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Modelling of Elastic Deformation for Initially Anisotropic

Materials Sustaining Unilateral Damage

J. Betten, L. Zolochevska‚ A. Zolochevsky

A continuum unilateral damage mechanics model for elastic deformation of initially anisotropic materials is

presented This model describes simultaneously initial anisotropy, the difference between the damaging

processes under compressive and tensile loading types, and damage induced anisotropy. The proposed

equation for elastic deformation andproposed evolution equations containjoint invariants of the stress tensor

and some material tensors. A scalar cumulative damage parameter is considered and the damage growth

equation is formulated. It is shown that under the natural condition that the equivalent stress is always non-

negative the second thermodynamic principle is always valid Specific constitutive equations with a smaller

number ofmaterial parameters and invariants are obtained It is shown how these material parameters can be

determinedfrom a series ofbasic experiments.

1 Introduction

In the past two decades, in particular, Continuum Unilateral Damage Mechanics (CUDM) has been applied to

creep deformation (Betten et al., 1987, 1998; Zolochevsky, 1988, 1991; Qi and Bertram, 1997), elastic

deformation (Lemaitre, 1987; Chaboche, 1992, 1993; Ladeveze et al., 1994; Lubarda et al., 1994; Shan et al.,

1994; Chaboche et al., 1995; Halm and Dragon, 1996; Krajcinovic, 1996; Yazdani and Kamavat, 1997), fatigue

behaviour (H. Altenbach, J. Altenbach and Zolochevsky, 1995). A systematic consideration ofthe basic aspects

of CUDM can be found in papers by Chaboche ( 1992, 1993). One of the difficulties in the CUDM is connected

with the simultaneous description of the anisotropic nature of damage and the difference between the damaging

processes under tensile and compressive loading types (Chaboche, 1992). Even in the elastic case, up to now

there are difficulties to reproduce simultaneously the initial anisotropy, the different damage in tension and

compression, and the damage induced anisotropy (Chaboche et al., 1995). In most papers under consideration

the concept of positive and negative projections of stress and strain tensors was used to account for tensile and

compressive loading types. The aim of this paper is to consider a new unilateral damage model for elastic

deformation without using the positive and negative stress and strain projection operators. In the following

small elastic strains in isothermal processes are considered within the framework of the phenomenological

macroscopic approach of CUDM.

2 Formulation of Constitutive Equations

To describe the anisotropic damage we can start from the consideration of elastic deformation in an isotropic

medium. For this purpose the mentioned "isotropic concept" (Betten, 1981) will be used by substituting a

mapped stress tensor. First let us consider the isotropic case without damage.

The stress—strain relations for elastic behaviour are based on the assumption of the existence of a potential F .

For isotropic materials this potential F = F (o) is a scalar—valued tensor function ofthe Cauchy stress tensor 0 .

It is evident from the theory of isotropic tensor functions (Betten, 1986) that in an isotropic medium an elastic

potential

F = F [.11 (c), J2 (c), J3(c)] (1)

can depend only on the invariants

J1(G)=G--I (2a)

J2 (0') = (5--0 (2b)

J3(G)=o~(6-G)
(20)
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of the Cauchy stress tensor. Here, the symbol (-) denotes the scalar product, I represents unit second—order

tensor. Taking into consideration the above mentioned assumption, the potential F in equation (1) can be

written in the form

Ego—3 (3)

where the equivalent stress 6, has the following structure (Zolochevskij, 1988)

o‘e =02 +0101 +y0'3 (4)

Here

a] = B J1 (6) (5a)

a; z A .112 (c) + C J2 (c) (5b)

a; = D J13(c) + K J1(6)J2(G)+ L J,(c) (Sc)

are scalar functions of the stress invariants; A,B,C, D, K,Lare material parameters; 05,7 are weight

coefficients taking into account the influence of linear and cubic polynomials in the expression (4) for 66. The

1+

representation (4) is a general form. For example, by placing in (4), (5b) a = 7 : 0, A : —%, C = TV we

arrive (Betten, 1993) at the equivalent stress a, = HTVJz ——;—J12 in the classical linear elastic potential

on the base of the initial elastic modulus E and the Poisson’s ratio v.

By analogy with the concept of Krajcinovic and Fonseka (1981), let us describe the stress-strain state of the

damaged isotropic material on the basis of the relations (1)-(5) for the undamaged material with the parameters

A, B, C, D, K, L by replacing the damage scalar functions A, B,C, D, K, L , respectively.

We then use the assumption (Betten, 1981) that the anisotropy of the material is entirely involved in a fourth

rank tensor MW , and the anisotropic behaviour is described by the linear transformation

T = MM) “C (6)

where o is the Cauchy stress tensor in an anisotropic undamaged medium. By analogy with relations (5a,b,c)

the basic invariants ofthe image tensor (6) are given by:

01(1) 2 01(b,6) = 5--6 (7a)

a§(x)sa§(a,r)=c~5~c (7b)

03(1)EU§(E,6)=6--(6--E--0‘) (70)

if we define the material tensors b, ä, E as:

by. a B Mm, (8a)

Eli/kl Z A MijppMquq + C Miqu Mk/pq (8b)

Eijklnm Z D Mijpp Mquqanrr + K Mijpp Mquranqr + Z Mijrs Mklsp anpr

Here we use Einstein's summation convention. The invariants (7a,b,c) are elements of the system of joint

invariants, which are the only considered ones, and the material tensors (8a,b,c) are influenced by damage.

As known, the elastic infinitesimal strain tensor s is determined by the rule

we: 9
as ()

Therefore, using equations (3),(4) and the relations

i=0) 502+a501+ 60-3

0b ° 56 äc äo

6’6 0'2
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261:5 (10c)
56

503 (5-5-0

 

=_— (10d)

ÜG a;

we arrive at the constitutive equation

N .. N „5 ..

Fag? G+ab+yE—§—gj (11)

0'2 0'3

for the damaged anisotropic materials. This equation can be represented in canonical form (Betten, 1993)

s:H+P(4).-c+(Q(6)--o)uc (12)

where H, P“) , Q(6) are tensor functions depending on the stress tensor and the material tensors b, ä and E.

The constitutive equation (1 1) has a non—linear tensor structure and is a general form. That is why we analyse

possible specific relations, resulting from equation (1 l) and containing a smaller number of parameters.

For example, if we assume 7 = O ‚ we arrive at the linear tensor equation

  

s=ae[““°+a5) (13)
0'2

where

O'e=O'e(G‚S‚ä)

In the case of a = 0 , equation (1 l) is transformed into the non-linear tensor equation

:ae[ao.o+76..c2..6]

02 0'3

with the equivalent stress

08 = o-e(6‚ä‚E) (16)

Using the conditions a = 7 = 0 , from the relation (1 1) we obtain Hooke’s law

s = ä . o
(17)

for initially anisotropic damaged material with the same behaviour in tension and compression.

The rule (9) is compatible with the tensor function theory in the isotropic special case provided additional

conditions of integrability have been fulfilled. In more complicated cases, i.e., when the potential in (9) is a

function not only of the stress tensor but also of the damage tensor or the initial anisotropic material tensor, the

rule (9) furnishes only restricted forms of constitutive equations, even if a general potential has been assumed

(Betten, 1985).

3 Thermodynamic Consideration

Since the potential (3) is a homogeneous positive definite function of second degree, then, according to Euler's

theorem, we find:

WEo--e=2F (18)

The potential (3) is the density of the elastic strain energy, which can be interpreted as the thermodynamic

potential, in which the thermodynamic parameters of the state are the components of the stress tensor and the

material tensors.

Now we obtain the damage energy release rates (see Chaboche, 1992):
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-2:

   

_ N (19a)

y é’b

Y : 5—1? (19b)

ää

Y" = 55 (19c)

as

It follows from equations (3),(4),(7a‚b‚c) that

5—5 : am, 5€:— (20a)

äb ab

55 2 03 502 (20b)
ä ä as

5—5 = „e 50:3 (20c)
é’c äc

Lil Z C (20d)
é’b

0‘03 2 (5 ® 6 (206)

äa 202

603 Z 6 ® G ® G (200

5C

where the symbol ® denotes the dyadic product. Therefore, using equations (l9a,b,c), (20a,b, c,d,e,f) we have

 

YZGÜe <5
(21a)

nge 2% (21b)
0'2

Y}: 27/68 flog—6

303

Let us define the following damage criterion

gm) 2 zu, Y, Y", E, im), a‚c‚ o) —r(w) = 0 (22)

where z is a suitable scalar function, which defines the form of the damage surface, while r is the damage

threshold at current time t . If r0 is the initial damage threshold, it must be r 2 r0 . Damage occurs if the value

2 is equal to the damage threshold at current time. The parameter r, which defines the size of the damage

surface, is assumed to be depending on the cumulative damage parameter a) . The case z < r corresponds to the

elastic deformation ofmaterial without damage.

Let us introduce new constant tensors ß,E„C of second, fourth and sixth rank, respectively, and then new

material tensors

b zflan, ®n_,- (23a)

a=§ijk1ni®nj®nk®m (23b)

c:C‚-jk‚„n‚.®nj®nk®n,®n‚®ns (23c)

where n1‚n2‚n3 are the three orthogonal principal directions of damage. Different possible definitions of the

principal directions of damage are given by Chaboche (1993). In the simplest case we can choose the principal

directions of damage as the eigenvectors ofthe stress tensor.

Let us consider the new polynomials
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21(b,6)=b--o (24a)

Zä(a‚c):G--a--G (24b)

Zä(c,c)=6--(G--c--c) (24C)

and introduce the following structure for the function z in a damage potential

z=o’e(a121+222 +3y123) (25)

where 011,71 are numerical coefficients taking into account the influence of linear and cubic polynomials in the

expression (25) for z, coefficients „2“ and „3“ are taken in order to receive the simple formulas in the

following. It is not difficult to show on the base of equation (21a,b,c) that

z = alt r (yb)+./80602t r (Ya) +ylä/[9yafaät r (Y* c)]2 (26)

The damage process is characterized by the following equations of evolution

 

S = ig (27a)

a = 2g (27b)

a = i of; (27c)

which lead to:

szialb (28a)

- - a

ä = 2 tag — (28b)

22

g ‘ 2 C

c=3xly103 F (28c)

3

Using the principle of maximum damage dissipation, one can show that the damage consistency parameter

Ä satisfies the Kuhn-Tucker relations

2 2 o (29a)

g(z‚r) S O (29b)

xi g(z,r) = 0 (29c)

The parameter Ä can be considered as a measure ofthe cumulative damage, i.e.

‚'1 = 6;,
(30)

Therefore, if the damage in the material is increasing, we have Ä > 0. Then, by condition (29c) it follows:

g(z,r) = 0. If, on the other hand, the damage criterion is not satisfied and g(z‚r) < 0, the condition (290)

implies that E c2) E O.

The second thermodynamic principle has the form:

w=tr(yfi)+tr(va)+tr(v*é) (31)

Substituting the values (21a,b,c), (28a,b,c) into equation (31), we obtain

1/] : 062:6

ifwe denote

26:52 +aa121+y7123 (33)

Since Z 0 from (29a), we see that under the natural condition that the equivalent stress is always non-

negative, i. e. o", 2 0 and 2L, Z O , the second thermodynamic principle 1/ 2 0 is always valid.
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We now turn to the task of defining the rate of the cumulative damage parameter. For this purpose

differentiating equations (22), (25) we can write

. . . d .

äe(a12‘71+222 +3y123)+0„(a121+222 +3y123)—d—rw = 0 (34)

a)

and then

. l . . . .

a) = Z[0'e(a121+222 +3y123)+ae(a121+222 +37123)] (35)

where we denote

dr
h Z _ (36)

d0

Since damage growth implies d) 2 O ‚ it follows from equation (35) that during the damage loading we get

sign(h)[o"e (02121 + 222 + 37123 )+ 0'9 (5112'1 + 222 + 371273)] > 0 (37)

The inequality

ö'e(a151+252 +3y123)+d€(a|21+222 +3y123)> 0 (38)

represents the necessary and sufficient condition for the damage loading in the hardening case (h> O). The

inequality

ö'e(a121+252 +37123)+0„(a151+222 +3y1'z3)<0 (39)

represents only a necessary but not sufficient condition for the damage loading in the softening case (h < O),

because the inequality (39) can be satisfied during unloading as well.

4 Particular Cases

For initially orthotropic material the constitutive equation (11) for elastic deformation can be written in a

coordinate system whose axes coincide with the principal directions of anisotropy as follows:

 

+orb11 +

_ a1111011+a1122022 +511133033

511‘0e O_

2

 

N 2 ~ 2 ~ 2

0111111011 +01122220'22 +(3113333033 +

    

+

7 U2

g +; N (40a)

111122011022 C1111330'110'334'01122330'220'33
+27 2 +

0'3

a 02 +5 02 +5 02
111212 12 112323 23 111313

+47
I3

2

0'3

ä 0' E 0' 0' +5 0' 0' +5 0' 0'
€12:20_8[ 1212 12 +27 121211 12 11 121222 212 22 121233 12 33+

0'2 0'3

(40b)

0122313023013

+47——2 (1,2,3)
0'3

llere

O"1217110'11+5220'22 +b330'33 (41a)

o_2_N 2+~ 2 N 2 2N 2 2~ 2 4N 2

2—a11110'11 “2222022+a33330'33+ 5111220122“ a2323523+ 6112120122“ (41b)

N 2 N 2

+ 4512323023 + 4511313613
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3 N 3 N 3 N 3 N 2 N 2

3 =C111111011+0222222022 +C333333C733 +3(3111122011022 +3Cim330'110'33 +o-

N 2 3N 2 3N 2 +3N a2 o— +
+ 3(3222211022611 + 0222233022033 + C3333HU330'11 0333322 33 22

N N 2 if 2 12N 2 o‘ + (41c)
+651122330'110'220'33 +1201212110120'11 + 0121222012022 + 5121233012 33

N 2 N 2 N 2 N 2

+12(3232311523011+12‘32323220'230'22 +12(3232333023033 +1201313110'130'11 +

N 2 N 2 N

+1261313225713022 +1251313330'130'33 + 486122313012023013

The constitutive equations (40a,b) for elastic deformation must be written together with equations (28a,b,c),

(23a,b,c), (30), (35) for the damage evolution, and the number of the different parameters

by y fly _ 3y afjk/ J 5W] — gr Cijk/mn I (ijklmn — 20'

The following relations are valid for an isotropic medium:

1;”. :55”. (42a)

ßi/ 2A 5:] (42b)

N ~Zaa 555 55 (42c)
aijkl— ij kl+3( ik jl+ Ii jk)

_ A

511k] 255,1%] +3(5ik6j1+6/i6jk) (42d)

N ~ K ‚

Cijklmn Z D 51] 5k/ 521m + E ( öij 61(1216111 + 6i} 5k" 5/"! + 6k] 5im 5

+ 5m" 6ik 5]! + 5111115il6jk ) +g (51%5

jn + 5k16in§jm +

5In + öik 5j11511n + 51'! ök’llöjn + (42€)

+ 5iI 51mdim + 5im51g" 5h: + 51711510151] + 5m 51g" 61m + 5m5km 50 )

jm

Im jn

„Q

é’ijklmn : 5kI 511m + 61("15/11 + 50' aha/m + 5k! 5 ' + 5k]5mdim +

5h) + öikö' 5/!" + 51'! 5k7115j11 +_]Il

5V

+ öillilöik Ö‘jl + 5mn 51'] öjk ) + 3(5)}: öjm

+ 51’! 5k" Ö‘jm + 511116195!" + 5k7751j + 5m 519' 5Im + 5m 6km 61] )III]

These relations make it possible to obtain from equations (40a,b) the equation:

N N I?
N, N 2

 

5,]. — o-e +0555Ü +7 2 (43)
0’2 0'3

where the equivalent stress

GE=O'E(G,Z,E,E,5,E,Z) (44)

contains the six damage dependent functions. In the case under consideration the evolution equations (28a,b,c),

(23a,b,c), (30), (35) use the six materials parameters A, E, A, @, Q, ‘I’ .

5 Basic Experiments

Now we assume that a =05I =1 and y =71 =0 in equations (40a,b), (25), (28a,c), and we consider the

particular case of plane stress with 013 : 0'23 : 0'33 2 O. Let us discuss the determination of the parameters in

the constitutive equations. For this purpose we use the results of the basic experiments on standard specimens

whose orientations coincide with the principal directions of anisotropy. Standard specimens, in which a

homogeneous stress state is obtained, are made from initially orthotropic material. We will also assume that the

principal directions of damage coincide with the principal directions ofthe orthotropy.
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In the case of uniaxial tension in the principal direction 1, we have strain in the direction of loading

0'11

 

511 = ~+
(45a)

1

and in transverse direction

522 z —Vz+511 (45b)

Here 51+ is the elastic secant modulus in tension in direction 1, and 172+ is the ratio of transverse strain in

tension. These data are the functions of the damage in this uniaxial case. On the other hand, using equations

(40a), (41a,b), it has been found that

2

511=(\/51111+E11) 0'11 (46a)

N N 67 ~

522 :(\/a1111+b11)[ im +1’22] O'11 (46b)

Vain]

Now, equating relations (45a,b) and (46a,b), we have

(N/51111‘+‘;ll>2 :El+
(47a)

l  

 

N ~+

611122 +522 z _ 2 (47b)

1151111 (Efy/z

Using equations (28a,b), (23a,b), (30), (47a), it is not difficult to obtain the following equations

511 = wfln (48a)

N 1

Vaiiil :—+w 51111 (48b)

V E1

leading to the expression for the cumulative damage parameter

fl
/—~ {— —1

a) =— (49)

x/6C1111+ß11

where E1 is the initial elastic modulus in the direction 1. If the initial damage threshold stress in uniaxial tension

in the direction 1 is of“ , then the initial damage criterion can be written as

 

+ 2

O—

(fl (21/511n+ß„>:r0 (50)
E1

Without loss of generality we can assume that

(CITY _
JET -'"0 <51)

and we get from equation (50):

 

2 51111 ""1811:1 (52)

Under uniaxial compression in the principal direction 1 the following relation can be written:

 

511:— N, (53)
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where E" is the elastic secant modulus in compression in the direction 1. Then we obtain an analogous relation

from equations (40a), (41a):

SUI—(Vault ‘511>2|0'11i
(54)

Equating relations (53) and (54) we have

(FIT—511V 1%—
(55)

1

Using equations (48a,b), (55) we obtain

(JET—W)"

m—fln

If the initial damage threshold stress in uniaxial compression in the direction 1 is of , then the initial damage

(56)

criterion can be written in the following form

_ 2

(01 )
m

Taking into account equation (51) we then find

(2x/651111—ß11)=’”o (57)

 

+ 2

WEG—m2E): (58)

(a?)

In the case ofuniaxial tension in the principal direction 2, the following relation

622

522 =—~+

2

(59)

holds. Here E; is the elastic secant modulus in tension in the direction 2. On the other hand, using equations

(40a), (41a,b) it has been found that

522 = (V 52222 + 1:22 )2 0'22 (60)

Now, equating relations (59) and (60), we have

(V5222 + 1:22 )2 = 51+ (61)

2 

Using equations (28a), (28b), (30), (47a) we obtain the following equations:

1:22 2 (0,3 22 (62)

and

N l

a =—+ a) 5 63V 2222 y—2 2222 ( )
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leading to the expression for the cumulative damage parameter under uniaxial tension in the direction 2 as

«52222 + ‚522

where E2 is the initial elastic modulus in the direction 2. If the initial damage threshold stress in uniaxial

tension in the direction 2 is 0'3“ ‚ then the initial damage criterion can be written as

+ 2

0'

£f2—12(2x/§2222 +fl22) = "o (65)

Substituting equation (51) into equation (65) we have

2 E2222 +[322=M (66)

We?

By analogy with equations above formulas for uniaxial compression in the direction 2 will be written in the

form:

(M—gzzy :E—1_
(67)

2

NET—(W
a, 2—..— (68)

V5222 —ß22

f We
2 52222 ‘522 2— (69)

met

Here E; is the elastic secant modulus in tension in the direction 2, 0'; is the initial damage threshold stress in

uniaxial tension in the direction 2.

Then, it follows from equations (52),(58),(66), (69) that

2

0:)

(70a)

(U )2

W
( _)2

(70b)

0'1

4 51111:1+

 

‚
.
4

I

 

2'ßll :1—

  

4\/§2222:(0'i)2 "Ei 1 + 1 (700)

  

(70d)
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For pure torsion we take the following relation

812 = 33i (71)

where 612 is the secant shear modulus. An analogous formula to equations (40b), (41b) is

512 =2512120'12 (72)

Therefore we obtain:

M 1

611212 = T“ (73)

Using dependencies (28b), (30), (73), we can write the following relation describing the damage in this basic

experiment

(ET—(163V
a) =———— (74)

2V £1212

where G12 is the initial shear modulus. If the initial damage threshold stress in pure torsion is 712, then it

follows from the initial damage criterion that

(UWE

[517712)2

Thus, the parameters in the constitutive equations (40a,b) and the evolution equations (28a,b), (30) may be

determined on the basis of experimental data from stress—strain diagrams obtained from basic experiments. Also

note that dependencies (40a,b) describe the difference between the elastic processes in tension and compression

and the change of the elastic moduli when the stresses change their signs, the initial anisotropy and the damage

induced anisotropy.

8 51212 Z (75)

7 Conclusion

The proposed model with monotonic strain-stress relations is able to reproduce initial anisotropy, damage

induced anisotropy, the difference between the elastic processes in tension and compression as well as the

change of the elastic stiffness when the stresses are changing their signs. In a particular case, for example, of

plane stress with 613 : 0'23 = 633 = 0, and with a = a1 = l and y = 71 = O in equations (40a,b), (25), (28a,c),

we can rewrite those dependencies in the following form

811 D1111 D1122 D1112 0—11 D11

822 : D1122 D2222 D2212 o'22 + D22 (76)

2512 D1112 D2212 D1212 012 D12

It can be seen that the secant stiffness matrix D is symmetric. Therefore the Onsager Principle holds in this case.

The damage loading surface in the plane o-11 — 0'22 has an elliptic form. The loading surface is both continuous

and continuously differentiable, and furthermore convex. Thus, the proposed model satisfies all requirements

which are formulated by Chaboche (1992). A comparison between the theoretical results and experimental data

under multiaxial loading will be a subject of a forthcoming paper.
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