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Interlaminar stresses of laminated composite joints

with a single cover plate 0
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0. Introduction

Let two identical bars of orthotropic material with rectangular cross section bh, be joined lengthwise. They are glued

together by a metallic cover plate of cross section bh1 forming a laminated composite joint with a single cover plate of

length 2| (Fig. 1). The tensile force P is transmitted to the cover plate by interlaminar stresses in the adhesive surface.

They being most severe near the joint’s gap are responsible for delamination. E, G, u are the elastic constants of the

metal cover plate. For the orthotropic bars, one principal direction is along the length with elastic constant E1, the

others being E2, G1 ‚ um.
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Figure 1 Figure 2

The interlaminar stresses of this joint can be solved by superposing that of following two parts.

(1) The two bars in Fig. l are continuous forming a laminated composite bar (Fig.2), and its interlaminar stresses

are the first part. In the bar's middle cross section, which is most remote from the influence of interlaminar stresses

near the ends of cover plate, there will be a uniform tensile force S; and a bending moment MZ'. They can be deter-

mined by Mechanics of Materials.

(2) To remove the internal force components S’1 and M'1 in the middle cross section of bar (Fig. 2), apply at the two

opposite faces of the gap of joint (Fig. 1) a pair of uniform compressive force —-S'1 and a pair of negative bending

moment —M;. Fig. 3 shows the left half of the joint. To keep in equilibrium, there will be in middle cross section of the

cover plate an axral tensrle force 8’1 and a posrtive bending moment M; + S'1 E (h + h1). The Interlaminar stresses of

this joint form the second part of superposition.
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1. Interlaminar Stresses of Part one

7. 7. Interna/ Force Components in Cover plate and Bar and the Relation between an and bn

Fig. 4 represents the interlaminar stresses To and 00, which are expressed by sine and cosine series with an andb to

be determined.
n
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From the cover plate take an element dx (Fig. 5) upon which are acting axial force S, shearing force 0 and bending

moment M. its equilibrium gives

      

dS b d0 b0 dM O th (2)
__ = — T l — = — l ‘— = .' — .

dx ° dx ° dX 2 °

integrating (2) we get:

3 mm

s=_! 2 L(cosn1r—cos—).

11' n=1 n 1 dx

b Q
bl n1rx .

o = _ _ 2 .“sin , (3) 5'46 im
1r n=1 n l 5+as

!
b a ‘

blh I n 1 n n1rx G’dG
M=___.2 (_«_+—- —)(cosn1r-—cos———). '

1r n=1 1th „2 2 n I HJH T0

y du

Similarly for the bar we have:

bl a MI

51 = p+— E 3(cosn1r—cos ——x)‚ Figures

1! n=1 n I

b
bl n1r

Q1 = — E —n sin -—,

1r n=1 n I

b a
bih I 1 n1r

M1= -——-1 E (—°—n ——( '—n-)(cosn1r—cos -——5). (4)

1! n=1 rrh1 „2 2 n I

Far cross sections outside the range of interlaminar stresses, the internal force components O and Q1 disappear and for

remaining ones each has a constant value. They can be determined once the interlaminar stresses are known as well

as simply by Mechanics of Materials. Thus we can use the two results of different approcaches to examine each other.

For our later use, let us find the axial forces and bending moments at middle cross sections of cover plate and bar as

shown in Fig. 2. With equilibrium conditions for the right half of composite bar (Fig. 2), with equal curvature for the

two laminated parts at middle cross section and with equal strain for contacting points in adhesive surface as well as

in middle cross section, we have:

 

P = so+s;‚ ’

1 M0 M1

M +M’1—S —(h+h1)=0, —— = —‚ (5)

° °2 I 1I1

h
h 1

M — ‚ M’ —
so + 02 _ S1 12

AE El AE El ’

in which El and E1|1 are flexural rigidities of cover plate and bar and A and A1 are their respective cross sectional

area. Solving the above four equations, we have:

 

1

1 1 1 "”“1’2 P Emu”)
S°—+ +—'—————-——- =-—, M°=—~—E——Sol

AE A1E1 4 E|+E1l1 A1E1 1+ 1I1

T, (6)

1
—(h+h1)

I _
I _ 2S1—P—So M,- E, 80'

1+ —

El

Now let us find how an is related to bn. As the composite bar (Fig. 2) acts as one, the cover plate and bar have same

curvature, namely
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Substituting M and M1 of (3) and (4) in (7), we get

 

h1 h

b 'ka n k- 1r ' E1" E' (8)

" " ' 2| 1 1 '
_ + __.

E1l1 El

h1 h
It can be seen that when = -E—l— , no normal interlaminar stress occurs. And from (1) and (8) it follows:

1 1

d 1'
I o

0° = k -— ' —— . (9)

11 dx

Thus along the adhesive surface 00 is proportional to the slope of To curve at the very point. This important relation

(8) can also be got by considering the equilibrium of right half of cover plate in Fig. 4.

  

2 x=o‚ s -—bf 2 sm n"Xc1x=o‚ s =——— —-"(cosn1r—1).
o 0 n=1 " ° Tl n=1 n

h ' n7rx

EM=0‚ Mo—So—+bfx2 bcos——dx=0

2 0 n=1

Using M0 in (6) and eliminating So, we get

bl a bl2 b
____E_'_-l(h+h1)_lh}— Z —n (cosn7r—1)=— 2 -—2(cosnrr—-1).

El + E1l1 2 2 1T n=1 n „2 n=1n2

Or h1 h

2 E1| EI n a b

b_|_. 1 - - —n —_n (cosn1r—1)=0,

„2 n=1 1 + l 2| n n2

EI El

from which the relation between an and b“ can be got as given by (8). Using this relation we can express the stress

components of cover plate and bar by a n. And in the second part of superposition we shall use the latter method to

obtain the relation between an and b".

1.2. To Solve an by the Principle of Least Work

First formulate the stress components of cover plate and bar in terms of a n. As the cover plate is a slender bar,

for ax we have

I kl 1 a nrrx

a =.§_+M_Y=_ _|_+12-Z-'—(—+—)]2 —n(cosn1r-—cos

" bh l 1rh h2 1r 1th 2 n=1 n

 

l, (10a)

in which S and M in (3) as well as Fig. 4 are referred. Substituting ax in the integral from the equilibrium equation

  

E130 T ÖT

f2 xdy+f° xydy=0‚ weget

Y 3x T

XY

1 1 kl 1 2 .nnx
T ={(_+1‚_6(_+_„__V_) 2 ansm—. (10b)
"V 2 h 2 1rh 4 h2 n=1 I
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And from the second equation of equilibrium, we have

1rh 3 y y2 1 kl 1 y y3 n1rx

0 = k--——(~-—-——)—6(—+—)———+— Eancos—. 10c

V l l l 8 h 2 1r ( H l ( )

Similarly for the bar we have:

81 M1y P I I I a

a; = — ——-— = ——+[——+12—y—Il—L)] >3 -—n(cosn1r—cos-n—"—)—().‚

bh, I, bl), ”/71 ‚112” 2 1/71 n=I n r

1 y kl 1 1 y2 MIX
1" = — (—+—-)-—6(-———)(———-) E ansin——-—, (11)

xy 2 "h1 2 4 n=1 l

1

Q

ll

 

1rh 2 3
1 3 kl 1 1 1111. {k___[(__V__l_)+6(__-_„___L+L_„ 23m; x

Y 1 8 2h1 2h: 11111 2 12 4h 3h: "

1

The stress components (10) and (11) for cover plate and bar satisfy both equilibrium equations and their respective

boundary conditions. Now the unknown coefficients an have to be determined. Let U be the total strain energy of the

system and the actual values 6f an'should be such as to make U minimum, namely

       

h a aau I - 1 0x 0 öo Ba 1' a7

—=ff2 —I°„a +av__“(°x-‘+°y—:)l+—xz' "y bdxdy+
öan o _2 E an Ban Ban öan G ban

l "1 a a a ao a_ 0' 0’ 0' a' u a‘ ’ 1" 7"
X 12 X

+ff2 _. "+_X._y__._(g’__+o'-—)+—x—Y' xy bdxdy=0. (12)
o h1 E1 aan E2 öan E1 "öan Vöan G1 öan

"2—

Substituting the six stress components in (12), we get:

ncosnn

an=—C————-, (13)

n4+2nn2+p2

inwhich

2 1 kl kl 1 h kl kl

— —[1+3——(1+—)]+——[1+3—(——1l]
„2 E 1rh 1th E1h1 11h1 7rh1

2
p = v

3

h4 112 1 1 kl 11 kl 1 “11 kl kl 11
—'-— —[—+—(—+13—)]+—'—[—+——(13-— ——)]
|4 70 E 3 nh 3 11h E2 h3 3 1rh1 71h1 3

h 11 u
l 1 kl 1 1 1 12 2 kl kl kl 12

—(—-—E)[Z+—(1+6—l]+~—(——~———)[—+—(b——)]+—(——E)
5 2G E 3 5 h 2G1 E1 3 1rh1 11h1 Trh E1 E

2n=
3 ‚

h2 n2 11 kl 11 kl 1 “1 1 kl kl 11
?'— -[—+——(—+13——)]+—'—-[—+——(13————)]}
| 70 E 3 77h 3 n'h E2 h3 3 'rrh1 7rh1

1ho* 4 1 3kl kl 1 h kl kl a
— ——+——{—[1+——l1+—)]+— —~[1+3——(———111 z —ncosnrr
E l1r „2 E 71h 1rh E1h1 11h1 rrh1 n=1 n

C =
‚

h4 112 1 1 kl II kl 1 “1 1 kl kl 11
.4 _. _[_+_(__+13—1] ——[— ——(1———)]
l 7 E 3 n 3 E2 3 3 1rh1 h1

(14)

p

and 0" = »—.

bh



It can be seen that for cover plate and bar to be of same isotropic material, p2, 217 and C are independent of elastic

constants. And interlaminar stresses do not depend upon them. When the cover plate and bar are of same orthotropic

material as happens to wooden joint, then in (14) in numertors E, G, u have to be changed to E1, G1, #12; and in de-

nominators E changed to E2.

1.3. Inter/aminar Stresses

From (1) and (13) we get

_ n1rx

ncosn1r sm _—

I

To: —c -————————————. (1m

"1 n4+217n2+p2

This series is of same form as the deflection curve expressed by sine series of a simply supported tie rod on elastic

foundation under tension S and bent by an end couple (Fig. 6). Thus the two problems are analogous. The deflections

correspond to To and its slopes to 00.

As the series can be summed, our solutions are in closed forms.

 

For n > p and using (9), we get

     

1:1 1r

C sinh 7|—-x sinh ßT— x

1r

To = . h _ . hß I “6)

sin 711 sm 1r
4 n2 _ p2

‘
Figure 6

1! 1r

d7 (:05th coshE—x

I o k C17 1 l

Uo= k—'T = 7 ‘nh 1r — 'hß
(17)

7T x sr sn 11'
4 772 _p2 7 '

in which ß = n + x/ n2 —- p2 , 7 = /n — \/ n2 — p2 . The shearing force transmitted by cover plate is

' Chi 1 1

bede=————-—————(——-5). (18)

° 4 x/„z __p2 7

The value C can be found by the third equation of (14), and the series in it can be summed by using (13).

a
1 1r 1 1 1

E JGOS"1T=—C —4—-—2—? =-C -—-—-—-(——‘ß-)——3} .

n=1 n n=1
7n +2nn +p 4./‘_—n2_p2 2p

For n < p and with ß 1r pretty large such that sinh ßn = cosh ßn, we have

C I? . . 61T 711 ß" . 77'
T =——;———-— sm‘y1rsrnh—xcos—x~cos'y1rcosh—stn—x , (20)

° 4ß'ysmhß1r I l | l

kC1r 1r 1r 1r 1r

oo= —-———_———— (ßsin7n—7cos7n)cosh ß—x cos Z—x—(‘ysin'yn +ficos'y1rlsinhE—x sin Z—x. ,

4B7smhfiw l I I l

(21)

1 1
' h'h = _ + I = _ ._ _InWIc ß /2(P 1117 ‚/2(P 11)

1r 1r ‚ . . .

Near the end of cover plate when sin h E'- x = cos h El— x, the above two equations can further be Simplified.

sinhEl-T—Tx

1f x

T: '—————sin 1r1-——, (22

o 457 sinhßn 7 ( l) )
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sinh ‘1— x

X X

=____._.____ ' 1___ 1__, 23
“o 45-, 2| sinhßn {BS'MH I) 7am“ 1)} ()

The shearing force transmitted by cover plate and the sum of series are

| Ch1b

fbrodx=—————' (24)

O

405-!—

an 1r 1

E—cosn1r=—C(——-——).n=1" 4N3 2p2 (25)

2. Interlaminar stresses of Part two

Fig. 7 represents the interlaminar stresses of the second partrof superposition (Fig. 3). For facilitating our analysis,

8'1 and M; are

 

Ph1k‘,+Pk, 1‘. (mm)

——x fr— qu

Wg“L ~60
y Ph,k,‘

1—;— Pk,

changed to F’k1 and Ph1k'1.As S'1 = Pk1 and M’1 = Ph1k'1,we have

    

Figure 7

    

;+1 . lmi, ‘
AE 4 EI + E1I1 2 h1 A1151

k1 = 2 (26a) k’1 = ———— ' (26b)

;+1_+1._““fl NEE.— 1+1 +1.2:“1_’2
AE A1E1 4 E|+E1|1 11 AE A1E1 4 E|+E1|1

Still use the two series in (1) to express the interlaminar stresses. From equilibrium of cover plate in Fig.7, we have

' n1r bl a

zx=o, Pk1+bf 2 a sin—l‘dx=o‚ Pk1=— z —n(cosn1r—1).
0 n=1 n | TI’ n=1n_

h ' nnx ' 1 ,1

1§+bf x 2 bncosT—dx= Pk1[§(h+h1)+h1k—].

o n=1 1

By eliminating Pk1 , the second equation gives

 

biz. zblicosnn—iwbi-Einzki an
n2 n=1n2 T, 2 k—1lnE1—r-1—(cosn1r—1).

Hence we get the relation between an and bn as given by

h11r k; h1 k'1 dTo
bn=kann‚ k=2—|(1+2k—)‚ (27) and oo=;(1+2;—l dx. (28)

1 1

An element taken from the cover plate is the same as given by Fig. 5, and its three equilibrium equations are also the

same as (2). The internal force components of cover plate are

b
b| 3 MIX bl n1rx

S=Pk —— E —n(cosn1r—cos ), 0=—— E 35in—

' 7! n=1 n n n=1 n I
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1 b a
1 bhl I 1 n7rx

M= Ph k' +Pk —(h+h1)———-— z 1—«__"+—- n)(cosn1r—cos—).

1 1 12 n n=1 1th n2 2 n 1

Using (27) to replace bn by an, we get the stress component ox:

k a
P 1 h l I kl 1 MIX

0 =k1——+Ph1l[k3+—(1+—)]—[—+121—(——+—)]2—2(cosn1r—cos I.

x bh I 2 h1 TI'h h?" 7th 2 n=1n

It differs from the 0x given by (10a) of first part only in the first two terms, which are idependent of x. Therefore,

the other two stress components rxy and 0y remain the same as those of first part, k being different. And for the bar

the stress component 0;, is:

P I n nrr

a: —k1——+Ph1k'1-—+[——-+12——(—————)]2 —(cosn1r——cos—————).

" bh1 I h I

Again, it differs from the o; of (11) in the terms independent of x, so that 7;”, and 0;, remain the same as that of first

part, k being different. This simplifies very much our work.

Substituting the six stress components in (12), we again get an as given by (13) in which p2 and 217 remain the same as

that in (14) except with a different value of k. For they depend upon rxy, oy,1';(y, 0;, and 0x, 0; involving variable x.

Now the third equation becomes

  

h h
P h 1 1 1 1 kl 1 h 1 k .1

__ _— — —[k1+12—(—-+——)[k'1+—k,(1+—)]]+—[k +12k'1(—|——)]

bh1 In E h h 2 7th 2 h1 E1 ‘ 11111 2

C:

h4 112 1 1 kl 11 kl

—‘ —~ —[— — (—+13—)]+

l4 7 E 3 11 3 17

—4 1 3kl kl 1 h 3kl kl a

— [1+‘—ll —)]+“—'—[1 _(-“"'1)] 2 Jcosnn
‚T E 71h Trh E1 h1 1rh1 11'1 n= n

(29)

1 h1 1 kl kl 11

+————[— ——(3-———)J
E2 h 71h1 rrh1

When the cover plate and bar are of same orthotropic material, the elastic constants in above equation have to be

changed to suit our case as we did in the first part of superposition.

Now To is still given by (16) and (20). As for 00, using (28) for n > p we have

  

Tr ßn

, 2 costh cosh—x ‚

h1 k1 C77 l i
U =—(1+2—)—-——- 7. —ß ‚ ‚ (30)
o 8| k1 \/2 2 sInh7n smhßn

77 —p

in which

B=/n+ /n2—I02‚ 7= /n—,/n2-p2.

For n< p, we have

2
1r 1r

0 = ——-1 (1+2 —1)L (ßsin'yn—ycosynnosh [i— x cosy—x — (31)

° 8| k flyslnhfin I I

. . (in . 71r
—('ysm71r+ßcosy7r)smh TX sln T— x ,

[
‘
0

U
1

‚
.
q



together with

.h ß"
1 SI" "— X

h k.l CW2 |
1 x x

= __ ._ __ t _— ' 1___ ._ .....a0 8. (1+2 k1) B7 sinhß" {ßsmwn |) 7cos71r (1 I)}‚ (32)

in which ß = V l (p + n) ‚ 7 = V1 (p —- 17) . Equations (18) and (24) for shearing force transmitted by cover plate
2 2

together with series sum (19) and (25) remain unchanged for the second part of superposition.

For the second part of superposition, we have used the left half of the joint, while the right half is used for the first

part. Owing to symmetry of 0° and antisymmetry of To, it is easy to convert the solution of first part to the left half

of the joint and superpose with that of second part.

3. Numerical illustrative Examples

(1) The cover plate is of hard aluminium: E = 7 x 105 kg/cmz, G = 2.69 x 105 kg/cm2,p = 0.3. The bars are of pine:

151 =1o5 ki_1/cm2,E2 = .042 x105 kg/cmz, G1 = .075 x 105 kg/cm2,pz12 = .238. h = h1 = '/6.

First part of superposition:

From (8) and (14), k = ‚19635, p = 7.2997, n = 10.535. Using equations for n > p we get ß and 7 from (16)

ß= 4.1700, 7 =1.9183‚ and from (19) E cosn it = -—.024437C. And the third equation of (14) gives C= 6.14320“.

n=1

As a check use ( 18) to find the shearing force taken by the cover plate.

* x_6.1432er> 1 1

0 ° 4x6.8550 1.9183 4.170

 

i = .37838 P.

The axial force in middle cross section of cover plate given by So in (6) is

S
1 3 P 4

o { _ + 1 + _ } = ————— ' so = 1—— P = P.

bh x 105 7 2 bh x105 37

The identity of two values confirms our analysis. Now by (16) and (17) To and 00 are found for the right half in Fig. 4

and are tabulated as follows.

Table 1

X I .98 .96 .94 .92 .9 .85

1'0 0 .0823 a” .1363 .1695 .1878 .1954 .1864

00 —.31 12 -2085 —.1329 —.0779 —..0384 —.0104 .0266

X .8 .75 .7 .6 .5 .4 .3 .2

.1596 .1294 .1016 .0595 .0335 .0185 .0100 .0051

.0375 .0370 .0322 .0207 .01 22 .0070 .0040 .0023

Second part of superposition:

From (26) and (27), k1 = .62162, k’1 = .047297 and k = .30164. Using (14) we obtain p = 4.9272, n = 5.9983.

a

As n > p, ß, 7 in (16) are 3.0691 and 1.6054; (19) and (29) give Z T12 cosn1r = —.047608C and C = —4.7722 0*.

n=1

By using (18) the shearing force transmitted by the cover plate is

1 —4.7722 6P 1 1

{in dx = x ( — ) = -.62162 P.
0 ° 4 x 3.4209 1.6054 3.0691

 

The negative sign means direction opposite to that shown in Fig. 7. Summing up the shearing forces by the two parts

of supei'position, we get: .37838P + .62162P = P.
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This is exactly what the cover plate is required to carry. Now To and 00 as given by (16) and (30) are tabulated as

follows.

Table 2

X l .98 .96 .94 .92 .9 .85 .8

To 0 —.0870 —.1505 —.1952 —-.2253 -—.2439 —.2562 —.2403

.4837 0* ‚3567 ‚2561 .1767 .1 146 ‚0663 —.0097 —-.0460

X .75 .7 .6 .5 .4 .3 r .2 .1

To —.2122 —.1806 —.1226 —.0792 —.0488 —.0293 —.0163 —.0073

00 ——.0593 ——.0606 —.O493 —.0347 —.0284 —.01 51 -—.0102 —.0075

in two tables, positive To and 00 are shown in Fig. 5. By superposing results of two parts, the interlaminar stresses of

the joint are got in Fig. 8 for the left half of it.

5 {(01%

   

_.3,9
Figure 8

(2) The joint is made of pine cover plate and bars; E = 105 kg/cm2‚ E2 = .042 x 105 kg/cm2‚ G1 = .075 x 105 kg/cmz,

1112 = .238. h =1.2h1, N1 = 1/5.

First part of superposition:

From (8), k = .05067. Changing the relevant elastic constants in (14) to suit our case, we get p = 10.245, n = 8.1158,

a

As p > n, ß and 7 in (20) are 3.0299 and 1.0318. And (25) gives 2 -——n- cosn1r = —.0205380 and from the third

n=1 n

equation of (14) we get C = 2.8919 0*. By using (24) the shearing force transmitted by cover plate is

‘ 2.8919 x 6 P

f bT dx = ——————-—— = .13974 P.

o o 4 X 3.0299 X 10.245

To check our calculation, find the axial force S0 in the middle cross section of cover plate from Mechanics of Materials.

From (6) we have

1 1 2.22 P

5° Ü+1+ZI 1 =P' 3°:71559='13974P'
. E(1.23+1) A

 

This confirms our analysis. Now 1'0 and 00 obtained from (20) to (23) are tabulated as follows.

Table 3

X I .98 .96 .94 .92 .9 .85 .8

7'O 0 .0389 0* .0642 .0793 .0870 .0893 .0814 .0654

oo —.0380 —.0254 ——.01 59 —.01 01 —.0038 —-.0002 .0049 .0055



X .75 .7 .65 .6 .55 .5 .45 .4

‚0487 .0345 .0235 .01 55 .0100 .0062 .0046 .0022

.0054 .0041 .0031 .0022 .0015 .0010 .0006 .0004

Second part of superposition:

From (26) and (27), k1 = .86026, k’1 = .05635 and k = .29610. With equation (14), the elastic constants of which

have been converted to suit our case, we obtain p = 4.4925 and n = 3.1331. As p > 17,6 and 7 in (20) are 1.9526

a

and .82444. Then (25) gives E —n cosnn = —.06476C and from (29) we get C = —5.0309 0*. By using (24), the

n=1 n

shearing force transmitted by the cover plate is

f' b dx —5.o309 x 6 P

To = ———————— = —.86027 P.
o 4 x 4.4925 x 1.9526

Summing up the shearing forces transmitted by cover plate for the two parts of superposition, we get

.13974P + .86027P = 1.00001 P.

It differs so little from the load the joint is required to carry and again confirms our results. Now To and 00 are ob-

tained from (20) and (31) and tabulated as follows.

Table 4

X I .98 .96 .94 .92 .9 .85 .8

To O —.1 124 —1986 —.2629 —.3091 —.3403 —.3705 —.3564

00 .5992 .4643 .3515 .2577 .1802 .1 168 ‚0068 —.0534

X .75 .7 .65 .6 .5 .4 .3 .2

To -.3194 —.2732 —.2264 —.1816 —.1099 —.0621 —.0327 —.0159

00 -—.081 6 —.0901 -.0874 ——.0787 —.0559 —.0355 —.0209 ——.01 17

Superposing the results of two parts, we get the interlaminar stresses in Fig. 9 for the left half of the joint.
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4. Conclusions

The second part of superposition involves severe loading as in Fig. 7. The two end moments tend to tear open the

cover plate from the bar over gap, while the two axial forces equal and opposite tend to shear off the two parts at the

very place. This accounts for the predominant interlaminar stresses near the gap of joint and is liable to cause delami-

nation. At the same time, To and so at the ends of cover plate due to first part of superposition are not important to

the strength of joint.
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