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On Failure of Determinism in Classical Mechanics

A. Krawietz

Newtonian mechanics is generally considered to be deterministic: Once the initial conditions are known, all the
future behaviour of a system can be predicted by solving the equations of motion. (That is the idea of Laplace’s
demon.) But a simple example will reveal that the solution of the initial value problem need not be unique. A
prediction thus becomes impossible. An effect can happen without a cause, so that causality is annulled.

1 Introduction

Classical mechanics is ruled by differential equations. If the initial values of position and velocity of a system
are given, the future values can, in principle, be calculated by integrating these equations. Laplace (1814) applied
this idea to the whole universe and concluded that its future is fully determined by the presence. (The intelligent
being who should know all the initial conditions and solve the equations was later on named Laplace’s demon.) So
Newtonian mechanics seems to be a fully deterministic theory. But this conviction is based on the tacit belief that
the solution of the differential equations is unique.
We will present the following simple example that allows an infinite number of solutions and thus disproves the
idea of determinism.

Figure 1: The state of rest of a plate under the influence of gravity

A rigid plate is supported by a rigid basis. The mutual contact occurs at the vertices of four geometrically identical
cams. The situation depicted in Fig. 1 is obviously a state of equilibrium. So the plate can remain in this position
for all times. Our question is whether it is also possible that the plate begins to move and leaves this position
without noticeable cause.
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2 The Geometry of our Example

Figure 2: Contact of the cams during the motion

We describe the progress of the motion by the arc lengths of the boundary of a cam from the vertex to the actual
point of contact as shown in Fig. 2. The coordinates of the point of contact shall be given as

x = x(s) , y = y(s) (1)

and the coordinates of the center of gravity of the plate are then

xC = xC0 + 2x , yC = yC0 + 2y (2)

wherexC0 andyC0 denote the position of the center of gravity in the state of rest. The square of the velocity of
the center of gravity is
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= 4ṡ2 (3)

3 Frictionless Motion

The sum of the potential and kinetic energy remains constant during the motion.

(E + U)0 = E + U =
1
2
mv 2

C − mg(yC − yC0) = 2mṡ2 − 2mgy(s) (4)

We are interested in motions that start from the state of rest withs = 0, y = 0, ṡ = 0, so that(E +U)0 = 0 holds.
The equation of motion then becomes

ṡ = +
√

gy(s) ≡ r(s) (5)

We choose the positive square root to describe motions to the right.
An obvious solution iss(t) ≡ 0, y(t) ≡ 0, ṡ(t) ≡ 0, so that the plate remains in the state of rest for an arbitrarily
long time. We want to know whether there are other solutions of the differential equation. Uniqueness requires the
fulfilment of Lipschitz’ condition. But that condition is surely violated if the derivative of the right-hand sider(s)
is not finite,i.e. ∣

∣
∣
∣
dr(s)
ds

(s = 0)

∣
∣
∣
∣ = ∞ (6)

The last condition allows a geometric interpretation. Letα denote the angle of the tangent andκ the curvature of
the boundary curve. Then

sin α =
dy

ds
, κ =

dα

ds
=

dα

d sin α

d sin α

ds
=

1
cos α

d2y

ds2
=

y′′(s)
√

1 − y′(s)2
(7)

Now

y(s) =
1
g
r(s)2 , y′(s) =

2
g
r(s)r′(s) , y′′(s) =

2
g

(
r′(s)2 + r(s)r′′(s)

)
(8)

At the vertex, we haves = 0, α = 0, κ(0) = y′′(0) ∝ r′(0)2 = ∞. So an infinite curvature at the vertex is
sufficient to allow the spontaneous deviation of the plate from the state of rest. If this happens at some instant
t = tD, then the solution of our differential equation can be found by separation of the variables.

∫ s

ŝ=0

dŝ

r(ŝ)
=
∫ t

t̂=tD

dt̂ = t − tD (9)
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4 A Special Geometry

We study the following class of boundary curves, depending on a positive constanta and a real parameterθ.

y(s) ≡ as2θ , y′(s) ≡ 2θas2θ−1 , y′′(s) ≡ 2θ(2θ − 1)as2(θ−1) , r(s) ≡
√

gasθ , r′(s) ≡ θ
√

gasθ−1

(10)
The conditiony′(0) = 0 requiresθ > 1/2 andr′(0) is infinite if θ < 1. The curvature at the vertexy′′(0) is then
infinite, too, as we already know. We are therefore only interested in values ofθ satisfying1/2 < θ < 1. Eq. (9)
then gives

1
√

ga

s1−θ

1 − θ
= t − tD =⇒ s(t) =

(
(1 − θ)

√
ga(t − tD)

) 1
1−θ

t ≥ tD (11)

Now let the initial conditions bes(tI) = 0, ṡ(tI) = 0 at some initial timetI < tD. A possible solution of this
initial value problem is the remaining in the state of rest fromtI to the timetD of deviation

s(t) ≡ 0 tI ≤ t ≤ tD (12)

followed by a deviation off the state of rest according to eq. (11). Choosing the special valueθ = 3/4, we find

y(s) ≡ as
3
2 =⇒ s(t) ≡

{
0 if tI ≤ t ≤ tD(

ga
16

)2
(t − tD)4 if t ≥ tD

(13)

So an infinite set of solutions of the initial value problem exists, depending on the parametertD.

5 The Role of Friction

It would be erroneous to assume that our phenomenon of indeterminism depends on the crude idealization of a
frictionless motion. LetF (s) be the work of friction exerted during the motion at each of the two contacts. Then
the balance of work (4) has to be modified as follows.

0 = E + U + 2F = 2mṡ2 − 2mgy(s) + 2F (s) (14)

and the equation of motion (5) has to be replaced by

ṡ = +

√

gy(s) −
1
m

F (s) ≡ r(s) (15)

A non-trivial solution can only exist if
F (s) < mgy(s) (16)

The power of friction is the product of the frictional forcef and the relative velocityvR = vC = 2ṡ at the points
of contact.

Ḟ = F ′(s)ṡ = 2f(s)ṡ (17)

In the case of dry friction,F ′(0) = 2f(0) = 2f0 > 0 is finite buty′(0) is zero. So the inequality (16) cannot be
satisfied nears = 0 and a deviation from the state of rest is impossible. The same happens if sticking friction is
present.
However, viscous damping can be allowed. To demonstrate this, we study the rather special case

F (s) = λmgy(s) with 0 < λ < 1 (18)

The equation of motion becomes
ṡ = +

√
(1 − λ)gy(s) (19)

The solutions of the frictionless case remain valid ifg is replaced by(1− λ)g. The appertaining nonlinear viscous
law is obtained as follows

f =
1
2
F ′(s) = λθmgas2θ−1 = λθmga

(
vR

2
√

(1 − λ)ga)

)2− 1
θ

≡ f(vR) (20)
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6 Conclusions

Let us interpret our result (13). Newtonian mechanics reveals the following possibility: The plate remains in a
state of rest for a certain time interval and then, at some instanttD, suddenly starts a motion and leaves the state of
rest.

• It is disturbing that the pointtD of deviation remains totally uncertain. Not even a statement of probability
like a half-value time can be given.

• It cannot be known, too, whether the motion will ocur to the right-hand or the left-hand side.

• Our solution is an example of an indetermined motion. Note that the begin of the motion is not triggered
by any external disturbance. No cause of this effect can be found. On the other hand, Laplace (1814),
guided by his investigation on celestial mechanics, wrote : ”Lesévénemens actuels ont avec les préćedens,
une liaison fond́ee sur le principéevident, qu’une chose ne peut pas commencer d’être, sans une cause qui
la produise. Cet axiome connu sous le nom deprincipe de la raison suffisante, s’étend aux actions m̂eme
les plus indiff́erentes. (The connexion of the actual events with the preceding ones is based on the evident
principle that nothing can begin to exist without a reason by which it is produced. This axiom, known
under the name of principle of sufficient reason, even applies to actions of utmost irrelevance.)” But our
finding indicates that this principle of sufficient reason is perhaps not so evident and even invalid in special
situations.

• It is surprising that the plate can start its motion although, at the beginning, it has no information whether
the curvature at the vertex is infinite and the friction small enough to allow the motion at all.

7 Delimitation

• The phenomenon of indeterminacy may be considered as a heightened stage of instability. Whenever there is
a positive curvature at the vertex then the state of rest of the plate is unstable. An arbitrarily small disturbance
is sufficient to cause a permanent deviation from that state. In a case likey = as2, such a disturbance is also
necessary. Otherwise the plate remains at rest in a deterministic way. In our indeterminate case, however,
the state of rest is of course unstable, but no disturbance at all is necessary to start the deviation.

• Indeterminate behaviour must not be confused with chaotic behaviour. The latter is deterministic and charac-
terized by a sensitive dependence on initial conditions. So all the intermediate states of the orbit are unstable.
In our indeterminate case, we do not discuss various initial conditions but only one, the state of rest. Only
this state is unstable but not the following ones during the motion.

• Indeterminism is not a problem for engineers but one of natural philosophy. The plate of our example cannot
be manufactured with sufficient accuracy to test its behaviour by an experiment.

Remark: The indeterminate behaviour of eq. (13) was already discussed by the author in a text book
(Krawietz (1997), p. 262). It was inferred there from the motion of a point mass, which is a cruder idealiza-
tion than our plate. The same example was afterwards presented by Norton (2003) in a critical philosophical
treatment on the principle of causation.
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