ‘)" = 9 (9)
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and the boundary conditions (5) become

f(0)=0 6(0)=1 19—>0 asn-aoo (11)

where primes denote differentiation with respect to 77.

The main physical quantity of interest in this problem is the local Nusselt number, which is given by

Nu/RaXl/z = —9’(n,/t,0) (12)

3 Results and Discussions

Computations for the similarity equations (9) and (10) subject to the boundary conditions (11) are carried out for

the power—law index n ranging from 0.5 to 2.5 with Ä: 0 (isothermal plate), 1/3 and 1 using the shooting method

as proposed by Chakraborthy (1998). The obtained results for the local Nusselt number given by equation (12)

are shown in Tables 1 and 2. Some known results from the literature are also included in these tables. It is seen

that the present results are in very good agreement with the known results. We are therefore confident that our

results are correct. Further, we notice from these tables that the heat transfer from the plate increases with the

index II when the internal heat generation is absent or present. However, the heat transfer is negative for all

values of n for an isothermal plate (Ä = 0) when the internal heat generation is present. It means that the heat

transfer goes from the fluid to the plate. i.e. the plate is cooled by internal heat generation rates.

Figures 1 and 2 illustrate the non—dimensional temperature profiles for different values of the parameters n and Ä

for the both cases when the internal heat generation is absent and when it is present. We notice that the

temperature profiles decreases with the increasing of n and the boundary layer thickness decreases with the

increases of Ä. Finally Figure 3 represents the variation of the local Nusselt number with n for some values of Ä.

We can see that the heat transfer increases with the increasing of power-law index n and also monotonically

increases with Ä.

             

Ä = 0 Ä = 1/3 Ä = 1

n Chen and present Cheng present Cheng present

Chen (1988) results (1977) results (1977) results

0.5 0.3768 0.377670 0.616256 0,928710

0.8 0.4238 0.423999 0.659114 0.978515

1.0 0.4437 0.443885 0.6776 0.677707 1.0000 0.999747

1.5 0.4752 0.475379 0.697294 1.033988

2.0 0.4938 0.493804 0.724662 1.053750

2.5 0.5059 0.505912 0.736076 1.067187

    

Table 1. Values of the Local Nusselt Number -6’ ’(n, Ä, 0) when Internal Heat Generation is Absent
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Ä: 0 x1 = 1/3 Ä: 1

n Postelnicu et present Postelnicu et present Postelnicu et Present

al. (2000) results al. (2000) results a1. (2000) results

0.5 —0.257442 0.080008 0.469726

0.8 -0.228813 0.102851 0.508398

1.0 -0.2152 0.215164 0.1141 0.114111 0.5240 0.525390

1.5 -0.192077 0.133529 0.553076

2.0 -0.177757 0.145721 0.569921

2.5 -0.168029 0.154037 0.581054

  

Table 2. Values of the Local Nusselt Number -6 ’(n, Ä, 0) when Internal Heat Generation is Present
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Figure 1. Temperature Profiles for n = 0.5, 0.8, 1, 1.5, 2, 2.5 and Ä:0, 1/3, 1 when Internal Heat Generation is

Absent
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Figure 2. Temperature Profiles for n = 0.5, 0.8, 1, 1.5, 2, 2.5 and Ä =0, 1/3, 1 when Internal Heat Generation

is Present
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Figure 3. Variation of the Local Nusselt Number -0 ’(n,/1,0) with n. (— with Internal Heat Generation;

-—— without Internal Heat Generation)
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