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Ferromagnetic Convection in a Rotating Medium with Magnetic 
Field Dependent Viscosity. A Correction Applied 
J. Prakash1, K. Kumari2, P. Kumar3, R. Kumar4, K.R. Sharma5 

 

The effect of magnetic field dependent (MFD) viscosity on the thermal convection in a ferrofluid layer, heated 
from below, has been investigated in the simultaneous presence of a uniform vertical magnetic field and a 
uniform vertical rotation. A correction is applied to Vaidyanathan et al. (Ind. J. Pure Appl. Phy., 2001, 40, 159-
165), which is very important in order to predict the correct behavior of MFD viscosity. A linear stability 
analysis has been carried out for stationary modes and oscillatory modes separately. The critical wave number 
and critical Rayleigh number for the onset of instability, for the case of free boundaries, are determined 
numerically for sufficiently large values of the magnetic parameter 𝑀𝑀1. Numerical results are obtained and are 
illustrated graphically. It is shown that MFD viscosity has a destabilizing effect on the system for the case of 
stationary mode and stabilizing effect for the case of oscillatory mode, whereas magnetization has a 
destabilizing effect. Further, it is also shown that rotation has a stabilizing effect on the system. 

1     Introduction 

Synthetic magnetic fluids, also known as Ferrofluids, are the colloidal suspensions of solid single- domain 
ferromagnetic nano-particles, with typical dimensions of 10 nm, dispersed in an organic carrier (e.g. kerosene or 
ester) or water. In the recent past the studies on ferrofluids attracted several researchers due to their manifold 
applications in various fields such as acoustics, lubrication, vacuum technology, metals recovery, 
instrumentation, vibration damping etc. These researches have led to many commercial uses of ferrofluids 
which includes chemical reactor, medicine, novel zero-leakage rotary shaft seals used in computer disk drives, 
high speed silent printers, contrast enhancement of magnetic resonance imaging (MRI), pressure seals of 
compressors and blowers, cooling of loud speakers (Rosensweig, 1985; Odenbach, 2002a). 

Ferrohydrodynamics, the study of the magnetic properties of colloidal suspensions has drawn considerable 
interest since the 1930 (Elmore, 1938), but the investigations on ferroconvection intensified noticeably, starting 
from the fundamental paper of Finlayson (1970). An authoritative introduction to ferrohydrodynamics is 
provided in a beautiful monograph by Rosensweig (1985). This book and the references therein laid a serious 
scientific foundation for further investigations in this field of enquiry. Currently, a significant body of literature 
exists devoted to ferroconvection. For a broad view of the subject one may referred to Lalas and Carmi (1971), 
Shliomis (1972), Aniss et al. (2001), Odenbach (2002b), Sunil et al. (2005), Suslov (2008), Lee and 
Shivakumara (2011), Prakash (2013a, b), Rahman and Suslov (2015, 2016) and Labusch et al. (2016). 

The most specific characteristic property of a ferrofluid is the possibility to exert a significant influence to their 
flow and physical properties by means of moderate magnetic fields (Odenbach, 2002a). The effect on the 
viscous behavior of fluid due to the presence of an external magnetic field seems to be most prominent and is 
one of the most challenging topics of magnetic fluid research. Several research papers have been published by 
eminent researchers in this direction. Rosensweig et al. (1969) reported the investigation of a viscosity increase 
observed in ferrofluids containing nanosized magnetic particles in magnetic fields. The effect of a homogeneous 
magnetic field on the viscosity of the fluid with solid particles possessing intrinsic magnetic moments has been 
investigated by Shliomis (1974). Vaidyanathan et al. (2001) studied the influence of MFD viscosity on 
ferroconvection in a rotating medium heated from below using linear stability analysis. Vaidyanathan et al. 
(2002) further investigated the same problem of ferroconvection in a rotating sparsely distributed porous 
medium for the case of stationary and oscillatory modes. Ramanathan and Suresh (2004) studied the effect of 
magnetic field dependent viscosity and anisotropy of porous medium on ferroconvection. Sunil et al. (2005) 
investigated the effect of magnetic field dependent viscosity on a rotating ferromagnetic fluid heated and soluted 
from below saturating a porous medium. Prakash and Gupta (2013) derived upper bounds for the complex 
growth rate of oscillatory motions in ferromagnetic convection with MFD viscosity in a rotating fluid layer. 
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It is worth mentioning here that in the above cited papers on MFD viscosity, the researchers performed their 
analysis by considering MFD viscosity in the form 𝜇𝜇 = 𝜇𝜇1(1 + 𝛿𝛿.𝐵𝐵�⃗  ), where 𝜇𝜇1 is fluid viscosity in the absence 
of magnetic field 𝐵𝐵�⃗  and 𝛿𝛿 is the variation coefficient of viscosity. They resolved 𝜇𝜇 into components 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦 and 
𝜇𝜇𝑧𝑧 which is not technically correct. Since 𝜇𝜇, being a scalar quantity, cannot be resolved in such a manner. 
Undoubtedly, they have investigated a very important problem of ferrohydrodynamics, but their results cannot 
be relied upon due to this wrong assumption. Recently, Prakash and Bala (2016) and Prakash et al. (2017, 
2018a, b) have rectified the above problem for some ferromagnetic convection configurations with MFD 
viscosity. In the present communication the attention has, particularly, been given to the above cited paper by 
Vaidyanathan et al. (2001) on ferromagnetic convection in a rotating medium with MFD viscosity. Keeping in 
view the above fact the basic equations have been reformulated and then mathematical and numerical analysis 
has been performed to remedy the weaknesses in the existing results and to give correct interpretation of the 
problem. It is also important to point out here that the role of viscosity for stationary convection is observed to 
destabilize the system which is in confirmation with the result obtained by Chandrasekhar (1981) for the case of 
ordinary fluid. 

2     Mathematical Formulation 

Consider a ferromagnetic fluid layer of infinite horizontal extension and finite vertical thickness dheated from 
below which is kept under the simultaneous action of a uniform vertical magnetic field 𝐻𝐻��⃗  and uniform vertical 
rotation 𝛺𝛺�⃗  (see Fig.1). The magnetic fluid is assumed to be incompressible having a variable viscosity, given by 
𝜇𝜇 =  𝜇𝜇1�1 + 𝛿𝛿.𝐵𝐵�⃗ �, where 𝜇𝜇1 is the viscosity of the magnetic fluid when there is no magnetic field applied, 𝜇𝜇 is 
the magnetic field dependent viscosity and 𝐵𝐵�⃗  is the magnetic induction. The variation coefficient of viscosity 𝛿𝛿 
has been taken to be isotropic, i.e. 𝛿𝛿1 = 𝛿𝛿2 = 𝛿𝛿3 = 𝛿𝛿. The effect of shear dependence on viscosity is not 
considered since it has negligible effect for a mono dispersive system of large rotation and high field. As a first 
approximation for small field variation, linear variation of magneto viscosity has been used (Vaidyanathan et al., 
2002). 

 

The basic governing equations for the present problem are given by (Vaidyanathan et al., 2001): 

𝛻𝛻. �⃗�𝑞 = 0,                                        (1) 

𝜌𝜌0 �
𝜕𝜕𝑞𝑞�⃗
𝜕𝜕𝜕𝜕

+ 𝑞𝑞.���⃗ 𝛻𝛻�⃗�𝑞� = −𝛻𝛻𝑃𝑃� + 𝜌𝜌�⃗�𝑔 + 𝜇𝜇𝛻𝛻2�⃗�𝑞 + 𝛻𝛻. �𝐻𝐻��⃗ 𝐵𝐵�⃗ � +2𝜌𝜌0��⃗�𝑞 × 𝛺𝛺�⃗ � + 𝜌𝜌0
𝟐𝟐
𝛻𝛻 ��𝛺𝛺�⃗ × 𝑟𝑟�

2
�,                      (2) 

�𝜌𝜌0𝐶𝐶𝑉𝑉,𝐻𝐻 − 𝜇𝜇0 𝐻𝐻��⃗ . �𝜕𝜕𝑀𝑀
��⃗

𝜕𝜕𝜕𝜕
�
𝑉𝑉,𝐻𝐻
� 𝐷𝐷𝜕𝜕
𝐷𝐷𝜕𝜕

+ 𝜇𝜇0𝑇𝑇 �
𝜕𝜕𝑀𝑀��⃗

𝜕𝜕𝜕𝜕
�
𝑉𝑉,𝐻𝐻

. 𝐷𝐷𝐻𝐻
��⃗

𝐷𝐷𝜕𝜕 
= 𝐾𝐾1𝛻𝛻2𝑇𝑇 + 𝜙𝜙,                                                            (3) 

𝜌𝜌 =  𝜌𝜌0[1 + 𝛼𝛼(𝑇𝑇0 − 𝑇𝑇)],                           (4) 

where �⃗�𝑞 = (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the fluid velocity, 𝑃𝑃 = 𝑃𝑃� − 𝜌𝜌0
2
𝛻𝛻 ��𝛺𝛺�⃗ × 𝑟𝑟�

2
� is the pressure, 𝐻𝐻��⃗  is the magnetic field, 

𝜇𝜇 = 𝜇𝜇1�1 + 𝛿𝛿.𝐵𝐵�⃗ � is the variable viscosity, �⃗�𝑔 =  (0, 0,−𝑔𝑔) is the acceleration due to gravity, 𝛺𝛺�⃗ = (0, 0, 𝛺𝛺) is 
the angular velocity, 𝐶𝐶𝑉𝑉,𝐻𝐻 is the heat capacity at constant volume and magnetic field, 𝜇𝜇0 is the magnetic 
permeability, 𝑇𝑇 is the temperature, 𝑀𝑀��⃗  is the magnetization, 𝐾𝐾1 is the thermal conductivity, 𝜙𝜙 is the viscous 

Fig.1 Geometrical configuration 
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dissipation containing second order terms in velocity, 𝛼𝛼 is the coefficient of volume expansion and 𝜌𝜌0 is the 
density at some reference temperature 𝑇𝑇0. 

For a non-conducting fluid with no displacement current, the Maxwell’s equations are given by 

𝛻𝛻.𝐵𝐵�⃗ = 0,𝛻𝛻 × 𝐻𝐻��⃗ = 0,  𝐵𝐵�⃗ = 𝜇𝜇0�𝐻𝐻��⃗ + 𝑀𝑀��⃗ �.   (5a,b) 

We assume that the magnetization is aligned with the magnetic field, but allow a dependence on the magnitude 
of the magnetic field as well as the temperature as 

𝑀𝑀��⃗ = 𝐻𝐻��⃗

𝐻𝐻
𝑀𝑀(𝐻𝐻,𝑇𝑇).                           (6) 

The linearized magnetic equation of state is 

𝑀𝑀 = 𝑀𝑀0  +  𝜒𝜒 (𝐻𝐻 − 𝐻𝐻0) − 𝐾𝐾2(𝑇𝑇 − 𝑇𝑇0),                          (7) 

where 𝑀𝑀0 is the magnetization when magnetic field is 𝐻𝐻0 and temperature 𝑇𝑇0, 𝜒𝜒 =  �𝜕𝜕𝑀𝑀
��⃗

𝜕𝜕𝐻𝐻��⃗
�
𝐻𝐻0,𝜕𝜕0

is magnetic 

susceptibility and 𝐾𝐾2 = −�𝜕𝜕𝑀𝑀
��⃗

𝜕𝜕𝜕𝜕
�
𝐻𝐻0,𝜕𝜕0

is the pyromagnetic coefficient. 

The basic state is assumed to be quiescent state and is given by 

�⃗�𝑞 = �⃗�𝑞𝑏𝑏 = 0, 𝜌𝜌 = 𝜌𝜌𝑏𝑏(𝑧𝑧), 𝑃𝑃 = 𝑃𝑃𝑏𝑏(𝑧𝑧),  𝑇𝑇 =  𝑇𝑇𝑏𝑏(𝑧𝑧) = −𝛽𝛽 𝑧𝑧 +  𝑇𝑇0,  𝛽𝛽 = 𝜕𝜕0−𝜕𝜕1
𝑑𝑑

, 𝐻𝐻��⃗ 𝑏𝑏 = �𝐻𝐻0 −
𝐾𝐾2𝛽𝛽𝑧𝑧
1+𝜒𝜒

� 𝑘𝑘� , 

𝑀𝑀��⃗ 𝑏𝑏 = �𝑀𝑀0 +  𝐾𝐾2 𝛽𝛽𝑧𝑧
1+𝜒𝜒

� 𝑘𝑘� , 𝐻𝐻��⃗ 𝑏𝑏 + 𝑀𝑀��⃗ 𝑏𝑏 = 𝐻𝐻0 + 𝑀𝑀0.                                         (8) 

The Perturbed State Solutions are given by 

�⃗�𝑞 = �⃗�𝑞𝑏𝑏 + 𝑞𝑞′���⃗ , 𝜌𝜌 = 𝜌𝜌𝑏𝑏(𝑧𝑧) + 𝜌𝜌′, 𝑃𝑃 = 𝑃𝑃𝑏𝑏(𝑧𝑧) +  𝑃𝑃′, 𝑇𝑇 = 𝑇𝑇𝑏𝑏(𝑧𝑧) +  𝜃𝜃 ′,𝐻𝐻��⃗ = 𝐻𝐻��⃗ 𝑏𝑏(𝑧𝑧) +  𝐻𝐻��⃗ ′, 

𝑀𝑀��⃗ = 𝑀𝑀��⃗ 𝑏𝑏(𝑧𝑧) + 𝑀𝑀��⃗ ′,              (9) 
where 𝑞𝑞′���⃗ = (𝑢𝑢′, 𝑣𝑣 ′,𝑤𝑤 ′), 𝜌𝜌′,  𝑃𝑃′,𝜃𝜃 ′,𝐻𝐻��⃗ ′and  𝑀𝑀��⃗ ′ are perturbations in velocity, density, pressure, temperature, 
magnetic field intensity and magnetization respectively and are assumed to be small.  

Substituting equation (9) into equations (1) -(7) and using equation (8), we get the following linearized 
perturbation equations 

𝜕𝜕𝜕𝜕′

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑦𝑦
+  𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑧𝑧
= 0,           (10) 

𝜌𝜌0
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
=  −𝜕𝜕𝜕𝜕′

𝜕𝜕𝑥𝑥
+ 𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0) 𝜕𝜕𝐻𝐻𝑥𝑥

′

𝜕𝜕𝑧𝑧
+ 2𝜌𝜌0𝛺𝛺𝑣𝑣 ′ +  𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2𝑢𝑢′,                   (11) 

𝜌𝜌0
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
=  −𝜕𝜕𝜕𝜕′

𝜕𝜕𝑦𝑦
+ 𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0) 𝜕𝜕𝐻𝐻𝑦𝑦

′

𝜕𝜕𝑧𝑧
− 2𝜌𝜌0𝛺𝛺𝑢𝑢′ +  𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2𝑣𝑣 ′,                 (12) 

𝜌𝜌0
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
= −𝜕𝜕𝜕𝜕′

𝜕𝜕𝑧𝑧
+ 𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0) 𝜕𝜕𝐻𝐻𝑧𝑧

′

𝜕𝜕𝑧𝑧
− 𝜇𝜇0𝐾𝐾2𝛽𝛽𝐻𝐻𝑧𝑧′ + 𝜇𝜇𝑜𝑜𝐾𝐾22𝛽𝛽𝜃𝜃′

(1+𝜒𝜒)
+ 𝜌𝜌0𝑔𝑔𝛼𝛼𝜃𝜃 ′ + 𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2𝑤𝑤 ′,  (13) 

 𝜌𝜌𝑐𝑐
𝜕𝜕𝜃𝜃′

𝜕𝜕𝜕𝜕
− 𝜇𝜇0𝑇𝑇0  𝐾𝐾2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑧𝑧
� =  𝜅𝜅1𝛻𝛻2𝜃𝜃 ′ + �𝜌𝜌𝑐𝑐𝛽𝛽 −

𝜇𝜇0𝜕𝜕0  𝐾𝐾22𝛽𝛽
1+𝜒𝜒

�𝑤𝑤 ′,            (14) 

where 𝜌𝜌𝑐𝑐 = 𝜌𝜌0 𝐶𝐶𝑉𝑉,𝐻𝐻 + 𝜇𝜇0𝐾𝐾2𝐻𝐻0, 𝐻𝐻′ = 𝛻𝛻𝛷𝛷′,  𝛷𝛷′ is the perturbed magnetic potential 

and 𝐻𝐻𝑧𝑧′ + 𝑀𝑀𝑧𝑧
′  =   (1 +  𝜒𝜒)𝐻𝐻𝑧𝑧′ − 𝐾𝐾2𝜃𝜃 ′,        (15) 

𝐻𝐻𝑖𝑖′ + 𝑀𝑀𝑖𝑖
′  =   �1 +  𝑀𝑀0

𝐻𝐻0
�𝐻𝐻𝑖𝑖′(𝑖𝑖 = 1 , 2),          (16) 

where we have assumed 𝐾𝐾2𝛽𝛽𝑑𝑑 ≪ (1 + 𝜒𝜒)𝐻𝐻0, as the analysis is restricted to physical situations, in which the 
magnetization induced by temperature variations is small compared to that induced by the external 
magneticfield.  
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Using equations (5b), (15) and (16), we get 

�1 + 𝑀𝑀0
𝐻𝐻0
� 𝛻𝛻12𝛷𝛷′  + (1 +  𝜒𝜒) 𝜕𝜕

2𝜕𝜕′

𝜕𝜕𝑧𝑧2
− 𝐾𝐾2

𝜕𝜕𝜃𝜃′

𝜕𝜕𝑧𝑧
= 0,  (17) 

where 𝛻𝛻12 = � 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
�. 

Now we eliminate 𝑢𝑢′  and 𝑣𝑣 ′ between equations (11) and (12) by operating equation (11) by 𝜕𝜕
𝜕𝜕𝑥𝑥

 and equation (12) 

by 𝜕𝜕
𝜕𝜕𝑦𝑦

, adding the resulting equations and using equation (10). We obtain 

𝜌𝜌0
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑧𝑧
� = �𝜕𝜕

2𝜕𝜕′

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝜕𝜕′

𝜕𝜕𝑦𝑦2
� − 2𝜌𝜌0𝛺𝛺𝜁𝜁′ + 𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2 �𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑧𝑧
� − 𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0) 𝜕𝜕

𝜕𝜕𝑧𝑧
�𝜕𝜕𝐻𝐻𝑥𝑥

′

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝐻𝐻𝑦𝑦′

𝜕𝜕𝑦𝑦
�,  (18) 

where 𝜁𝜁′ =   𝜕𝜕𝜕𝜕
′

𝜕𝜕𝑥𝑥
− 𝜕𝜕𝜕𝜕′

𝜕𝜕𝑦𝑦
  is the z component of vorticity. 

Now eliminating 𝑃𝑃′ between equations (13) and (18), we get 

𝜌𝜌0
𝜕𝜕
𝜕𝜕𝜕𝜕
𝛻𝛻2𝑤𝑤 ′ = −2𝜌𝜌0𝛺𝛺

𝜕𝜕𝜁𝜁′

𝜕𝜕𝑧𝑧
+ 𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]

𝜕𝜕2

𝜕𝜕𝑧𝑧2
(𝛻𝛻2𝑤𝑤 ′) + 𝜌𝜌0𝑔𝑔𝛼𝛼𝛻𝛻12𝜃𝜃 ′ +

𝜇𝜇0𝐾𝐾22𝛽𝛽  𝛻𝛻12𝜃𝜃 ′

1 + 𝜒𝜒
+  𝜇𝜇1𝛻𝛻12(𝛻𝛻2𝑤𝑤 ′) 

+𝜇𝜇0𝜇𝜇1𝛿𝛿(𝐻𝐻0 + 𝑀𝑀0)𝛻𝛻12(𝛻𝛻2𝑤𝑤 ′) − 𝜇𝜇0𝐾𝐾2𝛽𝛽
𝜕𝜕
𝜕𝜕𝑧𝑧
𝛻𝛻12𝛷𝛷′.                                      (19)  

Further, operating equation (11) by 𝜕𝜕
𝜕𝜕𝑦𝑦

  and equation (12) by 𝜕𝜕
𝜕𝜕𝑥𝑥

 , subtracting the resulting equations and using 
equation (10), we get an equation describing vorticity as 

𝜌𝜌0 
𝜕𝜕𝜕𝜕 ′

𝜕𝜕𝜕𝜕
= 2𝜌𝜌0 𝛺𝛺

𝜕𝜕𝜕𝜕′

𝜕𝜕𝑧𝑧
+ 𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2𝜁𝜁′.             (20) 

Now we analyze the perturbations  𝑤𝑤 ′,  𝜃𝜃 ′, 𝜁𝜁′ and 𝛷𝛷′  into two dimensional periodic waves and consider 
disturbances characterized by a particular wave number 𝑘𝑘. Thus we assume to all quantities describing the 
perturbation a dependence on 𝑥𝑥, y and t of the form 

(𝑤𝑤 ′,𝜃𝜃 ′, 𝜁𝜁′ ,𝛷𝛷′) = [𝑤𝑤 ′′(𝑧𝑧), 𝜃𝜃 ′′(𝑧𝑧), 𝜁𝜁′′(𝑧𝑧),𝛷𝛷′′(𝑧𝑧)]exp�𝑖𝑖�𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑦𝑦𝑦𝑦� + 𝑛𝑛𝜕𝜕�,           (21) 

where 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are the horizontal wave numbers and 𝑘𝑘 = �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2  is the resultant wave number. 

On using equation (21) in equations (19), (14), (17) and (20) and non-dimensionalizing the variables by setting 

𝑧𝑧∗ = 𝑧𝑧
𝑑𝑑 

,    𝑤𝑤∗ = 𝑑𝑑𝜕𝜕′′

𝜈𝜈 
,  𝑎𝑎 = 𝑘𝑘𝑑𝑑,    𝜁𝜁∗ = 𝑑𝑑2

𝜈𝜈 
𝜁𝜁′′,  𝐷𝐷 = 𝑑𝑑 𝑑𝑑

𝑑𝑑𝑧𝑧 
, 𝜃𝜃∗ = 𝐾𝐾1𝑎𝑎𝑅𝑅1/2

𝜌𝜌𝑐𝑐𝛽𝛽𝜈𝜈 𝑑𝑑
𝜃𝜃 ′′, 𝛷𝛷∗ = (1+ 𝜒𝜒)𝐾𝐾1𝑎𝑎𝑅𝑅1/2

𝐾𝐾2𝜌𝜌𝑐𝑐𝛽𝛽𝜈𝜈 𝑑𝑑2
𝛷𝛷′′,     𝜈𝜈 = 𝜇𝜇

𝜌𝜌0
 ,  

𝜎𝜎 = 𝜈𝜈𝜌𝜌𝑐𝑐
𝐾𝐾1

, 

𝛿𝛿∗ = 𝜇𝜇0𝛿𝛿𝐻𝐻0(1 +  𝜒𝜒),  𝑅𝑅 = 𝑔𝑔𝑔𝑔𝛽𝛽𝑑𝑑4𝜌𝜌𝑐𝑐
𝐾𝐾1𝜈𝜈

,  𝑀𝑀1 = 𝜇𝜇0𝐾𝐾22𝛽𝛽  
(1+ 𝜒𝜒)𝑔𝑔𝜌𝜌0𝑔𝑔 

, 𝑀𝑀2 = 𝜇𝜇0𝜕𝜕0𝐾𝐾22

(1+ 𝜒𝜒)𝜌𝜌𝑐𝑐
,  𝑀𝑀3 =

1 + 𝑀𝑀0
𝐻𝐻0

(1+ 𝜒𝜒)
 , 𝑇𝑇𝑎𝑎 = 4𝛺𝛺2𝑑𝑑4

𝜈𝜈2
, 𝑝𝑝 = 𝑛𝑛𝑑𝑑2

𝜈𝜈 
                           

                 (22) 

we obtain the following non dimensional equations (dropping the asterisks for simplicity) 

(𝐷𝐷2 − 𝑎𝑎2){(1 + 𝛿𝛿𝑀𝑀3)(𝐷𝐷2 − 𝑎𝑎2) − 𝑝𝑝}𝑤𝑤 = 𝑎𝑎𝑅𝑅
1
2�(1 +  𝑀𝑀1)𝜃𝜃 –𝑀𝑀1𝐷𝐷𝛷𝛷 � + 𝑇𝑇𝑎𝑎

1
2𝐷𝐷𝜁𝜁,                 (23) 

(𝐷𝐷2 − 𝑎𝑎2 − 𝑝𝑝𝜎𝜎)𝜃𝜃 +  𝑝𝑝𝑀𝑀2𝜎𝜎𝐷𝐷𝛷𝛷 = −(1 −𝑀𝑀2)𝑎𝑎𝑅𝑅
1
2𝑤𝑤,                                                    (24) 

{(1 + 𝛿𝛿𝑀𝑀3)(𝐷𝐷2 − 𝑎𝑎2) − 𝑝𝑝}𝜁𝜁 = −𝑇𝑇𝑎𝑎
1
2𝐷𝐷𝑤𝑤,                                           (25)  

(𝐷𝐷2 − 𝑎𝑎2𝑀𝑀3)𝛷𝛷 = 𝐷𝐷𝜃𝜃.                                                 (26) 

Since, 𝑀𝑀2  is of very small order (Finlayson, 1970), it is neglected in the subsequent analysis and thus equation 
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(24) takes the form 

(𝐷𝐷2 − 𝑎𝑎2 − 𝑝𝑝𝜎𝜎)𝜃𝜃 = −𝑎𝑎𝑅𝑅
1
2𝑤𝑤.                (27) 

The constant temperature boundaries are considered to be free. Thus the boundary conditions are given by 

𝑤𝑤 = 0 = 𝜃𝜃 = 𝐷𝐷2𝑤𝑤 = 𝐷𝐷𝜁𝜁 = 𝐷𝐷𝛷𝛷 at 𝑧𝑧 =  0 and 𝑧𝑧 =  1,                       (28) 

where 𝑧𝑧 is the real independent variable such that 0 ≤ 𝑧𝑧 ≤ 1, represent the two boundaries. 𝐷𝐷 = 𝑑𝑑
𝑑𝑑𝑧𝑧

 is the 
differentiation along the vertical coordinate, 𝑎𝑎2  is square of the wave number,  𝜎𝜎 > 0 is the Prandtl number, 
𝑅𝑅 > 0 is the Rayleigh number, 𝑇𝑇𝑎𝑎 > 0 is the Taylor number, 𝑀𝑀1 > 0 is the magnetic number which defines 
ratio of magnetic forces due to temperature fluctuation to buoyant forces, 𝑀𝑀3 > 0 is the measure of the 
nonlinearity of magnetization, 𝑀𝑀2 > 0 is a non-dimensional parameter which defines the ratio of thermal flux 
due to magnetization to magnetic flux, 𝑝𝑝 = 𝑝𝑝𝑟𝑟 + 𝑖𝑖𝑝𝑝𝑖𝑖 is a complex constant in general such that 𝑝𝑝𝑟𝑟 and  𝑝𝑝𝑖𝑖  are 
real constants and as a consequence the dependent variables 𝑤𝑤(𝑧𝑧) =  𝑤𝑤𝑟𝑟(𝑧𝑧) +  𝑖𝑖𝑤𝑤𝑖𝑖(𝑧𝑧), 𝜃𝜃(𝑧𝑧) =  𝜃𝜃𝑟𝑟(𝑧𝑧) +  𝑖𝑖𝜃𝜃𝑖𝑖(𝑧𝑧), 
𝛷𝛷(𝑧𝑧) =  𝛷𝛷𝑟𝑟(𝑧𝑧) +  𝑖𝑖𝛷𝛷𝑖𝑖(𝑧𝑧) and 𝜁𝜁(𝑧𝑧) =  𝜁𝜁𝑟𝑟(𝑧𝑧) +  𝑖𝑖𝜁𝜁𝑖𝑖(𝑧𝑧) are complex valued functions of the real variable 𝑧𝑧 where 
𝑤𝑤𝑟𝑟(𝑧𝑧), 𝑤𝑤𝑖𝑖(𝑧𝑧),𝜃𝜃𝑟𝑟(𝑧𝑧), 𝜃𝜃𝑖𝑖(𝑧𝑧), 𝛷𝛷𝑟𝑟(𝑧𝑧), 𝛷𝛷𝑖𝑖(𝑧𝑧), 𝜁𝜁𝑟𝑟(𝑧𝑧) and 𝜁𝜁𝑖𝑖(𝑧𝑧) are real valued functions of the real variable z. 

Further, it may be noted that the equation (23) and equations (25) -(28) describe an eigenvalue problem for 𝑝𝑝 
and govern ferromagnetic convection, with MFD viscosity, in the presence of uniform rotation. 

3     Mathematical Analysis 

Following the analysis of Finlayson (1970), the exact solutions satisfying the boundary conditions (28) are given 
by 

𝑤𝑤 = 𝐴𝐴 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑧𝑧, 𝜃𝜃 = 𝐵𝐵 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑧𝑧, 𝛷𝛷 = − 𝐶𝐶
𝜋𝜋

 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑧𝑧, 𝜁𝜁 = −𝐷𝐷
𝜋𝜋

 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑧𝑧, 𝐷𝐷𝛷𝛷 = 𝐶𝐶 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑧𝑧, 𝐷𝐷𝜁𝜁 = 𝐷𝐷 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑧𝑧,  

where A, B, C and D are constants. Substitution of above solutions in equations (23) and (25) -(27) yields a 
system of four linear homogeneous algebraic equations in the unknowns A, B, C and D. For the existence of 
non-trivial solutions of this system, the determinant of the coefficients of A, B, C and D must vanish. This 
determinant on simplification yields 

𝑈𝑈𝑝𝑝3 + 𝑉𝑉𝑝𝑝2 + 𝑊𝑊𝑝𝑝 + 𝑋𝑋 = 0,                                                                                               (29) 

where 

𝑈𝑈 = 𝜎𝜎(𝑠𝑠2 + 𝑎𝑎2)(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3),                                                                                       (30) 

𝑉𝑉 = (𝑠𝑠2 + 𝑎𝑎2)2(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)[2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1],                     (31) 

𝑊𝑊 = (𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)[(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3){(1 + 𝛿𝛿𝑀𝑀3)𝜎𝜎 + 2} + 𝑇𝑇𝑎𝑎𝑠𝑠2𝜎𝜎] − 𝑅𝑅𝑎𝑎2[𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3(1 + 𝑀𝑀1)],       (32)                                                            
           

 𝑋𝑋 = (𝑠𝑠2 + 𝑎𝑎2)(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)[(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2] − 𝑅𝑅𝑎𝑎2(1 + 𝛿𝛿𝑀𝑀3)(𝑠𝑠2 + 𝑎𝑎2)[𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3(1 +
𝑀𝑀1)].                       (33) 

Substitution of 𝑝𝑝 = 𝑖𝑖𝑝𝑝𝑖𝑖 in equation (29) yields marginal state of convection. For 𝑝𝑝𝑖𝑖 = 0, we have a case of 
stationary convection, while 𝑝𝑝𝑖𝑖 ≠ 0 defines the oscillatory convection. 

From equation (29), the Rayleigh number for stationary convection can easily be derived as 

𝑅𝑅 =
�𝜋𝜋2+𝑎𝑎2𝑀𝑀3���𝜋𝜋2+𝑎𝑎2�

3(1+𝛿𝛿𝑀𝑀3)2+𝜕𝜕𝑎𝑎𝜋𝜋2�

𝑎𝑎2(1+𝛿𝛿𝑀𝑀3)[𝜋𝜋2+𝑎𝑎2𝑀𝑀3(1+𝑀𝑀1)]
.  (34) 

In the expression (34), if we put 𝛿𝛿 = 0,𝑇𝑇𝑎𝑎 = 0, we obtain the Rayleigh number for classical ferroconvection 
(Finlayson, 1970). If we put 𝛿𝛿 = 0 = 𝑀𝑀3,𝑇𝑇𝑎𝑎 ≠ 0, we obtain Rayleigh number for classical rotatory 
hydrodynamic convection (Chandrasekhar, 1981) and if we put 𝛿𝛿 = 0 = 𝑀𝑀3,𝑇𝑇𝑎𝑎 = 0, we obtain Rayleigh number 
for convection in ordinary fluid heated from below (Chandrasekhar, 1981). If we put 𝑇𝑇𝑎𝑎 = 0, 𝑀𝑀3 ≠ 0, we obtain 
Rayleigh number for ferroconvection with MFD viscosity (Prakash et al., 2017). If we put 𝛿𝛿 = 0,𝑇𝑇𝑎𝑎 ≠ 0,𝑀𝑀3 ≠
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0, we obtain Rayleigh number for ferroconvection in a rotating ferrofluid layer (Venkatasubramanian and 
Kaloni, 1994). 

When 𝑀𝑀1 is very large, the magnetic Rayleigh number 𝑁𝑁 (= 𝑅𝑅𝑀𝑀1) for stationary mode can be expressed as 

𝑁𝑁 =
�𝜋𝜋2+𝑎𝑎2𝑀𝑀3���𝜋𝜋2+𝑎𝑎2�

3(1+𝛿𝛿𝑀𝑀3)2+𝜕𝜕𝑎𝑎𝜋𝜋2�

𝑎𝑎4(1+𝛿𝛿𝑀𝑀3)𝑀𝑀3
. (35) 

To find the minimum value 𝑁𝑁𝑐𝑐 of 𝑁𝑁 with respect to wave number 𝑎𝑎, equation (35) is differentiated with respect 
to 𝑎𝑎2 and equated to zero and the following polynomial is obtained 

𝑎𝑎4(1 + 𝛿𝛿𝑀𝑀3)(𝑠𝑠2 + 𝑎𝑎2)𝑀𝑀3[(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3){(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2} + (𝑠𝑠2 + 𝑎𝑎2)𝑀𝑀3{(𝑠𝑠2 + 𝑎𝑎2)3(1 +
𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2} + (𝑠𝑠2 + 𝑎𝑎2)(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)3(𝑠𝑠2 + 𝑎𝑎2)2(1 + 𝛿𝛿𝑀𝑀3)2] − (𝑠𝑠2 + 𝑎𝑎2)(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3){(𝑠𝑠2 + 𝑎𝑎2)3(1 +
𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2}{2𝑎𝑎2(1 + 𝛿𝛿𝑀𝑀3)(𝑠𝑠2 + 𝑎𝑎2)𝑀𝑀3 + 𝑎𝑎4𝑀𝑀3(1 + 𝛿𝛿𝑀𝑀3)} = 0.                   (36)  

The above equation is solved numerically by using the software Scientific Work Place for various values of 𝑀𝑀3, 
𝛿𝛿 and 𝑇𝑇𝑎𝑎, and the minimum value of 𝑎𝑎 is obtained each time, hence 𝑁𝑁𝑐𝑐 is obtained. 

Table 1:   Marginal stability of MFD viscosity of a ferrofluid in a rotating medium heated from below for 
stationary mode having  𝑀𝑀1 = 1000, 𝑇𝑇𝑎𝑎 = 104 and 105. 

Taylor no. 𝑇𝑇𝑎𝑎 Coefficient of 
viscosity 𝛿𝛿 

Magnetization 
𝑀𝑀3 

Critical wave no. 
𝑎𝑎𝑐𝑐 

𝑁𝑁𝑐𝑐 = (𝑅𝑅𝑀𝑀1)𝑐𝑐 

 
 
 
 
 
 
 
 
 

104 

 
 

0.01 

1 6.0655 6905.6 
3 5.7997 5895.6 
5 5.7012 5674.5 
7 5.6351 5571.7 

 
 

0.03 

1 6.027 6909.2 
3 5.6872 5877.2 
5 5.5207 5637.1 
7 5.3926 5518.8 

 
 

0.05 

1 5.9896 6913.4 
3 5.5828 5863.3 
5 5.3603 5611.2 
7 5.1854 5485.9 

 
 

0.07 

1 5.9531 6918.0 
3 5.4856 5853.3 
5 5.2165 5594.6 
7 5.0057 5468.4 

 
 

0.09 

1 5.9175 6923.2 
3 5.3947 5847.3 
5 5.0867 5585.8 
7 4.8478 5463.2 

 
 
 
 
 
 
 
 
 

105 

 
 

0.01 

1 8.8651 24009 
3 8.6385 22100 
5 8.5422 21631 
7 8.4687 21376 

 
 

0.03 

1 8.8075 23931 
3 8.4718 21837 
5 8.2762 21203 
7 8.1124 20800 

 
 

0.05 

1 8.7514 23856 
3 8.3168 21598 
5 8.0393 20831 
7 7.8069 20321 

 
 

0.07 

1 8.6967 23784 
3 8.1723 21378 
5 7.8262 20505 

https://www.sciencedirect.com/science/article/pii/0020722594900043#!
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7 7.5408 19918 
 
 

0.09 

1 8.6434 23715 
3 8.037 21175 
5 7.6332 20216 
7 7.3059 19573 

 

 

Fig.2 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐) versus coefficient of field 
dependent viscosity (δ) for stationary mode for Taylor number 𝑇𝑇𝑎𝑎 = 104. 

 

Fig.3 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐) versus coefficient of field 
dependent viscosity  (𝛿𝛿) for stationary mode for Taylor number 𝑇𝑇𝑎𝑎 = 105. 
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Fig.4 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐) versus coefficient of field 
dependent viscosity  (𝛿𝛿) for stationary mode for Taylor number 𝑇𝑇𝑎𝑎 = 104 and 105. 

From equation (29), the Rayleigh number for oscillatory mode can easily be obtained as 

𝑅𝑅𝑜𝑜 =

[2𝜎𝜎(1+𝛿𝛿𝑀𝑀3)+1]��𝜋𝜋2+𝑎𝑎2�
3(1+𝛿𝛿𝑀𝑀3){(1+𝛿𝛿𝑀𝑀3)𝜎𝜎+2}+𝜕𝜕𝑎𝑎𝜋𝜋2𝜎𝜎��𝜋𝜋2+𝑎𝑎2𝑀𝑀3�

−𝜎𝜎�𝜋𝜋2+𝑎𝑎2𝑀𝑀3���𝜋𝜋2+𝑎𝑎2�
3(1+𝛿𝛿𝑀𝑀3)2+𝜕𝜕𝑎𝑎𝜋𝜋2�

𝑎𝑎2[𝜋𝜋2+𝑎𝑎2𝑀𝑀3(1+𝑀𝑀1)][𝜎𝜎(1+𝛿𝛿𝑀𝑀3)+1]
.   (37) 

When 𝑀𝑀1 is very large, the magnetic Rayleigh number 𝑁𝑁𝑜𝑜(= 𝑅𝑅𝑀𝑀1)𝑜𝑜 for oscillatory mode can be obtained using 

𝑁𝑁𝑜𝑜 =

[2𝜎𝜎(1+𝛿𝛿𝑀𝑀3)+1]��𝜋𝜋2+𝑎𝑎2�
3(1+𝛿𝛿𝑀𝑀3){(1+𝛿𝛿𝑀𝑀3)𝜎𝜎+2}+𝜕𝜕𝑎𝑎𝜋𝜋2𝜎𝜎��𝜋𝜋2+𝑎𝑎2𝑀𝑀3�

−𝜎𝜎�𝜋𝜋2+𝑎𝑎2𝑀𝑀3���𝜋𝜋2+𝑎𝑎2�
3(1+𝛿𝛿𝑀𝑀3)2+𝜕𝜕𝑎𝑎𝜋𝜋2�

𝑎𝑎4𝑀𝑀3[𝜎𝜎(1+𝛿𝛿𝑀𝑀3)+1]
. (38)  

To find the minimum value 𝑁𝑁𝑐𝑐𝑜𝑜 of 𝑁𝑁𝑜𝑜 with respect to wave number 𝑎𝑎, equation (38) is differentiated with 
respect to 𝑎𝑎2 and equated to zero and the following polynomial is obtained 

𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1][2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1]𝑀𝑀3(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 2]+𝑇𝑇𝑎𝑎𝑠𝑠2𝜎𝜎𝑀𝑀3𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 +
𝛿𝛿𝑀𝑀3) + 1][2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1] + 𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1][2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1](𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)3(𝑠𝑠2 + 𝑎𝑎2)2(1 +
𝛿𝛿𝑀𝑀3)[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 2]−𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1]𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3)2(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)3(𝑠𝑠2 + 𝑎𝑎2)2−𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 +
𝛿𝛿𝑀𝑀3) + 1]𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3)2(𝑠𝑠2 + 𝑎𝑎2)3𝑀𝑀3−𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1]𝑇𝑇𝑎𝑎𝑠𝑠2𝜎𝜎𝑀𝑀3 − [2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1](𝑠𝑠2 +
𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 2]2𝑎𝑎2𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1](𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3) − [2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1]𝑇𝑇𝑎𝑎𝑠𝑠2𝜎𝜎(𝑠𝑠2 +
𝑎𝑎2𝑀𝑀3)2𝑎𝑎2𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1] + 𝜎𝜎(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)[(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2]2𝑎𝑎2𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1] =
0.                  
        (39) The above equation is solved numerically by using the software Scientific Work Place for 
various values of 𝑀𝑀3, 𝛿𝛿 and 𝑇𝑇𝑎𝑎, and the minimum value of 𝑎𝑎 is obtained each time, hence 𝑁𝑁𝑐𝑐𝑜𝑜 is obtained. 

Table 2:  Marginal stability of MFD viscosity of a ferrofluid in a rotating medium heated from below for 
oscillatory mode having  𝑀𝑀1 = 1000, 𝑇𝑇𝑎𝑎 = 104 and 105. 

Taylor no. 𝑇𝑇𝑎𝑎 Coefficient  of 
viscosity  𝛿𝛿 

Magnetization 
𝑀𝑀3 

Critical wave no. 
𝑎𝑎𝑐𝑐 

𝑁𝑁𝑐𝑐𝑜𝑜 = (𝑅𝑅𝑀𝑀1)𝒄𝒄𝒐𝒐 

 
 
 
 
 
 

 
 

0.01 

1 4. 7997 13765 
3 4. 5176 11132 
5 4. 4251 10718 
7 4. 3727 10642 

 
 

1 4. 7861 14069 
3 4. 4763 11823 

𝛿𝛿 

 

 

 

 

𝑁𝑁𝑐𝑐  

 

(𝑇𝑇𝑎𝑎 = 105) 
Curve 𝑀𝑀3 

I 1 
II 7 

 

(𝑇𝑇𝑎𝑎 = 104) 
     Curve 𝑀𝑀3 

III 1 
IV 7 
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104 

0.03 5 4. 3568 11793 
7 4. 2785 12101 

 
 

0.05 

1 4. 7727 14375 
3 4. 4367 12521 
5 4. 2928 12882 
7 4. 1922 13588 

 
 

0.07 

1 4. 7595 14682 
3 4. 3986 13226 
5 4. 2326 13988 
7 4. 1127 15103 

 
 

0.09 

1 4. 7465 14682 
3 4. 3619 13228 
5 4. 1759 13995 
7 4. 0393 15117 

 
 
 
 
 
 
 
 

105 

 
 

0.01 

1 6. 9344 40017 
3 6. 708 36018 
5 6. 6353 35660 
7 6. 5903 35840 

 
 

0.03 

1 6. 913 40787 
3 6. 644 37979 
5 6. 5303 38799 
7 6. 4462 40148 

 
 

0.05 

1 6. 8919 41557 
3 6. 5823 39935 
5 6. 4314 41919 
7 6. 3133 44417 

 
 

0.07 

1 6. 8711 42327 
3 6. 5228 41885 
5 6. 3379 45022 
7 6. 1901 48656 

 
 

0.09 

1 6. 8505 43097 
3 6. 4653 43830 
5 6. 2494 48112 
7 6. 0754 52872 

 

 

Fig.5 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐𝑜𝑜) versus coefficient of field 
dependent viscosity (𝛿𝛿) for oscillatory mode for Taylor number 𝑇𝑇𝑎𝑎 = 104 and σ = 0.9. 
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Fig.6 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐𝑜𝑜) versus coefficient of field 
dependent viscosity (𝛿𝛿) for oscillatory mode for Taylor number 𝑇𝑇𝑎𝑎 = 105 and σ = 0.9. 

 

Fig.7 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐𝑜𝑜) versus coefficient of field 
dependent viscosity (𝛿𝛿) for oscillatory mode for Taylor number 𝑇𝑇𝑎𝑎 = 104 and 𝑇𝑇𝑎𝑎 = 105 when σ = 0.9. 

4     Discussion and Conclusion 

In the present communication, the influence of magnetic field dependent viscosity on the thermal convection in 
a rotating ferrofluid layer heated from below in the presence of uniform vertical magnetic field has been 
investigated. The magnetization parameter 𝑀𝑀1 is considered to be 1000 (Vaidyanathan et al., 1997). The value 
of 𝑀𝑀2 being negligible (Finlayson, 1970), has been taken as zero. The values of the parameter 𝑀𝑀3 are varied 
from 1 to 7. The values of the coefficient of magnetic field dependent viscosity 𝛿𝛿, has been varied from 0.01 to 
0.09. 

Emphasize has been given to a paper published by Vaidyanathan et al. (2001). These researchers have carried 
out their analysis by considering MFD viscosity as 𝜇𝜇 =  𝜇𝜇1�1 + 𝛿𝛿.𝐵𝐵�⃗ �. But they further resolved 𝜇𝜇 into 
components 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦 and 𝜇𝜇𝑧𝑧 along the coordinate axes which is technically wrong. Since 𝜇𝜇, being a scalar 
quantity, cannot be resolved into components. Thus a correction to their analysis is very much sought after in 
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order to give a correct interpretation of the problem. Keeping these facts in mind, the basic equations have been 
reformulated to the correct perspective and then mathematical and numerical analysis has been performed. The 
results so obtained have significant variations from the existing results which were otherwise obtained by using 
wrong assumption. 

From table 1 and from figures 2-4, it is evident that the critical value of magnetic Rayleigh number, 𝑁𝑁𝑐𝑐 =
(𝑅𝑅𝑀𝑀1)𝑐𝑐 decreases with the increase in the magnetization parameter 𝑀𝑀3. Hence the magnetization has 
destabilizing effect on the system. The physical interpretation of this may be given as follows: As the value of 
𝑀𝑀3 increases the departure of linearity in the magnetic equation of state increases resulting into the increase in 
the velocity of the ferrofluid in the vertical direction favoring the manifestation of instability. This increase in 
magnetization releases extra energy, which adds up to thermal energy to destabilize the flow more quickly. Thus 
the magnetization parameter destabilizes the system. The similar result also obtained by Vaidyanathan et al. 
(2001), but the difference in the values of 𝑁𝑁𝑐𝑐 is quite significant and increases with the increase in the value of 
𝛿𝛿. It is also evident from figures 2-4 that for stationary convection, the value of magnetic Rayleigh number 
decreases as the MFD viscosity parameter 𝛿𝛿 increases, predicting the destabilizing behavior of viscosity 
parameter 𝛿𝛿. This unexpected result that ‘the role of viscosity is inverted in the presence of rotation’, has also 
been predicted by Chandrasekhar (1981) for the case of ordinary fluid. 

It is also found from table 1 and figure 4, that the magnetic Rayleigh number increases with increase in the 
values of Taylor number 𝑇𝑇𝑎𝑎. Thus the rotation has stabilizing effect on the system. Again the difference in the 
existing values (Vaidyanathan et al., 2001) and the values obtained herein is significant. 

It is interesting to note from figures 5 and 6 that for the case of oscillatory motions the value of magnetic 
Rayleigh number increases as the MFD viscosity parameter 𝛿𝛿 increases, thus resulting into the postponement of 
instability. Thus, MFD viscosity has a stabilizing effect on the system for the case of oscillatory convection, 
which is a result also obtained by Vaidyanathan et al. (2001). 

Further, we may note from figures 5 and 6 that for the case of oscillatory convection also, 𝑀𝑀3 prepone the onset 
of convection. Thus magnetization 𝑀𝑀3 has destabilizing effect on the system for the case of oscillatory 
convection also. Finally, figure 7 predicts the stabilizing behavior of rotation on the system for the case of 
oscillatory convection. 
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	Synthetic magnetic fluids, also known as Ferrofluids, are the colloidal suspensions of solid single- domain ferromagnetic nano-particles, with typical dimensions of 10 nm, dispersed in an organic carrier (e.g. kerosene or ester) or water. In the recen...

