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Inverse Problem in Vibration of Lumped Non Conservative

Systems Generating Symmetric Coefficient Matrices

Ladislav Starek

This paperpresents a solution ofthe inverseproblem foralinear dampedassymmetric system with singular velocityand displacement co-

efficientmatrices. Next the conditions for given spectral and modalproperties are defined. When these conditions are fulfilled then the in-

verse formulas determine real symmetric coefficient matrices Hg and H1.

1. Introduction

Inverse problem in vibration of lumped nonconservative

systems are concerned with the construction of the coeffi-

cient matrices of the mathematical models of the vibrating

systems which have given spectral and modal properties.

This problem has been solved by Danek (1982, Lancaster

and Maroulas (1987) and Starek (1989).

Danek has solved this problem for the case of real nonsin-

gular coefficient matrices and he has defined the inverse

formulas which determine the coefficient matrices A3, A2

and A, of the abovementioned systems with given spectral

and modal properties.

Lancaster and Maroulas have solved the inverse problem

by means of the spectral theory of matrix polynomials.

They have defined Jordan pairs that determine real matrix

polynomials and selfadjoint polynomials.

Starek has solved the inverse problem in the state space

form and he has derived the inverse formulas which

directly determine real coefficient matrices Ha = A7’A3

and H1 = A7'A2 in the case of singular coefficient matrices

A3 and A2 too.

The goal of this paper is to derive the conditions for given

spectral and modal properties. When these conditions are

fulfilled then the inverse formulas will determine real sym-

metric coefficient matrices Ho and H1.

2. Mathematical Models

This section introduces the mathematical models of linear

lumped nonconservative systems for which the inverse

problem will be solved. There are introduced formulations

of these models in n space, 2n space and the state space

form. Next the relations are defined by means of which the

left modal vectors for systems of simple as well as general

Jordan structures are defined.

Here we consider linear lumped parameter systems which

can be modeled by vector differential equation of the form

Aröfl) + Azqft) + Asqm = W) (2-1)

where q(t) is an n vector of time varying elements repre-

senting the displacement of the masses in the lumped

mass model. The vectors q(t) and g(t) represent the acce-

lerations and velocities, respectively. The overdot means

that each element of q(t) is differentiated with respect to

time. The coefficients A,, A2 andAg are n square matrices

of constant real elements representing the variousphysical

parameters of the system. The n vector f = f(t) represents

applied external forces and also is time varying. The matri-

ces A), A2 and A3 are in general asymmetric, the matrixA,

is nonsingular and the matrices A2, and As can be singular.

Premultiplying the equation (2.1) by the inverse matrix A77

yields

Wt) + mm) + Hov(t) = p(t) (2.2)

where Ho = A7543, H1 = A7’A2, p(t) = A7'f(t) and

V“) = ‘1“)-

By combining Wt) — Wt) = o with equation (2.2) this sy-

stem can be written in 2n space

NM) - Puff) = g(t) (2-3)

where u(t) = [ v(t) ] , g(t) = p(t) ]

Wt) o

 

N = H1 I , P = "Ho 0 ]

I O 0 I

Finally Iet the equation (2.3) be premultiplied by the inverse

matrix N". This yields the standard state space formula-

tion

x(t) = Ax(t) +h(t) (2.4)

where the state vector x(t) = u(t), h(t) = N"g(t) and the

state matrix

A: O I ]

—Ho—H1

Next consider solutions of (2.4) of the form x(t) = xest for

Mt) = o. Then (2.4) yields the eigenvalue problem ‚

(A — sl)x = o (2.5)

 

The equation (2.5) fulfils the relation which expresses the

solution of the associated eigenvalue problem

AX — x0 = o (2.6)

The equation (2.5) of the eigenvalue problem can be trans-

formed into the canonical form

X"AX = D (2.7)

which is characterized by the spectral matrix D e 02”" (in

general Jordan 2n square matrix). The transform matrix
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X e Cm?" is the modal matrix of the eigenvalue problem

(2.5).

Let’s determine now the left modal vectors for the adjoint

problem to the eigenproblem (2.5)

a) if A is a matrix of simple structure then D be thediagonal

matrix andX = [x 1, x2, . . . x2„] in which xlis an eigenvec-

tor of A corresponding to the eigenvalue s). Define the

matrix Y = (X")T and write

Y = [y„ yg‚ . . . ‚ y2„]. Then YTX = I and, comparing ele-

ments, we obtain

ylxx = 61k (2.8)

for j,k = 1,2,, . . . . 2n. Note that the systems (mtg, and

{7/}721 are biorthogonal with respect to the standard in»

ner product in C2". Let’s take transposes in (2.7) and we

have XTAT(X")T = D, so that

ATV = m (2.9}

This implies

ATy, = s,y;forj=1,2,...,2n

Thus, the columns of Y = (X‘UT are eigenvectcrs for

A’. They are also known as left eigenvectors or it.

b) if A is a matrix of general Jordan structure thee“: D #= DT.

Let’s define now an (2n,2n) invertible matrix Q from the

equality Q = (NX)" with N defined by (2.3) and X from

(2.7). Then [2]

Q NX = l (2.10)

Let’s take the following multiplication

B1=NAN"= [H, I 1) 0 I H0 I

i 9 J t "Ho ‘H1J

(2.11)

We now have

B,=NAN" = NXDX"N" = Q"DQ (2.12)

Now represent Q as a block matrix Q = [01, 02] where

01,2 E Czn'n. Then

°’=°['1"‘"""[’F’T‘W0 0 I

From (2.12) we haveGB, = DQ.

(2.13)

Substituting (2.11) and 0 yields 02 = D01 = DwT

and so

Q =1w’, D WT] (2.14)

The rows of WT e Cm", partitioned consistently with the

partition of the spectral matrix D into its Jordan blocks

and taken in each block in the reverse order form left

modal vectors for the matrix A.

We shall refer to the equality (2.10) as the biorthogona-

lity condition for X and Q.

From this condition we have X 0 = N".

Substituting for N, Q a X = into the above

  

VD

1 08

]_[0—Ho

r—H, _ 1—H, i

mentionedrelation weyield the following useful equalities

vw1r = o

VDwT=I

(2.15)

Note that the eigenvalues (amt their multiplicities) of a lum-

ped linear system described by real coefficient matrices

are symmetric with respect to the real axis of the complex

plane. This implies that there is a Jordan matrix for such a

system with the block diagonal form

D z (JG! JR: Jo) (2-16)

where J5 is a matrix with all its eigenvalues in the open up-

per half of the complex plane, JR is real matrix and the

entries of Jo are the complex conjugate of those in Jo.

The modal matrices V and W are partitioned in a compati-

ble way as (2.16)

v= (vc‚v„‚Vc)‚ w = (WC, w„‚ WC) (2.17)

3. Inverse formulas

Here we derive formulas for the coefficient matrices

HD = A7'A3 and H, = A7’A2 by inversion of the equation

(2.7). From the equation (2.7) we obtain

A=xnx-’ (3.1)

Assuming the partitioning of the matrices X, 0 given by

(2.14) and recalling that X" = Q N we obtain

XDX"= V]D[WTDWT]H1I]

VD l a

  

after some manipulation and by using (2.4) we have the

equality

o r _ VDWTH1+ voszvow’

—Ho —H‚ " VDZWTH, + V03WTV02WT

From the equality of associated submatrices we obtain the

inverse formulas

Ho = (vozw’fi—voaw’ (3.2)

H, = —v132wT (3.3)

and the condition

VDWT = I (3.4)

The formulas (3.2) and (3.3) determine the two desired co-

efficient matrices of the system (2.1) if the third is chosen

with spectral and modal properties which must satisfy the

condition (3.4).

From the condition (3.4) the suitable matrices D, V and W

can be defined for the inverse problem.

in that case:

— the matrix D must have rank(D) 2 n

— the modal matrices V, W e Cm" must be nonsingular.

if we choose such spectral and modal properties that (3.4)

is valid thenthe system determined bythe coefficient matri-

ces Ho and H, is unique.



Example 3.1

Consider the three degree of freedom system with semi-

definite damping and stiffness given by

     

The spectral solution of the system yields that the matrices

D and X are

 

' —1.41+1.51i 0 00 0

0 —0.59+1.03i 00 0

D _ 0 0 01 0

" 0 0 00 0

0 0 00 —1.41—1.51i

L O 0 00 0

0.27—0.09i 0.17+ 0.62i 10 0.27— 0.09i

-0.33+O.35i 0.25 + 0.11i 10 —0.33 + 0.35i

X = 0.06—0.26i —0.42 — O. 73i 1 0 0.06 + 0.26i

-—0.52 + 0.27i —0. 74 — 0.19i 01 —0.52 — 0.27i

1 —0.26+0.19i 01 1

_ —0.48 — 0.27i 1 01 —0.48 + 0.27i

Let the new spectral matrix be

—0.5+i 0 00 0 0

0 -—1 + 2i 00 0 0

D1 = 0 0 01 0 0

0 0 00 0 0

0 0 00 —0.5 ——i 0

0 0 00 0 -1 — 2i

and the right modal matrix be the original that is V1 =

V = [I 0]X. For the case of unique solution of the inverse

problem for the matrixes D1, V1 and W1 must hold

V1D1W1T = I. Then the left modal matrix is given by

l °l l” ]W1 =X1" I where X1 = VD1

By using the inverse formulas (3.2) and (3.3) HD and H,

become

2.65 -0.4 -2.25

0.33 0.74 -1.07

-2.98 ——0.34 3.32

Ho= H‚= -0.18 0.42 -0.24

—1.42 0.44 0.98

   

1.6 -0.86 -—0.74 1

To see that the method works note that (2.1 ) with A1 = land

the determined matrices Ho and H, yields the eigenvalue

given by the matrix D1.

4. Inverse formulas for symmetric coef-

ficient matrices

The goal here is to derive the conditions for given spectral

and modal properties. When these conditions are fulfilled

then the inverse formulas will determine real symmetric co-

efficient matrices Ho and H,. In that case let the matrix A, is

positive definite. Then by substituting q(t) = A7”2v(t) into

equation (2.1) and premultiplying the result by A7"? the

corresponding matrices becomes Ho = A7"’A3A7"2 and

H ‚ = Ay'nAzAi’”. If the inverse formulas are to generate

real symmetric coefficient matrices then the spectral and

modal matrices must fulfil some further requirements.

From the theory of matrix polynomial it is known that the

100 1—1 0 2 —2 o

010 v(t)+ —1 2—1 i(r)+ —2 3—1 v(t)=o

001 — 1 0—1 1

—0.59—- 1.03i A

-0.42 + 0.73i

—0.74 + 0.19i

—0.26 — 0.19i

O
Q
O
O
O

0.17 — 0.62i ‘

0.25 — 0.11i

 

1

spectral matrix D and modal matrices V and W generate

hermitlan coefficient matrices if a left modal matrix is of the

form

  

wT = P0 w' (4.1)

where PD is given by the formula (Gohberg, . . .)

0 0 Pc

PD = o PR o (4.2)

Pc 0 0

Note that Pi, = P0, P5 = I and

D'PD = PDD (4.3)

Now we will derive the conditions that must be fulfilled by

the spectral and modal matrices to generate real sym-

metric coefficient matrices.

From (2.13) we have

X W’ = [a]

I (4.4)

Substituting for X = [ V ] and WT from (4.1) we obtain

VD

in i” = [3’ l (4.5)

After substituting for V and D from (2.16) and (2.17) we ob-

tain the following conditions '

chcv3+ vnPRv; + VCPCV; = o

VchPcVZ + anRan5 + chcficV; = I

(4-6)

(4.7)

If the spectral matrix D and modal matrix V are of the form

(2.16) and (2.17) and they fulfil the conditions (4.6) and

(4.7) then the inverse formulas (3.2) and (3.3) generate the

real symmetric coefficient matrices. For determining such

spectral and modal matrices that will determine the real

symmetric coefficient matrices we arrange the conditions

(4.6) and (4.7) in the following way:
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Let the matrices Vc and .Ic are of the form Vc z V,+ iV,and

Jc = J, + N, where V,, V,, J,, J, 6 R. After some manipula-

tions we obtain

2(VrPcVi— ViPch) = —VnPnVÄ (4.8)

2(V‚J‚PcVT- ViJiPch— V,JiPcVi — Vz-hPcVD =

= I— vRJnPRvA (4-9)

The conditions (4.8) and (4.9) in depending on the matrix A

(the matrix A can be a matrix of simple or general Jordan

structure, it has no real eigenvalues or real eigenvalues

too) determine such modal vectors that generate the real

symmetric coefficient matrices for the given spectral ma-

trix.

Let's arrange the relations (4.8) and (4.9) in the following

way. Let V, = V,C, where C e R” and is nonsingular. Sub-

stituting for V, into (4.8) and (4.9) yields

2V,E VI = V,,P,v£ (4.10)

2v,FvI= I — VRJRPRVÄ (4.11)

where

E: CPcCT—Pc (4.10a)

F = J,Pc —— c .mr’c — MiceT — CJ,PCC7 (4.11a)

Example 4.1

The coefficient matrices ofthe system (2.2) Ho and H, must

be determined in such a way that these matrices will be

symmetric and the system will have the spectral properties

given by the matrix D, where

—1—-i 0 0 0 0

0 -1-2i 0 0 0

D = 0 0 -2——3i 0 0

0 0 0 —1+i 0

0 0 0 0 —1+2i

0 0 0 0 0 —2+3i

@
0
0
0
0

Since the matrix D is the diagonal matrix and it has no real

eigenvalues, then Pc is the identity matrix and V,, = 0,

JR = 0. The conditions (4.10) and (4.1 1) will be reduced to

the form

v,(I—ccT)vI = o v (4.12)

2v‚FvI = l
(4.13)

where

F = J,— CJ,— J,CT-— CJ,CT

The first condition is fulfilled for an arbitrary V, 6 Fl“ if CT is

orthogonal. If we choose 0’ as an orthogonal matrix and V,

arbitrary nonsingular matrix, then from the second condi-

tion we obtain

2V,FVI = Z (4.14)

where Z = ZT. From the theory of matrices it is known that

for every (n,n) nonsingular symmetric matrix 2 there exists

an (n,n) matrix T such that Z = TTT. Substituting for Z into

(4.14) we have

2v,Fvi = 771

and it follows that

V, = (TT)"V„ (4.15)
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In our case the required matrices are

—1 0 0

0 '1 0 J]:

0 0 ——2

J,=

  

—1

o_

0 O
N
O

C
0
0
0

h
—
_
—
—
_
J

Let the matrices

 

2—1—1 1—1 0

v,= 1 2 1 cT=1/\/§ 1 1 o

1—1: 2 o o 2

 

be chosen so that 2 will be positive definite.

After some calculation we obtain

Vc = 0.535 + 0.606i 0.323 — 0.149i 0.087 + 0.087i

0.053 — 0.149i —0.263 — 0.223i 0.217 +0.217i

 

0.339 + O. 120i —0. 169 — 0.361/ —0.169 —— 0.169i ]

Since the modal matrix is V = [V6, V5] and after substituting

for V, D and X or WT into (3.2) and (3.3) for the coefficient

matrices we obtain

 

2.087 —1.007 —-1.098

H1: —-1.007 2.671 —0.258 ]

-1.089 —0.258 3.242

7.516 —3.423 —2.915 ]

Ho 2 —3.423 3.494 1.091

-2.915 1.091 10.276

 

To see that the method works note, that the system

(2.2)with the determined matrices H0 and H, yields the

eigenvalues given by the matrix D.

5. Conclusion

In the paperthe inverse formulas for linear lumped noncon-

servative systems of simple as well as general Jordan

structures were derived in the case of singular velocityand

displacement coefficient matrices. Next the conditions

(4.6) and (4.7) for given spectral and modal properties are

defined. When these conditions are fulfilled then the in-

verse formulas (3.2) and (3.3) determine real symmetric

coefficient matrices for linear lumped nonconservative sy-

stems of simple as well asgeneral Jordan structures. At the

end the relations are defined by means of which the left mo-

dal vectors for system of simple as well as general Jordan

structures are defined. The defined conditions (4.6) and

(4.7) and the generated symmetric coefficient matrices can

better approximate the results of the numerical simulation

to the reality.

The derived conditions (2.15) for the spectral and modal

properties can be used for checking numerical compu-

tations.
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