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Pulsed Laser Heating of a Thermoelastic Medium with Two-
temperature under Three-phase-lag Model 

 
M. I. A. Othman, N. T.  Mansour 
 
 
In this paper, the problem of the generalized thermoelastic medium for three different theories under 
the effect of a laser pulse and two-temperature is investigated. The Lord–Shulman (L-S), Green-Naghdi 
of type III (G-N III) and three-phase-lag (3PHL) theories are discussed with two-temperature. The 
normal mode analysis is used to obtain the analytical expressions of the displacement components, 
force stress, thermodynamic temperature and conductive temperature. The numerical results are given 
and presented graphically and the thermal force was applied. Comparisons are made with the results 
predicted by (3PHL), (G-N III) and (L-S) in the presence and absence of two-temperature. The 
boundary plane surface is heated by a non-Gaussian laser beam.  
 
Nomenclature 

ijσ  Components of stress tensor                      0T     Reference temperature 0 0( ) / 1T T T− <   
ije   Components of strain tensor                          φ    Conductive temperature

 
kke e= Cubic dilatation                       ,λ µ  Lame' constants 

,u v Displacement vectors
                                ijδ    Kronecker's delta  

T    Thermodynamic temperature                  ec    Specific heat at constant strain 

tα   Coefficient of linear thermal expansion      ρ    Density                                              

K   Coefficient of thermal conductivity           
*K   Material characteristic of the theory 

Tτ   Phase lag of temperature gradient
           qτ    Phase lag of heat flux  

vτ    Phase lag of thermal displacement gradient 
 
1   Introduction 

The generalized theory of thermoelasticity is one of the modified versions of classical uncoupled and 
coupled theory of thermoelasticity and has been developed in order to remove the paradox of physical 
impossible phenomena of infinite velocity of thermal signals in the classical coupled thermoelasticity. 
The thermoelasticity with finite wave speeds was investigated by (Ignaczak and Ostoja-Starzewski, 
2010). Five generalizations of the coupled theory of thermoelasticity were explained by (Hetnarski and 
Ignaczak, 1999). The first generalization formulates the generalized thermoelasticity theory involving 
one thermal relaxation time by (Lord and Shulman, 1967). The temperature rate-dependent 
thermoelasticity is developed where includes two thermal relaxation times and does not violate the 
second law of thermodynamics of heat conduction, when the body under consideration has a center of 
symmetry by (Green and Lindsay, 1972). The influence of magnetic field on generalized piezo-
thermoelastic rotating medium with two relaxation times was studied by (Othman et al., 2017). 
Hetnarski and Ignaczak (1996) were reviewed and presentation of generalized theories of 
thermoelasticity. The wave propagation in anisotropic solids in generalized theories of thermoelasticity 
was investigated by many authors (Marin, et al. 2014; Sharma and Marin, 2013;  Sharma and Singh, 
1985; Othman, et al. 2018; Tzou, 1995, Sangwan, et al. 2018). The third generalization of the coupled 
theory of thermoelasticity is developed by Hetnarski and Ignaczak and is known as low-temperature 
thermoelasticity. The fourth generalization to the coupled theory of thermoelasticity introduced by 
Green and Naghdi and this theory is concerned with the thermoelasticity theory without energy 
dissipation, referred to as (G-N II) in which the classical Fourier law is replaced by a heat flux rate-
temperature gradient relation and Green and Naghdi with energy dissipation referred to as (G-N III). 
The fifth generalization of the coupled theory of thermo-elasticity is referred to the dual-phase-lag 
thermoelasticity as in (Othman and Abd-Elaziz, 2015; Othman and Atwa, 2013). Recently the (3PHL), 
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heat conduction equation in which the Fourier law of heat conduction is replaced by an approximation 
to a modification of the Fourier law with the introduction of three different phases-lags for the heat flux 
vector, the temperature gradient and the thermal displacement gradient by (Roy Choudhuri, 2007). 
Quintanilla and Racke (2008) discussed the stability of the (3PHL), the heat conduction equation. 
Subsequently, this theory has employed of thermoelasticity with (3PHL) to discuss a problem of 
generalized magneto-thermoelastic half-space with diffusion under initial stress by Othman and Eraki 
(2017).  
The two-temperature theory of thermoelasticity was introduced by many works (Chen and Gurtin, 
1968; Khamis, et al. 2017), in which the classical Clausius-Duhem inequality was replaced by another 
one depending on two-temperatures; the conductive temperature and the thermo-dynamic temperature, 
the first is due to the thermal processes, and the second is due to the mechanical processes inherent 
between the particles and the layers of elastic material, this theory was also investigated by Ieşan 
(1970). The two-temperature model was underrated and unnoticed for many years thereafter. Only in 
the last decade has the theory been noticed, developed in many works, and find its applications, mainly 
in the problems in which the discontinuities of stresses have no physical interpretations. Among 
Quintanilla (2004) who contributes to develop this theory, it has studied existence, structural stability, 
convergence and spatial behavior of this theory, it was introduced the generalized Fourier law to the 
field equations of the two-temperature theory of thermoelasticity and proved the uniqueness of the 
solution for homogeneous isotropic material by Youssef (2006), the propagation of harmonic plane 
waves studied by Puri and Jordan (2006). Recently, authors have studied the uniqueness and growth 
solutions by Magaña and Quintanilla (2009), for the model proposed by (Youssef, 2006).  
The so-called ultra-short lasers are those with pulse duration ranging from nano-seconds to 
femtoseconds. In the case of ultra-short-pulsed laser heating, the high-intensity energy flux and ultra-
short duration laser beam have introduced situations where very large thermal gradients or an ultra-
high heating rate may exist on the boundaries by Sun et al. (2008). Researchers have proposed several 
models to describe the mechanism of heat conduction during short-pulse laser heating. It has been 
found that usually the microscopic two-step models, that is, parabolic and hyperbolic are useful for 
modification material as thin films. When a metal film is heated by a laser pulse, a thermoelastic wave 
is generated due to thermal expansion near the surface. The effect of magnetic field on a rotating 
thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation has 
investigated by Othman et al. (2018). 
In this paper, the generalized thermoelastic theory is applied to study the effect of two-temperature on 
thermoelastic medium due to laser pulse using three-phase-lag model. The (L-S), (G-N III) and (3PHL) 
theories are discussed with two-temperatures. The normal mode analysis is used to obtain the exact 
solution of the physical quantities. The effect of laser pulse as well as two-temperature are discussed 
numerically and illustrated graphically. 

2   Basic Equations 

The governing equations for an isotropic, homogeneous elastic solid with the generalized thermoelastic 
medium in the absence of body forces using (3PHL) model are: 
The constitutive equations 

02 [ ( )],ij ij ije e T Tσ µ δ λ γ= + − −                                                                 (1) 

, ,
1 ( ).
2ij i j j ie u u= +                                                                                                       (2) 

The equation of motion 

, , ,2 [ ] .i ij j j j iju e e Tρ µ λ γ δ= + −                                                                    (3) 

The equation of heat conduction 
2 2

2 2 2
02+ 1+ + + ].

2!
q* *

v t q e
τ

K τ + Kτ τ ρc T γT e Q
t t

φ φ φ ρ∂ ∂
∇ ∇ ∇ −

∂ ∂
  

= ( )[          (4) 

Where,   ( ),* *
v vτ K +K τ=       (3 2 ) .tγ λ µ α= +  

The equation of two-temperatures 
2= (1 )T b φ.∇−                                                                                                             (5) 

 Where, the list of symbols is given in the nomenclature. 
The plate surface is illuminated by laser pulse given by the heat input 
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2

0 2 2 2
0 0

1exp( ). exp( ) .
2

yt t xQ I e
t t r r

γγ
p

−− −
=        (6) 

where, 0I  is the energy absorbed, 0t  is the pulse rise time, r  is the beam radius, y is a function of 
the depth of the heat deposition due to the laser pulse is assumed to decay exponentially within the 
solid. 

3   Formulation of the Problem 

We consider an isotropic, homogeneous elastic solid with the generalized thermo-elastic medium. All 
quantities are considered are functions of the time variable t  and of the coordinates x  and .y  We 
consider the normal source acting on the plane surface of generalized thermoelastic half-space under 
the effect of two-temperatures, we assume ( , ,0).u v=u                                                                                                           
The equation of motion in the absence of body force 

2 2
, ,( ) (1 ) ,x xu u e bρ µ λ µ γ φ= ∇ + + − − ∇                                                      (7) 

2 2
, ,( ) (1 ) ,y yv v e bρ µ λ µ γ φ= ∇ + + − − ∇                                                       (8) 

2
22 2 2

2 2 2
02 2 2+ + = (1+ + )[( (1 ) + ].

2!
* q*

v t q e
τ eK τ Kτ τ ρc b γT Q

t t t t t
φ φφ φ ρ∂ ∂ ∂ ∂ ∂

∇ ∇ ∇ ∇ −
∂ ∂ ∂ ∂

−
∂

         (9) 

To facilitate the solution, the following dimensions quantities are introduced 
( , ) ( , ),x y c x yη′ ′ =        ( , ) ( , ),u v c u vη′ ′ =        2{ , , , , } { , , , , },q v q vT Tt c tτ τ τ τ η τ τ τ τ′ ′ ′ ′ ′ =     

 
( , ) ( , ),

( 2 )
T Tγφ φ

λ µ
′ ′ =

+
 
   

,
( 2 )

ij
ij

σ
σ

λ µ
′ =

+    
  2

1
,

( 2 )e
Q Q

c c
γ

η λ µ
′ =

+
    / ,ec Kη ρ=    

2 2 2
2

2 2 2x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂  

 and  2 ( 2 ) / .c λ µ ρ= +                                                   (10) 

The displacement components ( , , )u x y t  and ( , , )v x y t  may be written in terms of potential 
functions ( , , )q x y t  and ( , , )x y tΨ  as 

, , ,x yu q Ψ= −       , , .y xv q Ψ= +                                                                                   (11) 
Using Eqs. (10) and (11), in the Eqs. (7)-(9) become in the following form (after suppressing the 
primes) 

2 2(1 ) ,q b qφ∇ − − ∇ =                                                                                 (12) 
2

2 2
2t

Ψ β Ψ,∂
∇ =

∂
                                                                                  (13) 

2 2
2 2 2 2

1 2 32+ + = (1+ + )[(1 ) + ].
2!

q *
t q

τ
ε ε τ τ b ε q Q

t t
φ φ φ φ−

∂ ∂
∇ ∇ ∇ ∇ −

∂ ∂
   

         (14) 

Where    2 2 ,λ µβ
µ
+

=   1 2
0

= ,
*

e

kε
ρc c   

2 11+ ,vε = ε τ
  

2
0

3 ,
( 2 )e

T
c
γ

e
ρ λ µ

=
+    

2 2*b = b c .η  

Also, by using Eqs. (1) and (10)-(11), we obtain the components of stress in the form  

, ,2
2(1 ) ,xx x yu v Tσ
β

= + − −                                                                             (15) 

, ,2
2(1 ) ,yy x yu v Tσ
β

= − + −                                                                                 (16) 

, ,2
1 ( ).xy y xu vσ
β

= +                                                                     (17) 

The solution of the considered physical variables can be decomposed in terms of normal modes in the 
form 

* * * * * * *[ , , , , , , ]( , , ) [ , , , , , , ]( ) exp ( ),u v e q T x y t u v e q T y i t kxφ Ψ φ Ψ ω= +       (18) 
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Where ω  is the complex time constant (frequency), i is the imaginary unit, k is the wave number in 
the x − direction and * * * * * * *[ , , , , , , ]u v e q Tφ Ψ  are the amplitudes of the functions. 
Using equation (18), equations (12)-(14) become respectively 

2 * * 2 *
1 2(D ) ( D ) 0,A q b A φ− + − =                        (19) 

*2
3(D ) 0,A Ψ− =                                                                                      (20) 

*2 2 *
5 74 6 0(A D ) ( D ) ( , ) .yA A A q Q f x t e γφ −− + − = −       (21) 

Where    2 2
1 ,A k ω= −       * 2

2A 1 ,b k= +      
2 2 2

3 ,A k β ω= −      
2

2 2 2
4 1 2+ [1+ ],

2!
* q

t q
τ

A = ε iε ω τ ω b iτ ω ωω− − −  
 

2
2 2 2 2 2 2 2 2

5 1 2( + ) ( [1+ ],)
2!

b q
t q

τ
A = ε k iε ωk τ ω k iτ ωk ωω ω ∗− + −+  

6 3

2
2 2[1+ i ],

2!
q

q
τ

A = ε ω τ ω ω−
 

2
2 2 2

7 3 [1 ],
2!
q

q
τ

A = ε ω k + iτ ω ω−
 

0
0 2 2

0
,

2
IQ
r t
γ

p
=

 
2 2

2 2 3 2
0 0 0 0 0 0

2 3 d( , ) [(1 ) ( ) ( )]exp( ), D = .
2 d
q

q
t t t x tf x t i t ikx
t t t yt t t r

τ
τ ω−

= − + + + − − − − −  

Eliminating *φ  and *q  among Eqs. (19) and (21) respectively, we obtain the following differential 
equations  4 2 *

0 1{D D ] ( , ) ,yA B q Q N f x t e γ−− + = −                                           (22) 
*4 2

0 2{D D ] ( , ) ,yA B Q N f x t e γφ −− + = −                                            (23) 

where,       
*

2 6 7 5 1 4
*

4 6

A A A b A A AA
A A b

+ − −
=

− +
,
      

12 7 5
*

4 6

A A A AB
A A b

−
=
− +

,        
* 2

1 2 ,N b Aγ= −        

2
2 1,N Aγ= −         i 1, 2.=  

Equation (22) and (23) can be factored as 
2 2 2 2 *

1 2 1 0(D )(D ) ( , ) ,yk k q N Q f x t e γ−− − = −                               (24) 
2 2 2 2 *

1 2 2 0(D )(D ) ( , ) ,yk k N Q f x t e γφ −− − = −                               (25) 

where 2 ( 1, 2)nk n =  are the roots of the characteristic equation of Eqs. (24) and (25). 
The general solutions of Eqs. (20), (22) and (23) are given by: 

( )
3 .k y i t ikxnM e ωΨ − + +=                                                  (26) 

( )
2

1 1 0 1
1

( , ) ,k y i t ikx yn
n

n
q M e N Q f x t eω γ− + + −

=

= −∑                                (27) 

( )
2

1 1 2 0 1
1

( , ) ,k y i t ikx yn
n n

n
H M e N Q f x t eω γφ − + + −

=

= −∑                                        (28) 

From Eq. (5) and (28) we obtain 

( )
2

2 1 2 0 1
1

( ) ( , ) ,k y i t ikx yn
n n

n
T H M e N Q J x f x t eω γ− + + −

=

= −∑                                     (29) 

where,  ( 1, 2)nM n =  are some constants, 
 2 2

1 2 2 3 2
0 0 00 0 0

2 3( , ) [(1 ) ( ) ( )]exp( ),
2
q

q
t t t x tf x t
t t tt t t r

τ
τ −

= − + + + − − − 1 4 2
1 ,

A Bγ γ
=

− +
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2
1

2
2

( ) ,n
1n

n

k AH =
b k A∗
− −

−
      

2 2[1 ( )]*
2n 1n nH = H b k k− − ,

      

* 2
2 2
2 2( ) 1 ( [1 ] ).xJ x b

r r
γ−

= − − +  

To obtain the components of the displacement vector, substituting from Eqs. (26) and  
(27) in Eq. (11), then 

( ) ( )
2

1
1 0 1 32

1

2 ( , ) ,k y i t ikx y m y i t ikxn
n

n

xu ikM e N Q f x t e mM e
r

ω γ ω− + + − − + +

=

= + −∑ 

             (30) 

( ) ( )
2

1 1 0 1 3
1

( , ) ,k y i t ikx y m y i t ikxn
n n

n
v k M e N Q f x t e ikM eω γ ωγ− + + − − + +

=

= − + +∑            (31) 

Substituting from Eqs. (29), (30) and (31) in Eqs. (15)-(17), we obtain the stress components as 
follows: 

( )( )
2

3 1 0 1 4 3 5
1

( , ) ,k y i t ikxy m y i t ikx n
xx n n

n
H Q f x t e H M e H M e ωγ ωσ − + +− − + +

=

= − −∑     (32) 

( )( )
2

6 1 0 1 7 3 8
1

( , ) ,k y i t ikxy m y i t ikx n
yy n n

n
H Q f x t e H M e H M e ωγ ωσ − + +− − + +

=

= − +∑

       
    (33)

 

( )( )
2

9 1 1 0 1 10 3 11
1

( , ) .k y i t ikxy m y i t ikx n
xy n n

n
H N Q f x t e H M e H M e ωγ ωσ − + +− − + +

=

= + −∑

       
(34)

 

Where,    
2 2

21 1 1
3 1 22 4 2

2 4 2 ( ),N x N NH = N N J x
r r

γγ
β

− − + +
  

4 2
2+ ,ikmH = m ikm
β

−
  

2

22
2 ,n

5n n
kH = H
β

+
      

2 2
2 1 1 1

1 22 4 2 2 4
2 4 2 2 4( ) ( ),6

N x N N xH = N N J x
r r r r

γ
β

− + − − − +
  

7 2
2= + ,mH m ikm
β

+
 

2

22
2 ,8n n

kH = H
β

−
  

9 2 ,2
4xH =

r
γ

β
−

  

2 2

10 2= ,m kH
β
−

2
2= .n

11n
ikkH
β  

 
4   The Boundary Conditions 

In order to determine the parameters ( )1,2 ,nM n =  we need to consider the boundary conditions at 

0y =  as follows: 
( )*( ,0, ) ( , ) , ( ,0, ) 0, ( ,0, ) 0.i t kx

xx xyx t P x t P e x t T x tωσ σ+= − = − = =        (35) 
Using the expressions of the variables considered into the above boundary conditions, we can obtain 
the following equations satisfied by the parameters:  

2
*

5 4 3
1

,n n
n

H M H M P
=

+ =∑
  

     (36)
 

2

11 10 3
1

0,n n
n

H M H M
=

− + =∑       (37) 

2

2
1

0,n n
n

H M
=

=∑             (38) 

Solving Eqs. (36)-(38), the constants ( 1, 2)nM n =  are defined as follows: 

1
1 = ,ΔM

Δ
                 2

2 = ,ΔM
Δ

                       3
3 = ΔM .

Δ
     (39) 

Where,     10 52 21 51 22 4 111 22 112 21= ( ) + ( ),Δ H H H H H H H H H H− − −  

1 10 22= ,*Δ H H P−        2 10 21= ( ),*Δ P H H         3 112 21 111 22= ( ).*Δ P H H H H−  
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                                   0            Mechanical/Thermal load y  
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Figure 1.  Geometry of the problem. 

 
5 Numerical Results 

To study the effect of time and two-temperatures, we now present some numerical results. For this 
purpose, copper is taken as the thermoelastic material for which we take the following values of the 
different physical constants as in Othman and Eraki (2017). 

10 27.7 10 ,N mλ −= ⋅ ⋅ 10 1 23.86 10 ,μ kg m s− −= ⋅ ⋅ ⋅ 1 1300K w m K− −= ⋅ ⋅ ,   
5 11.78 10 ,tα K− −= ⋅  

38954kg mρ −= ⋅ ,  1 1383.1ec J kg K− −= ⋅ ,   0 293T K= ,   1.5k = , 0.7,ω = −   0.1,x =  
* 132.97 10 ,K = ⋅      

* 1,p = −      = 0.3 , = 0.5 ,  = 1.5.v t qτ τ τ  
The laser pulse parameters are 5 5 4 1 7

0 010 , 10 , 2 10 , 0.1 10 s.I r m m tγ− − − −= = = ⋅ = ⋅  
The numerical technique, outlined above, was used for the distribution of the real part of the 
temperature ,T  the displacement components u , v  and the stress components ,xxσ ,yyσ xyσ for 
the problem. All the variables are taken in non-dimensional form the result. Figs. 2-7 depict the variety 
of the displacement components ,u ,v  the temperature ,T  the stress components ,xxσ yyσ and 

xyσ in the absence and the presence of two-temperature (i.e. 0,0.1b = ) in the presence of the laser 
pulse.  
Fig. 2 shows that the distribution of the displacement  ,u  in the context of (3PHL), (L-S) and (G-N III) 
theories, always begins from positive values for 0,0.1.b =  It shows that, in the presence of two-
temperature (i.e. 0.1b = ), the values of u based on (3PHL), (L-S) and (G-N III) theories decrease in 
the range 0 5.y≤ ≤  However, in the absence of two-temperature (i.e. 0b = ), the values of u based 
on (3PHL), (L-S) and (G-N III) theories decrease in the range 0 1.y≤ ≤  Fig. 3 is plotted the 
distribution of the displacement v with distance .y  The behavior of v for both theories is almost 
similar for 0,0.1.b =  It decreases in the range 0 0.9,y≤ ≤  and begin to increase in the range 
1 9.y≤ ≤  Even approaching the final to zero. The change in the temperature distribution T with the 
distance y represents in Fig. 4. The temperature distribution is exhibiting the similar trend for both 
theories for 0,0.1.b =  It is an increasing function in the domain 0 0.8y≤ ≤ and a decreasing 
function in the domain 0.8 4,y≤ ≤  at 0b = . It is an increasing function in the domain 0 0.8y≤ ≤  
and a decreasing function in the domain 0.8 4,y≤ ≤  for 0b = . It is noticed that the temperature 
distribution is strongly affected by the presence of two-temperature because for 0.1b = , temperature 
distribution increases in the range 0 1,y≤ ≤  while decreases in the range 1 6.y≤ ≤  The variation 

of the stress component xxσ with distance y has shown in Fig. 5. The behavior of xxσ for both 
theories is alike. It satisfied the boundary conditions and decreasing in the range 0 6y≤ ≤  for 

0, 0.1b =  and finally decays to zero. Fig. 6 shows the variation of the stress component yyσ  with 

distance .y  The behavior of yyσ for 0.1b =  begins to decrease, then smooth decreases and takes the 

form of wave and try to return to zero in three theories. While, for 0b = , the behavior of yyσ begins 
to increase, then smooth decreases and takes the form of wave and try to return to zero in three 
theories. The stress component xyσ  with distance y indicated in Fig. 7. The behavior of xyσ for 
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both theories is alike. It satisfied the boundary conditions and increasing in the range 0 1y≤ ≤  for 
0, 0.1b =  and decreasing in the range 1 8y≤ ≤  and finally decays to zero.  
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Figure 2. Horizontal displacement distribution u  
for 0, 0.1.b =  

Figure 3. Vertical displacement distribution 
v for 0, 0.1.b =  
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Figure 4. Temperature distribution  T for 
0, 0.1.b =  

Figure 5. Distribution of stress component 

xxσ for 0, 0.1.b =  
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Figure 6. Distribution of stress component yyσ for 
0, 0.1.b =  

Figure 7. Distribution of stress component xyσ  
for 0, 0.1.b =  

 
Figs. 8-13 depict the variety of the displacement components ,u ,v  the temperature ,T  the stress 

components ,xxσ yyσ and xyσ for different values of time ( 130.05 10 ,t −= ⋅   0.09t = ) in the presence 
of laser pulse and two-temperatures.  
Figs. 8 and 9 show the distributions of the displacement components u and v in the context of 
(3PHL), (L-S) and (G-N III) theories for 130.05 10t −= ⋅ and 0.09.t =  It is noticed that the distribution of 
u decreases for 13( 0.05 10 ,t −= ⋅  0.09)t =  while the distribution of v decreases for 

13( 0.05 10 , 0.09)t t−= ⋅ =  in the range 0 0.2y≤ ≤  and increases in the range 0.2 6y≤ ≤  in three 
theories. Fig. 10 demonstrates that the distribution of the temperature T always begins from zero and 
satisfies the boundary conditions. In the context of the (3PHL), (L-S) and (G-N III) theories, the values 
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of  T increase in the beginning to a maximum value in the range 0 1,y≤ ≤  then decrease in the range 

1 5y≤ ≤  and also move in wave propagation for 130.05 10t −= ⋅ and 0.09.t =  It is also noticed that the 
values of  T for both (L-S) and (G-N III) theories are less in comparison to (3PHL) model. Fig. 11 
depicts the distribution of the stress component xxσ in the context of (3PHL), (L-S) and (G-N III) 

theories, for 130.05 10t −= ⋅  and  0.09.t =  It is observed that the distribution of xxσ in the context of 

(3PHL), (L-S) and (G-N III) theories is decreasing for 130.05 10t −= ⋅ and 0.09,t =  until it decay to 
zero. Fig. 12 depicts the distribution of the stress component yyσ in the context of (3PHL), (L-S) and 

(G-N III) theories, for 130.05 10t −= ⋅ and 0.09.t =  It is observed that the distribution of yyσ in the 

context of (3PHL), (L-S) and (G-N III) theories are decreasing for 130.05 10t −= ⋅ and 0.09,t =  until it 

decay to zero. The distribution of the stress components xyσ always begins from zero and satisfies the 
boundary conditions as demonstrated in Fig. 13. In the context of (3PHL), (L-S) and (G-N III) theories, 
the values of xyσ increase in the beginning to a maximum value in the range 0 1,y≤ ≤  then decrease 

in the range 1 6y≤ ≤  for 130.05 10t −= ⋅ and  0.09,t =  until it decay to zero. 
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Figure 8. Horizontal displacement distribution u  
for 130.05 10 , 0.09.t t−= ⋅ = 

Figure 9. Horizontal displacement distribution v  
for 130.05 10 , 0.09.t t−= ⋅ = 
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Figure 10. Temperature distribution T  for 
130.05 10 , 0.09.t t−= ⋅ = 

Figure 11. Distribution of stress component xxσ for 
130.05 10 , 0.09.t t−= ⋅ = 
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Figure 12. Distribution of stress component yyσ  

for 
130.05 10 , 0.09.t t−= ⋅ = 

Figure 13. Distribution of stress component xyσ for 
130.05 10 , 0.09.t t−= ⋅ = 

 
 

6  Conclusions 

By comparing the figures obtained under the three theories, important phenomena are observed: 
(a)  Analytical solutions based upon normal mode analysis of the thermoelastic  problem in solids have 
  been developed. 
(b)  The method that is used in the present article is applicable to a wide range of the  
 problems in the hydrodynamics and thermoelasticity. 
(c)  There are significant differences in the field quantities under (L-S), (GN-III), (3PHL) theories. 
(d)  The presence of the laser pulse and two-temperature play a significant role on all the physical  
 quantities. 
(e)  The comparison of the three theories of thermoelasticity, (L-S), (G-N III) and (3PHL) theories are  
 carried out.  
(f) The value of all the physical quantities converges to zero. 
 
Analysis of the temperature, stress generated and displacement components in a body due to the 
application of the effect of a laser pulse and two-temperature are an interesting problem of 
thermoelasticity. The problem assumes great significance when we consider the real behavior of the 
material characteristics with appropriate geometry of the model. 
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On Failure of Determinism in Classical Mechanics

A. Krawietz

Newtonian mechanics is generally considered to be deterministic: Once the initial conditions are known, all the
future behaviour of a system can be predicted by solving the equations of motion. (That is the idea of Laplace’s
demon.) But a simple example will reveal that the solution of the initial value problem need not be unique. A
prediction thus becomes impossible. An effect can happen without a cause, so that causality is annulled.

1 Introduction

Classical mechanics is ruled by differential equations. If the initial values of position and velocity of a system
are given, the future values can, in principle, be calculated by integrating these equations. Laplace (1814) applied
this idea to the whole universe and concluded that its future is fully determined by the presence. (The intelligent
being who should know all the initial conditions and solve the equations was later on named Laplace’s demon.) So
Newtonian mechanics seems to be a fully deterministic theory. But this conviction is based on the tacit belief that
the solution of the differential equations is unique.
We will present the following simple example that allows an infinite number of solutions and thus disproves the
idea of determinism.

Figure 1: The state of rest of a plate under the influence of gravity

A rigid plate is supported by a rigid basis. The mutual contact occurs at the vertices of four geometrically identical
cams. The situation depicted in Fig. 1 is obviously a state of equilibrium. So the plate can remain in this position
for all times. Our question is whether it is also possible that the plate begins to move and leaves this position
without noticeable cause.
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2 The Geometry of our Example

Figure 2: Contact of the cams during the motion

We describe the progress of the motion by the arc lengths of the boundary of a cam from the vertex to the actual
point of contact as shown in Fig. 2. The coordinates of the point of contact shall be given as

x = x(s) , y = y(s) (1)

and the coordinates of the center of gravity of the plate are then

xC = xC0 + 2x , yC = yC0 + 2y (2)

wherexC0 andyC0 denote the position of the center of gravity in the state of rest. The square of the velocity of
the center of gravity is

v 2
C = ẋ 2

C + ẏ 2
C = 4(ẋ2 + ẏ2) = 4

((
dx

ds

)2

+

(
dy

ds

)2
)(

ds

dt

)2

= 4
dx2 + dy2

ds2

(
ds

dt

)2

= 4ṡ2 (3)

3 Frictionless Motion

The sum of the potential and kinetic energy remains constant during the motion.

(E + U)0 = E + U =
1
2
mv 2

C − mg(yC − yC0) = 2mṡ2 − 2mgy(s) (4)

We are interested in motions that start from the state of rest withs = 0, y = 0, ṡ = 0, so that(E +U)0 = 0 holds.
The equation of motion then becomes

ṡ = +
√

gy(s) ≡ r(s) (5)

We choose the positive square root to describe motions to the right.
An obvious solution iss(t) ≡ 0, y(t) ≡ 0, ṡ(t) ≡ 0, so that the plate remains in the state of rest for an arbitrarily
long time. We want to know whether there are other solutions of the differential equation. Uniqueness requires the
fulfilment of Lipschitz’ condition. But that condition is surely violated if the derivative of the right-hand sider(s)
is not finite,i.e. ∣

∣
∣
∣
dr(s)
ds

(s = 0)

∣
∣
∣
∣ = ∞ (6)

The last condition allows a geometric interpretation. Letα denote the angle of the tangent andκ the curvature of
the boundary curve. Then

sin α =
dy

ds
, κ =

dα

ds
=

dα

d sin α

d sin α

ds
=

1
cos α

d2y

ds2
=

y′′(s)
√

1 − y′(s)2
(7)

Now

y(s) =
1
g
r(s)2 , y′(s) =

2
g
r(s)r′(s) , y′′(s) =

2
g

(
r′(s)2 + r(s)r′′(s)

)
(8)

At the vertex, we haves = 0, α = 0, κ(0) = y′′(0) ∝ r′(0)2 = ∞. So an infinite curvature at the vertex is
sufficient to allow the spontaneous deviation of the plate from the state of rest. If this happens at some instant
t = tD, then the solution of our differential equation can be found by separation of the variables.

∫ s

ŝ=0

dŝ

r(ŝ)
=
∫ t

t̂=tD

dt̂ = t − tD (9)
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4 A Special Geometry

We study the following class of boundary curves, depending on a positive constanta and a real parameterθ.

y(s) ≡ as2θ , y′(s) ≡ 2θas2θ−1 , y′′(s) ≡ 2θ(2θ − 1)as2(θ−1) , r(s) ≡
√

gasθ , r′(s) ≡ θ
√

gasθ−1

(10)
The conditiony′(0) = 0 requiresθ > 1/2 andr′(0) is infinite if θ < 1. The curvature at the vertexy′′(0) is then
infinite, too, as we already know. We are therefore only interested in values ofθ satisfying1/2 < θ < 1. Eq. (9)
then gives

1
√

ga

s1−θ

1 − θ
= t − tD =⇒ s(t) =

(
(1 − θ)

√
ga(t − tD)

) 1
1−θ

t ≥ tD (11)

Now let the initial conditions bes(tI) = 0, ṡ(tI) = 0 at some initial timetI < tD. A possible solution of this
initial value problem is the remaining in the state of rest fromtI to the timetD of deviation

s(t) ≡ 0 tI ≤ t ≤ tD (12)

followed by a deviation off the state of rest according to eq. (11). Choosing the special valueθ = 3/4, we find

y(s) ≡ as
3
2 =⇒ s(t) ≡

{
0 if tI ≤ t ≤ tD(

ga
16

)2
(t − tD)4 if t ≥ tD

(13)

So an infinite set of solutions of the initial value problem exists, depending on the parametertD.

5 The Role of Friction

It would be erroneous to assume that our phenomenon of indeterminism depends on the crude idealization of a
frictionless motion. LetF (s) be the work of friction exerted during the motion at each of the two contacts. Then
the balance of work (4) has to be modified as follows.

0 = E + U + 2F = 2mṡ2 − 2mgy(s) + 2F (s) (14)

and the equation of motion (5) has to be replaced by

ṡ = +

√

gy(s) −
1
m

F (s) ≡ r(s) (15)

A non-trivial solution can only exist if
F (s) < mgy(s) (16)

The power of friction is the product of the frictional forcef and the relative velocityvR = vC = 2ṡ at the points
of contact.

Ḟ = F ′(s)ṡ = 2f(s)ṡ (17)

In the case of dry friction,F ′(0) = 2f(0) = 2f0 > 0 is finite buty′(0) is zero. So the inequality (16) cannot be
satisfied nears = 0 and a deviation from the state of rest is impossible. The same happens if sticking friction is
present.
However, viscous damping can be allowed. To demonstrate this, we study the rather special case

F (s) = λmgy(s) with 0 < λ < 1 (18)

The equation of motion becomes
ṡ = +

√
(1 − λ)gy(s) (19)

The solutions of the frictionless case remain valid ifg is replaced by(1− λ)g. The appertaining nonlinear viscous
law is obtained as follows

f =
1
2
F ′(s) = λθmgas2θ−1 = λθmga

(
vR

2
√

(1 − λ)ga)

)2− 1
θ

≡ f(vR) (20)
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6 Conclusions

Let us interpret our result (13). Newtonian mechanics reveals the following possibility: The plate remains in a
state of rest for a certain time interval and then, at some instanttD, suddenly starts a motion and leaves the state of
rest.

• It is disturbing that the pointtD of deviation remains totally uncertain. Not even a statement of probability
like a half-value time can be given.

• It cannot be known, too, whether the motion will ocur to the right-hand or the left-hand side.

• Our solution is an example of an indetermined motion. Note that the begin of the motion is not triggered
by any external disturbance. No cause of this effect can be found. On the other hand, Laplace (1814),
guided by his investigation on celestial mechanics, wrote : ”Lesévénemens actuels ont avec les préćedens,
une liaison fond́ee sur le principéevident, qu’une chose ne peut pas commencer d’être, sans une cause qui
la produise. Cet axiome connu sous le nom deprincipe de la raison suffisante, s’étend aux actions m̂eme
les plus indiff́erentes. (The connexion of the actual events with the preceding ones is based on the evident
principle that nothing can begin to exist without a reason by which it is produced. This axiom, known
under the name of principle of sufficient reason, even applies to actions of utmost irrelevance.)” But our
finding indicates that this principle of sufficient reason is perhaps not so evident and even invalid in special
situations.

• It is surprising that the plate can start its motion although, at the beginning, it has no information whether
the curvature at the vertex is infinite and the friction small enough to allow the motion at all.

7 Delimitation

• The phenomenon of indeterminacy may be considered as a heightened stage of instability. Whenever there is
a positive curvature at the vertex then the state of rest of the plate is unstable. An arbitrarily small disturbance
is sufficient to cause a permanent deviation from that state. In a case likey = as2, such a disturbance is also
necessary. Otherwise the plate remains at rest in a deterministic way. In our indeterminate case, however,
the state of rest is of course unstable, but no disturbance at all is necessary to start the deviation.

• Indeterminate behaviour must not be confused with chaotic behaviour. The latter is deterministic and charac-
terized by a sensitive dependence on initial conditions. So all the intermediate states of the orbit are unstable.
In our indeterminate case, we do not discuss various initial conditions but only one, the state of rest. Only
this state is unstable but not the following ones during the motion.

• Indeterminism is not a problem for engineers but one of natural philosophy. The plate of our example cannot
be manufactured with sufficient accuracy to test its behaviour by an experiment.

Remark: The indeterminate behaviour of eq. (13) was already discussed by the author in a text book
(Krawietz (1997), p. 262). It was inferred there from the motion of a point mass, which is a cruder idealiza-
tion than our plate. The same example was afterwards presented by Norton (2003) in a critical philosophical
treatment on the principle of causation.
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Ferromagnetic Convection in a Rotating Medium with Magnetic 
Field Dependent Viscosity. A Correction Applied 
J. Prakash1, K. Kumari2, P. Kumar3, R. Kumar4, K.R. Sharma5 

 

The effect of magnetic field dependent (MFD) viscosity on the thermal convection in a ferrofluid layer, heated 
from below, has been investigated in the simultaneous presence of a uniform vertical magnetic field and a 
uniform vertical rotation. A correction is applied to Vaidyanathan et al. (Ind. J. Pure Appl. Phy., 2001, 40, 159-
165), which is very important in order to predict the correct behavior of MFD viscosity. A linear stability 
analysis has been carried out for stationary modes and oscillatory modes separately. The critical wave number 
and critical Rayleigh number for the onset of instability, for the case of free boundaries, are determined 
numerically for sufficiently large values of the magnetic parameter 𝑀𝑀1. Numerical results are obtained and are 
illustrated graphically. It is shown that MFD viscosity has a destabilizing effect on the system for the case of 
stationary mode and stabilizing effect for the case of oscillatory mode, whereas magnetization has a 
destabilizing effect. Further, it is also shown that rotation has a stabilizing effect on the system. 

1     Introduction 

Synthetic magnetic fluids, also known as Ferrofluids, are the colloidal suspensions of solid single- domain 
ferromagnetic nano-particles, with typical dimensions of 10 nm, dispersed in an organic carrier (e.g. kerosene or 
ester) or water. In the recent past the studies on ferrofluids attracted several researchers due to their manifold 
applications in various fields such as acoustics, lubrication, vacuum technology, metals recovery, 
instrumentation, vibration damping etc. These researches have led to many commercial uses of ferrofluids 
which includes chemical reactor, medicine, novel zero-leakage rotary shaft seals used in computer disk drives, 
high speed silent printers, contrast enhancement of magnetic resonance imaging (MRI), pressure seals of 
compressors and blowers, cooling of loud speakers (Rosensweig, 1985; Odenbach, 2002a). 

Ferrohydrodynamics, the study of the magnetic properties of colloidal suspensions has drawn considerable 
interest since the 1930 (Elmore, 1938), but the investigations on ferroconvection intensified noticeably, starting 
from the fundamental paper of Finlayson (1970). An authoritative introduction to ferrohydrodynamics is 
provided in a beautiful monograph by Rosensweig (1985). This book and the references therein laid a serious 
scientific foundation for further investigations in this field of enquiry. Currently, a significant body of literature 
exists devoted to ferroconvection. For a broad view of the subject one may referred to Lalas and Carmi (1971), 
Shliomis (1972), Aniss et al. (2001), Odenbach (2002b), Sunil et al. (2005), Suslov (2008), Lee and 
Shivakumara (2011), Prakash (2013a, b), Rahman and Suslov (2015, 2016) and Labusch et al. (2016). 

The most specific characteristic property of a ferrofluid is the possibility to exert a significant influence to their 
flow and physical properties by means of moderate magnetic fields (Odenbach, 2002a). The effect on the 
viscous behavior of fluid due to the presence of an external magnetic field seems to be most prominent and is 
one of the most challenging topics of magnetic fluid research. Several research papers have been published by 
eminent researchers in this direction. Rosensweig et al. (1969) reported the investigation of a viscosity increase 
observed in ferrofluids containing nanosized magnetic particles in magnetic fields. The effect of a homogeneous 
magnetic field on the viscosity of the fluid with solid particles possessing intrinsic magnetic moments has been 
investigated by Shliomis (1974). Vaidyanathan et al. (2001) studied the influence of MFD viscosity on 
ferroconvection in a rotating medium heated from below using linear stability analysis. Vaidyanathan et al. 
(2002) further investigated the same problem of ferroconvection in a rotating sparsely distributed porous 
medium for the case of stationary and oscillatory modes. Ramanathan and Suresh (2004) studied the effect of 
magnetic field dependent viscosity and anisotropy of porous medium on ferroconvection. Sunil et al. (2005) 
investigated the effect of magnetic field dependent viscosity on a rotating ferromagnetic fluid heated and soluted 
from below saturating a porous medium. Prakash and Gupta (2013) derived upper bounds for the complex 
growth rate of oscillatory motions in ferromagnetic convection with MFD viscosity in a rotating fluid layer. 
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It is worth mentioning here that in the above cited papers on MFD viscosity, the researchers performed their 
analysis by considering MFD viscosity in the form 𝜇𝜇 = 𝜇𝜇1(1 + 𝛿𝛿.𝐵𝐵�⃗  ), where 𝜇𝜇1 is fluid viscosity in the absence 
of magnetic field 𝐵𝐵�⃗  and 𝛿𝛿 is the variation coefficient of viscosity. They resolved 𝜇𝜇 into components 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦 and 
𝜇𝜇𝑧𝑧 which is not technically correct. Since 𝜇𝜇, being a scalar quantity, cannot be resolved in such a manner. 
Undoubtedly, they have investigated a very important problem of ferrohydrodynamics, but their results cannot 
be relied upon due to this wrong assumption. Recently, Prakash and Bala (2016) and Prakash et al. (2017, 
2018a, b) have rectified the above problem for some ferromagnetic convection configurations with MFD 
viscosity. In the present communication the attention has, particularly, been given to the above cited paper by 
Vaidyanathan et al. (2001) on ferromagnetic convection in a rotating medium with MFD viscosity. Keeping in 
view the above fact the basic equations have been reformulated and then mathematical and numerical analysis 
has been performed to remedy the weaknesses in the existing results and to give correct interpretation of the 
problem. It is also important to point out here that the role of viscosity for stationary convection is observed to 
destabilize the system which is in confirmation with the result obtained by Chandrasekhar (1981) for the case of 
ordinary fluid. 

2     Mathematical Formulation 

Consider a ferromagnetic fluid layer of infinite horizontal extension and finite vertical thickness dheated from 
below which is kept under the simultaneous action of a uniform vertical magnetic field 𝐻𝐻��⃗  and uniform vertical 
rotation 𝛺𝛺�⃗  (see Fig.1). The magnetic fluid is assumed to be incompressible having a variable viscosity, given by 
𝜇𝜇 =  𝜇𝜇1�1 + 𝛿𝛿.𝐵𝐵�⃗ �, where 𝜇𝜇1 is the viscosity of the magnetic fluid when there is no magnetic field applied, 𝜇𝜇 is 
the magnetic field dependent viscosity and 𝐵𝐵�⃗  is the magnetic induction. The variation coefficient of viscosity 𝛿𝛿 
has been taken to be isotropic, i.e. 𝛿𝛿1 = 𝛿𝛿2 = 𝛿𝛿3 = 𝛿𝛿. The effect of shear dependence on viscosity is not 
considered since it has negligible effect for a mono dispersive system of large rotation and high field. As a first 
approximation for small field variation, linear variation of magneto viscosity has been used (Vaidyanathan et al., 
2002). 

 

The basic governing equations for the present problem are given by (Vaidyanathan et al., 2001): 

𝛻𝛻. �⃗�𝑞 = 0,                                        (1) 

𝜌𝜌0 �
𝜕𝜕𝑞𝑞�⃗
𝜕𝜕𝜕𝜕

+ 𝑞𝑞.���⃗ 𝛻𝛻�⃗�𝑞� = −𝛻𝛻𝑃𝑃� + 𝜌𝜌�⃗�𝑔 + 𝜇𝜇𝛻𝛻2�⃗�𝑞 + 𝛻𝛻. �𝐻𝐻��⃗ 𝐵𝐵�⃗ � +2𝜌𝜌0��⃗�𝑞 × 𝛺𝛺�⃗ � + 𝜌𝜌0
𝟐𝟐
𝛻𝛻 ��𝛺𝛺�⃗ × 𝑟𝑟�

2
�,                      (2) 

�𝜌𝜌0𝐶𝐶𝑉𝑉,𝐻𝐻 − 𝜇𝜇0 𝐻𝐻��⃗ . �𝜕𝜕𝑀𝑀
��⃗

𝜕𝜕𝜕𝜕
�
𝑉𝑉,𝐻𝐻
� 𝐷𝐷𝜕𝜕
𝐷𝐷𝜕𝜕

+ 𝜇𝜇0𝑇𝑇 �
𝜕𝜕𝑀𝑀��⃗

𝜕𝜕𝜕𝜕
�
𝑉𝑉,𝐻𝐻

. 𝐷𝐷𝐻𝐻
��⃗

𝐷𝐷𝜕𝜕 
= 𝐾𝐾1𝛻𝛻2𝑇𝑇 + 𝜙𝜙,                                                            (3) 

𝜌𝜌 =  𝜌𝜌0[1 + 𝛼𝛼(𝑇𝑇0 − 𝑇𝑇)],                           (4) 

where �⃗�𝑞 = (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the fluid velocity, 𝑃𝑃 = 𝑃𝑃� − 𝜌𝜌0
2
𝛻𝛻 ��𝛺𝛺�⃗ × 𝑟𝑟�

2
� is the pressure, 𝐻𝐻��⃗  is the magnetic field, 

𝜇𝜇 = 𝜇𝜇1�1 + 𝛿𝛿.𝐵𝐵�⃗ � is the variable viscosity, �⃗�𝑔 =  (0, 0,−𝑔𝑔) is the acceleration due to gravity, 𝛺𝛺�⃗ = (0, 0, 𝛺𝛺) is 
the angular velocity, 𝐶𝐶𝑉𝑉,𝐻𝐻 is the heat capacity at constant volume and magnetic field, 𝜇𝜇0 is the magnetic 
permeability, 𝑇𝑇 is the temperature, 𝑀𝑀��⃗  is the magnetization, 𝐾𝐾1 is the thermal conductivity, 𝜙𝜙 is the viscous 

Fig.1 Geometrical configuration 
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𝑇𝑇0(> 𝑇𝑇1) 
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𝑥𝑥 

𝑧𝑧 = 0 
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dissipation containing second order terms in velocity, 𝛼𝛼 is the coefficient of volume expansion and 𝜌𝜌0 is the 
density at some reference temperature 𝑇𝑇0. 

For a non-conducting fluid with no displacement current, the Maxwell’s equations are given by 

𝛻𝛻.𝐵𝐵�⃗ = 0,𝛻𝛻 × 𝐻𝐻��⃗ = 0,  𝐵𝐵�⃗ = 𝜇𝜇0�𝐻𝐻��⃗ + 𝑀𝑀��⃗ �.   (5a,b) 

We assume that the magnetization is aligned with the magnetic field, but allow a dependence on the magnitude 
of the magnetic field as well as the temperature as 

𝑀𝑀��⃗ = 𝐻𝐻��⃗

𝐻𝐻
𝑀𝑀(𝐻𝐻,𝑇𝑇).                           (6) 

The linearized magnetic equation of state is 

𝑀𝑀 = 𝑀𝑀0  +  𝜒𝜒 (𝐻𝐻 − 𝐻𝐻0) − 𝐾𝐾2(𝑇𝑇 − 𝑇𝑇0),                          (7) 

where 𝑀𝑀0 is the magnetization when magnetic field is 𝐻𝐻0 and temperature 𝑇𝑇0, 𝜒𝜒 =  �𝜕𝜕𝑀𝑀
��⃗

𝜕𝜕𝐻𝐻��⃗
�
𝐻𝐻0,𝜕𝜕0

is magnetic 

susceptibility and 𝐾𝐾2 = −�𝜕𝜕𝑀𝑀
��⃗

𝜕𝜕𝜕𝜕
�
𝐻𝐻0,𝜕𝜕0

is the pyromagnetic coefficient. 

The basic state is assumed to be quiescent state and is given by 

�⃗�𝑞 = �⃗�𝑞𝑏𝑏 = 0, 𝜌𝜌 = 𝜌𝜌𝑏𝑏(𝑧𝑧), 𝑃𝑃 = 𝑃𝑃𝑏𝑏(𝑧𝑧),  𝑇𝑇 =  𝑇𝑇𝑏𝑏(𝑧𝑧) = −𝛽𝛽 𝑧𝑧 +  𝑇𝑇0,  𝛽𝛽 = 𝜕𝜕0−𝜕𝜕1
𝑑𝑑

, 𝐻𝐻��⃗ 𝑏𝑏 = �𝐻𝐻0 −
𝐾𝐾2𝛽𝛽𝑧𝑧
1+𝜒𝜒

� 𝑘𝑘� , 

𝑀𝑀��⃗ 𝑏𝑏 = �𝑀𝑀0 +  𝐾𝐾2 𝛽𝛽𝑧𝑧
1+𝜒𝜒

� 𝑘𝑘� , 𝐻𝐻��⃗ 𝑏𝑏 + 𝑀𝑀��⃗ 𝑏𝑏 = 𝐻𝐻0 + 𝑀𝑀0.                                         (8) 

The Perturbed State Solutions are given by 

�⃗�𝑞 = �⃗�𝑞𝑏𝑏 + 𝑞𝑞′���⃗ , 𝜌𝜌 = 𝜌𝜌𝑏𝑏(𝑧𝑧) + 𝜌𝜌′, 𝑃𝑃 = 𝑃𝑃𝑏𝑏(𝑧𝑧) +  𝑃𝑃′, 𝑇𝑇 = 𝑇𝑇𝑏𝑏(𝑧𝑧) +  𝜃𝜃 ′,𝐻𝐻��⃗ = 𝐻𝐻��⃗ 𝑏𝑏(𝑧𝑧) +  𝐻𝐻��⃗ ′, 

𝑀𝑀��⃗ = 𝑀𝑀��⃗ 𝑏𝑏(𝑧𝑧) + 𝑀𝑀��⃗ ′,              (9) 
where 𝑞𝑞′���⃗ = (𝑢𝑢′, 𝑣𝑣 ′,𝑤𝑤 ′), 𝜌𝜌′,  𝑃𝑃′,𝜃𝜃 ′,𝐻𝐻��⃗ ′and  𝑀𝑀��⃗ ′ are perturbations in velocity, density, pressure, temperature, 
magnetic field intensity and magnetization respectively and are assumed to be small.  

Substituting equation (9) into equations (1) -(7) and using equation (8), we get the following linearized 
perturbation equations 

𝜕𝜕𝜕𝜕′

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑦𝑦
+  𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑧𝑧
= 0,           (10) 

𝜌𝜌0
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
=  −𝜕𝜕𝜕𝜕′

𝜕𝜕𝑥𝑥
+ 𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0) 𝜕𝜕𝐻𝐻𝑥𝑥

′

𝜕𝜕𝑧𝑧
+ 2𝜌𝜌0𝛺𝛺𝑣𝑣 ′ +  𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2𝑢𝑢′,                   (11) 

𝜌𝜌0
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
=  −𝜕𝜕𝜕𝜕′

𝜕𝜕𝑦𝑦
+ 𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0) 𝜕𝜕𝐻𝐻𝑦𝑦

′

𝜕𝜕𝑧𝑧
− 2𝜌𝜌0𝛺𝛺𝑢𝑢′ +  𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2𝑣𝑣 ′,                 (12) 

𝜌𝜌0
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
= −𝜕𝜕𝜕𝜕′

𝜕𝜕𝑧𝑧
+ 𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0) 𝜕𝜕𝐻𝐻𝑧𝑧

′

𝜕𝜕𝑧𝑧
− 𝜇𝜇0𝐾𝐾2𝛽𝛽𝐻𝐻𝑧𝑧′ + 𝜇𝜇𝑜𝑜𝐾𝐾22𝛽𝛽𝜃𝜃′

(1+𝜒𝜒)
+ 𝜌𝜌0𝑔𝑔𝛼𝛼𝜃𝜃 ′ + 𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2𝑤𝑤 ′,  (13) 

 𝜌𝜌𝑐𝑐
𝜕𝜕𝜃𝜃′

𝜕𝜕𝜕𝜕
− 𝜇𝜇0𝑇𝑇0  𝐾𝐾2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑧𝑧
� =  𝜅𝜅1𝛻𝛻2𝜃𝜃 ′ + �𝜌𝜌𝑐𝑐𝛽𝛽 −

𝜇𝜇0𝜕𝜕0  𝐾𝐾22𝛽𝛽
1+𝜒𝜒

�𝑤𝑤 ′,            (14) 

where 𝜌𝜌𝑐𝑐 = 𝜌𝜌0 𝐶𝐶𝑉𝑉,𝐻𝐻 + 𝜇𝜇0𝐾𝐾2𝐻𝐻0, 𝐻𝐻′ = 𝛻𝛻𝛷𝛷′,  𝛷𝛷′ is the perturbed magnetic potential 

and 𝐻𝐻𝑧𝑧′ + 𝑀𝑀𝑧𝑧
′  =   (1 +  𝜒𝜒)𝐻𝐻𝑧𝑧′ − 𝐾𝐾2𝜃𝜃 ′,        (15) 

𝐻𝐻𝑖𝑖′ + 𝑀𝑀𝑖𝑖
′  =   �1 +  𝑀𝑀0

𝐻𝐻0
�𝐻𝐻𝑖𝑖′(𝑖𝑖 = 1 , 2),          (16) 

where we have assumed 𝐾𝐾2𝛽𝛽𝑑𝑑 ≪ (1 + 𝜒𝜒)𝐻𝐻0, as the analysis is restricted to physical situations, in which the 
magnetization induced by temperature variations is small compared to that induced by the external 
magneticfield.  
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Using equations (5b), (15) and (16), we get 

�1 + 𝑀𝑀0
𝐻𝐻0
� 𝛻𝛻12𝛷𝛷′  + (1 +  𝜒𝜒) 𝜕𝜕

2𝜕𝜕′

𝜕𝜕𝑧𝑧2
− 𝐾𝐾2

𝜕𝜕𝜃𝜃′

𝜕𝜕𝑧𝑧
= 0,  (17) 

where 𝛻𝛻12 = � 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
�. 

Now we eliminate 𝑢𝑢′  and 𝑣𝑣 ′ between equations (11) and (12) by operating equation (11) by 𝜕𝜕
𝜕𝜕𝑥𝑥

 and equation (12) 

by 𝜕𝜕
𝜕𝜕𝑦𝑦

, adding the resulting equations and using equation (10). We obtain 

𝜌𝜌0
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑧𝑧
� = �𝜕𝜕

2𝜕𝜕′

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝜕𝜕′

𝜕𝜕𝑦𝑦2
� − 2𝜌𝜌0𝛺𝛺𝜁𝜁′ + 𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2 �𝜕𝜕𝜕𝜕

′

𝜕𝜕𝑧𝑧
� − 𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0) 𝜕𝜕

𝜕𝜕𝑧𝑧
�𝜕𝜕𝐻𝐻𝑥𝑥

′

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝐻𝐻𝑦𝑦′

𝜕𝜕𝑦𝑦
�,  (18) 

where 𝜁𝜁′ =   𝜕𝜕𝜕𝜕
′

𝜕𝜕𝑥𝑥
− 𝜕𝜕𝜕𝜕′

𝜕𝜕𝑦𝑦
  is the z component of vorticity. 

Now eliminating 𝑃𝑃′ between equations (13) and (18), we get 

𝜌𝜌0
𝜕𝜕
𝜕𝜕𝜕𝜕
𝛻𝛻2𝑤𝑤 ′ = −2𝜌𝜌0𝛺𝛺

𝜕𝜕𝜁𝜁′

𝜕𝜕𝑧𝑧
+ 𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]

𝜕𝜕2

𝜕𝜕𝑧𝑧2
(𝛻𝛻2𝑤𝑤 ′) + 𝜌𝜌0𝑔𝑔𝛼𝛼𝛻𝛻12𝜃𝜃 ′ +

𝜇𝜇0𝐾𝐾22𝛽𝛽  𝛻𝛻12𝜃𝜃 ′

1 + 𝜒𝜒
+  𝜇𝜇1𝛻𝛻12(𝛻𝛻2𝑤𝑤 ′) 

+𝜇𝜇0𝜇𝜇1𝛿𝛿(𝐻𝐻0 + 𝑀𝑀0)𝛻𝛻12(𝛻𝛻2𝑤𝑤 ′) − 𝜇𝜇0𝐾𝐾2𝛽𝛽
𝜕𝜕
𝜕𝜕𝑧𝑧
𝛻𝛻12𝛷𝛷′.                                      (19)  

Further, operating equation (11) by 𝜕𝜕
𝜕𝜕𝑦𝑦

  and equation (12) by 𝜕𝜕
𝜕𝜕𝑥𝑥

 , subtracting the resulting equations and using 
equation (10), we get an equation describing vorticity as 

𝜌𝜌0 
𝜕𝜕𝜕𝜕 ′

𝜕𝜕𝜕𝜕
= 2𝜌𝜌0 𝛺𝛺

𝜕𝜕𝜕𝜕′

𝜕𝜕𝑧𝑧
+ 𝜇𝜇1[1 + 𝛿𝛿𝜇𝜇0(𝐻𝐻0 + 𝑀𝑀0)]𝛻𝛻2𝜁𝜁′.             (20) 

Now we analyze the perturbations  𝑤𝑤 ′,  𝜃𝜃 ′, 𝜁𝜁′ and 𝛷𝛷′  into two dimensional periodic waves and consider 
disturbances characterized by a particular wave number 𝑘𝑘. Thus we assume to all quantities describing the 
perturbation a dependence on 𝑥𝑥, y and t of the form 

(𝑤𝑤 ′,𝜃𝜃 ′, 𝜁𝜁′ ,𝛷𝛷′) = [𝑤𝑤 ′′(𝑧𝑧), 𝜃𝜃 ′′(𝑧𝑧), 𝜁𝜁′′(𝑧𝑧),𝛷𝛷′′(𝑧𝑧)]exp�𝑖𝑖�𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑦𝑦𝑦𝑦� + 𝑛𝑛𝜕𝜕�,           (21) 

where 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are the horizontal wave numbers and 𝑘𝑘 = �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2  is the resultant wave number. 

On using equation (21) in equations (19), (14), (17) and (20) and non-dimensionalizing the variables by setting 

𝑧𝑧∗ = 𝑧𝑧
𝑑𝑑 

,    𝑤𝑤∗ = 𝑑𝑑𝜕𝜕′′

𝜈𝜈 
,  𝑎𝑎 = 𝑘𝑘𝑑𝑑,    𝜁𝜁∗ = 𝑑𝑑2

𝜈𝜈 
𝜁𝜁′′,  𝐷𝐷 = 𝑑𝑑 𝑑𝑑

𝑑𝑑𝑧𝑧 
, 𝜃𝜃∗ = 𝐾𝐾1𝑎𝑎𝑅𝑅1/2

𝜌𝜌𝑐𝑐𝛽𝛽𝜈𝜈 𝑑𝑑
𝜃𝜃 ′′, 𝛷𝛷∗ = (1+ 𝜒𝜒)𝐾𝐾1𝑎𝑎𝑅𝑅1/2

𝐾𝐾2𝜌𝜌𝑐𝑐𝛽𝛽𝜈𝜈 𝑑𝑑2
𝛷𝛷′′,     𝜈𝜈 = 𝜇𝜇

𝜌𝜌0
 ,  

𝜎𝜎 = 𝜈𝜈𝜌𝜌𝑐𝑐
𝐾𝐾1

, 

𝛿𝛿∗ = 𝜇𝜇0𝛿𝛿𝐻𝐻0(1 +  𝜒𝜒),  𝑅𝑅 = 𝑔𝑔𝑔𝑔𝛽𝛽𝑑𝑑4𝜌𝜌𝑐𝑐
𝐾𝐾1𝜈𝜈

,  𝑀𝑀1 = 𝜇𝜇0𝐾𝐾22𝛽𝛽  
(1+ 𝜒𝜒)𝑔𝑔𝜌𝜌0𝑔𝑔 

, 𝑀𝑀2 = 𝜇𝜇0𝜕𝜕0𝐾𝐾22

(1+ 𝜒𝜒)𝜌𝜌𝑐𝑐
,  𝑀𝑀3 =

1 + 𝑀𝑀0
𝐻𝐻0

(1+ 𝜒𝜒)
 , 𝑇𝑇𝑎𝑎 = 4𝛺𝛺2𝑑𝑑4

𝜈𝜈2
, 𝑝𝑝 = 𝑛𝑛𝑑𝑑2

𝜈𝜈 
                           

                 (22) 

we obtain the following non dimensional equations (dropping the asterisks for simplicity) 

(𝐷𝐷2 − 𝑎𝑎2){(1 + 𝛿𝛿𝑀𝑀3)(𝐷𝐷2 − 𝑎𝑎2) − 𝑝𝑝}𝑤𝑤 = 𝑎𝑎𝑅𝑅
1
2�(1 +  𝑀𝑀1)𝜃𝜃 –𝑀𝑀1𝐷𝐷𝛷𝛷 � + 𝑇𝑇𝑎𝑎

1
2𝐷𝐷𝜁𝜁,                 (23) 

(𝐷𝐷2 − 𝑎𝑎2 − 𝑝𝑝𝜎𝜎)𝜃𝜃 +  𝑝𝑝𝑀𝑀2𝜎𝜎𝐷𝐷𝛷𝛷 = −(1 −𝑀𝑀2)𝑎𝑎𝑅𝑅
1
2𝑤𝑤,                                                    (24) 

{(1 + 𝛿𝛿𝑀𝑀3)(𝐷𝐷2 − 𝑎𝑎2) − 𝑝𝑝}𝜁𝜁 = −𝑇𝑇𝑎𝑎
1
2𝐷𝐷𝑤𝑤,                                           (25)  

(𝐷𝐷2 − 𝑎𝑎2𝑀𝑀3)𝛷𝛷 = 𝐷𝐷𝜃𝜃.                                                 (26) 

Since, 𝑀𝑀2  is of very small order (Finlayson, 1970), it is neglected in the subsequent analysis and thus equation 
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(24) takes the form 

(𝐷𝐷2 − 𝑎𝑎2 − 𝑝𝑝𝜎𝜎)𝜃𝜃 = −𝑎𝑎𝑅𝑅
1
2𝑤𝑤.                (27) 

The constant temperature boundaries are considered to be free. Thus the boundary conditions are given by 

𝑤𝑤 = 0 = 𝜃𝜃 = 𝐷𝐷2𝑤𝑤 = 𝐷𝐷𝜁𝜁 = 𝐷𝐷𝛷𝛷 at 𝑧𝑧 =  0 and 𝑧𝑧 =  1,                       (28) 

where 𝑧𝑧 is the real independent variable such that 0 ≤ 𝑧𝑧 ≤ 1, represent the two boundaries. 𝐷𝐷 = 𝑑𝑑
𝑑𝑑𝑧𝑧

 is the 
differentiation along the vertical coordinate, 𝑎𝑎2  is square of the wave number,  𝜎𝜎 > 0 is the Prandtl number, 
𝑅𝑅 > 0 is the Rayleigh number, 𝑇𝑇𝑎𝑎 > 0 is the Taylor number, 𝑀𝑀1 > 0 is the magnetic number which defines 
ratio of magnetic forces due to temperature fluctuation to buoyant forces, 𝑀𝑀3 > 0 is the measure of the 
nonlinearity of magnetization, 𝑀𝑀2 > 0 is a non-dimensional parameter which defines the ratio of thermal flux 
due to magnetization to magnetic flux, 𝑝𝑝 = 𝑝𝑝𝑟𝑟 + 𝑖𝑖𝑝𝑝𝑖𝑖 is a complex constant in general such that 𝑝𝑝𝑟𝑟 and  𝑝𝑝𝑖𝑖  are 
real constants and as a consequence the dependent variables 𝑤𝑤(𝑧𝑧) =  𝑤𝑤𝑟𝑟(𝑧𝑧) +  𝑖𝑖𝑤𝑤𝑖𝑖(𝑧𝑧), 𝜃𝜃(𝑧𝑧) =  𝜃𝜃𝑟𝑟(𝑧𝑧) +  𝑖𝑖𝜃𝜃𝑖𝑖(𝑧𝑧), 
𝛷𝛷(𝑧𝑧) =  𝛷𝛷𝑟𝑟(𝑧𝑧) +  𝑖𝑖𝛷𝛷𝑖𝑖(𝑧𝑧) and 𝜁𝜁(𝑧𝑧) =  𝜁𝜁𝑟𝑟(𝑧𝑧) +  𝑖𝑖𝜁𝜁𝑖𝑖(𝑧𝑧) are complex valued functions of the real variable 𝑧𝑧 where 
𝑤𝑤𝑟𝑟(𝑧𝑧), 𝑤𝑤𝑖𝑖(𝑧𝑧),𝜃𝜃𝑟𝑟(𝑧𝑧), 𝜃𝜃𝑖𝑖(𝑧𝑧), 𝛷𝛷𝑟𝑟(𝑧𝑧), 𝛷𝛷𝑖𝑖(𝑧𝑧), 𝜁𝜁𝑟𝑟(𝑧𝑧) and 𝜁𝜁𝑖𝑖(𝑧𝑧) are real valued functions of the real variable z. 

Further, it may be noted that the equation (23) and equations (25) -(28) describe an eigenvalue problem for 𝑝𝑝 
and govern ferromagnetic convection, with MFD viscosity, in the presence of uniform rotation. 

3     Mathematical Analysis 

Following the analysis of Finlayson (1970), the exact solutions satisfying the boundary conditions (28) are given 
by 

𝑤𝑤 = 𝐴𝐴 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑧𝑧, 𝜃𝜃 = 𝐵𝐵 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑧𝑧, 𝛷𝛷 = − 𝐶𝐶
𝜋𝜋

 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑧𝑧, 𝜁𝜁 = −𝐷𝐷
𝜋𝜋

 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑧𝑧, 𝐷𝐷𝛷𝛷 = 𝐶𝐶 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑧𝑧, 𝐷𝐷𝜁𝜁 = 𝐷𝐷 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑧𝑧,  

where A, B, C and D are constants. Substitution of above solutions in equations (23) and (25) -(27) yields a 
system of four linear homogeneous algebraic equations in the unknowns A, B, C and D. For the existence of 
non-trivial solutions of this system, the determinant of the coefficients of A, B, C and D must vanish. This 
determinant on simplification yields 

𝑈𝑈𝑝𝑝3 + 𝑉𝑉𝑝𝑝2 + 𝑊𝑊𝑝𝑝 + 𝑋𝑋 = 0,                                                                                               (29) 

where 

𝑈𝑈 = 𝜎𝜎(𝑠𝑠2 + 𝑎𝑎2)(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3),                                                                                       (30) 

𝑉𝑉 = (𝑠𝑠2 + 𝑎𝑎2)2(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)[2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1],                     (31) 

𝑊𝑊 = (𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)[(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3){(1 + 𝛿𝛿𝑀𝑀3)𝜎𝜎 + 2} + 𝑇𝑇𝑎𝑎𝑠𝑠2𝜎𝜎] − 𝑅𝑅𝑎𝑎2[𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3(1 + 𝑀𝑀1)],       (32)                                                            
           

 𝑋𝑋 = (𝑠𝑠2 + 𝑎𝑎2)(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)[(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2] − 𝑅𝑅𝑎𝑎2(1 + 𝛿𝛿𝑀𝑀3)(𝑠𝑠2 + 𝑎𝑎2)[𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3(1 +
𝑀𝑀1)].                       (33) 

Substitution of 𝑝𝑝 = 𝑖𝑖𝑝𝑝𝑖𝑖 in equation (29) yields marginal state of convection. For 𝑝𝑝𝑖𝑖 = 0, we have a case of 
stationary convection, while 𝑝𝑝𝑖𝑖 ≠ 0 defines the oscillatory convection. 

From equation (29), the Rayleigh number for stationary convection can easily be derived as 

𝑅𝑅 =
�𝜋𝜋2+𝑎𝑎2𝑀𝑀3���𝜋𝜋2+𝑎𝑎2�

3(1+𝛿𝛿𝑀𝑀3)2+𝜕𝜕𝑎𝑎𝜋𝜋2�

𝑎𝑎2(1+𝛿𝛿𝑀𝑀3)[𝜋𝜋2+𝑎𝑎2𝑀𝑀3(1+𝑀𝑀1)]
.  (34) 

In the expression (34), if we put 𝛿𝛿 = 0,𝑇𝑇𝑎𝑎 = 0, we obtain the Rayleigh number for classical ferroconvection 
(Finlayson, 1970). If we put 𝛿𝛿 = 0 = 𝑀𝑀3,𝑇𝑇𝑎𝑎 ≠ 0, we obtain Rayleigh number for classical rotatory 
hydrodynamic convection (Chandrasekhar, 1981) and if we put 𝛿𝛿 = 0 = 𝑀𝑀3,𝑇𝑇𝑎𝑎 = 0, we obtain Rayleigh number 
for convection in ordinary fluid heated from below (Chandrasekhar, 1981). If we put 𝑇𝑇𝑎𝑎 = 0, 𝑀𝑀3 ≠ 0, we obtain 
Rayleigh number for ferroconvection with MFD viscosity (Prakash et al., 2017). If we put 𝛿𝛿 = 0,𝑇𝑇𝑎𝑎 ≠ 0,𝑀𝑀3 ≠
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0, we obtain Rayleigh number for ferroconvection in a rotating ferrofluid layer (Venkatasubramanian and 
Kaloni, 1994). 

When 𝑀𝑀1 is very large, the magnetic Rayleigh number 𝑁𝑁 (= 𝑅𝑅𝑀𝑀1) for stationary mode can be expressed as 

𝑁𝑁 =
�𝜋𝜋2+𝑎𝑎2𝑀𝑀3���𝜋𝜋2+𝑎𝑎2�

3(1+𝛿𝛿𝑀𝑀3)2+𝜕𝜕𝑎𝑎𝜋𝜋2�

𝑎𝑎4(1+𝛿𝛿𝑀𝑀3)𝑀𝑀3
. (35) 

To find the minimum value 𝑁𝑁𝑐𝑐 of 𝑁𝑁 with respect to wave number 𝑎𝑎, equation (35) is differentiated with respect 
to 𝑎𝑎2 and equated to zero and the following polynomial is obtained 

𝑎𝑎4(1 + 𝛿𝛿𝑀𝑀3)(𝑠𝑠2 + 𝑎𝑎2)𝑀𝑀3[(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3){(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2} + (𝑠𝑠2 + 𝑎𝑎2)𝑀𝑀3{(𝑠𝑠2 + 𝑎𝑎2)3(1 +
𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2} + (𝑠𝑠2 + 𝑎𝑎2)(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)3(𝑠𝑠2 + 𝑎𝑎2)2(1 + 𝛿𝛿𝑀𝑀3)2] − (𝑠𝑠2 + 𝑎𝑎2)(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3){(𝑠𝑠2 + 𝑎𝑎2)3(1 +
𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2}{2𝑎𝑎2(1 + 𝛿𝛿𝑀𝑀3)(𝑠𝑠2 + 𝑎𝑎2)𝑀𝑀3 + 𝑎𝑎4𝑀𝑀3(1 + 𝛿𝛿𝑀𝑀3)} = 0.                   (36)  

The above equation is solved numerically by using the software Scientific Work Place for various values of 𝑀𝑀3, 
𝛿𝛿 and 𝑇𝑇𝑎𝑎, and the minimum value of 𝑎𝑎 is obtained each time, hence 𝑁𝑁𝑐𝑐 is obtained. 

Table 1:   Marginal stability of MFD viscosity of a ferrofluid in a rotating medium heated from below for 
stationary mode having  𝑀𝑀1 = 1000, 𝑇𝑇𝑎𝑎 = 104 and 105. 

Taylor no. 𝑇𝑇𝑎𝑎 Coefficient of 
viscosity 𝛿𝛿 

Magnetization 
𝑀𝑀3 

Critical wave no. 
𝑎𝑎𝑐𝑐 

𝑁𝑁𝑐𝑐 = (𝑅𝑅𝑀𝑀1)𝑐𝑐 

 
 
 
 
 
 
 
 
 

104 

 
 

0.01 

1 6.0655 6905.6 
3 5.7997 5895.6 
5 5.7012 5674.5 
7 5.6351 5571.7 

 
 

0.03 

1 6.027 6909.2 
3 5.6872 5877.2 
5 5.5207 5637.1 
7 5.3926 5518.8 

 
 

0.05 

1 5.9896 6913.4 
3 5.5828 5863.3 
5 5.3603 5611.2 
7 5.1854 5485.9 

 
 

0.07 

1 5.9531 6918.0 
3 5.4856 5853.3 
5 5.2165 5594.6 
7 5.0057 5468.4 

 
 

0.09 

1 5.9175 6923.2 
3 5.3947 5847.3 
5 5.0867 5585.8 
7 4.8478 5463.2 

 
 
 
 
 
 
 
 
 

105 

 
 

0.01 

1 8.8651 24009 
3 8.6385 22100 
5 8.5422 21631 
7 8.4687 21376 

 
 

0.03 

1 8.8075 23931 
3 8.4718 21837 
5 8.2762 21203 
7 8.1124 20800 

 
 

0.05 

1 8.7514 23856 
3 8.3168 21598 
5 8.0393 20831 
7 7.8069 20321 

 
 

0.07 

1 8.6967 23784 
3 8.1723 21378 
5 7.8262 20505 

https://www.sciencedirect.com/science/article/pii/0020722594900043#!
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7 7.5408 19918 
 
 

0.09 

1 8.6434 23715 
3 8.037 21175 
5 7.6332 20216 
7 7.3059 19573 

 

 

Fig.2 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐) versus coefficient of field 
dependent viscosity (δ) for stationary mode for Taylor number 𝑇𝑇𝑎𝑎 = 104. 

 

Fig.3 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐) versus coefficient of field 
dependent viscosity  (𝛿𝛿) for stationary mode for Taylor number 𝑇𝑇𝑎𝑎 = 105. 
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Fig.4 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐) versus coefficient of field 
dependent viscosity  (𝛿𝛿) for stationary mode for Taylor number 𝑇𝑇𝑎𝑎 = 104 and 105. 

From equation (29), the Rayleigh number for oscillatory mode can easily be obtained as 

𝑅𝑅𝑜𝑜 =

[2𝜎𝜎(1+𝛿𝛿𝑀𝑀3)+1]��𝜋𝜋2+𝑎𝑎2�
3(1+𝛿𝛿𝑀𝑀3){(1+𝛿𝛿𝑀𝑀3)𝜎𝜎+2}+𝜕𝜕𝑎𝑎𝜋𝜋2𝜎𝜎��𝜋𝜋2+𝑎𝑎2𝑀𝑀3�

−𝜎𝜎�𝜋𝜋2+𝑎𝑎2𝑀𝑀3���𝜋𝜋2+𝑎𝑎2�
3(1+𝛿𝛿𝑀𝑀3)2+𝜕𝜕𝑎𝑎𝜋𝜋2�

𝑎𝑎2[𝜋𝜋2+𝑎𝑎2𝑀𝑀3(1+𝑀𝑀1)][𝜎𝜎(1+𝛿𝛿𝑀𝑀3)+1]
.   (37) 

When 𝑀𝑀1 is very large, the magnetic Rayleigh number 𝑁𝑁𝑜𝑜(= 𝑅𝑅𝑀𝑀1)𝑜𝑜 for oscillatory mode can be obtained using 

𝑁𝑁𝑜𝑜 =

[2𝜎𝜎(1+𝛿𝛿𝑀𝑀3)+1]��𝜋𝜋2+𝑎𝑎2�
3(1+𝛿𝛿𝑀𝑀3){(1+𝛿𝛿𝑀𝑀3)𝜎𝜎+2}+𝜕𝜕𝑎𝑎𝜋𝜋2𝜎𝜎��𝜋𝜋2+𝑎𝑎2𝑀𝑀3�

−𝜎𝜎�𝜋𝜋2+𝑎𝑎2𝑀𝑀3���𝜋𝜋2+𝑎𝑎2�
3(1+𝛿𝛿𝑀𝑀3)2+𝜕𝜕𝑎𝑎𝜋𝜋2�

𝑎𝑎4𝑀𝑀3[𝜎𝜎(1+𝛿𝛿𝑀𝑀3)+1]
. (38)  

To find the minimum value 𝑁𝑁𝑐𝑐𝑜𝑜 of 𝑁𝑁𝑜𝑜 with respect to wave number 𝑎𝑎, equation (38) is differentiated with 
respect to 𝑎𝑎2 and equated to zero and the following polynomial is obtained 

𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1][2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1]𝑀𝑀3(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 2]+𝑇𝑇𝑎𝑎𝑠𝑠2𝜎𝜎𝑀𝑀3𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 +
𝛿𝛿𝑀𝑀3) + 1][2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1] + 𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1][2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1](𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)3(𝑠𝑠2 + 𝑎𝑎2)2(1 +
𝛿𝛿𝑀𝑀3)[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 2]−𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1]𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3)2(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)3(𝑠𝑠2 + 𝑎𝑎2)2−𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 +
𝛿𝛿𝑀𝑀3) + 1]𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3)2(𝑠𝑠2 + 𝑎𝑎2)3𝑀𝑀3−𝑎𝑎4𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1]𝑇𝑇𝑎𝑎𝑠𝑠2𝜎𝜎𝑀𝑀3 − [2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1](𝑠𝑠2 +
𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 2]2𝑎𝑎2𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1](𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3) − [2𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1]𝑇𝑇𝑎𝑎𝑠𝑠2𝜎𝜎(𝑠𝑠2 +
𝑎𝑎2𝑀𝑀3)2𝑎𝑎2𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1] + 𝜎𝜎(𝑠𝑠2 + 𝑎𝑎2𝑀𝑀3)[(𝑠𝑠2 + 𝑎𝑎2)3(1 + 𝛿𝛿𝑀𝑀3)2 + 𝑇𝑇𝑎𝑎𝑠𝑠2]2𝑎𝑎2𝑀𝑀3[𝜎𝜎(1 + 𝛿𝛿𝑀𝑀3) + 1] =
0.                  
        (39) The above equation is solved numerically by using the software Scientific Work Place for 
various values of 𝑀𝑀3, 𝛿𝛿 and 𝑇𝑇𝑎𝑎, and the minimum value of 𝑎𝑎 is obtained each time, hence 𝑁𝑁𝑐𝑐𝑜𝑜 is obtained. 

Table 2:  Marginal stability of MFD viscosity of a ferrofluid in a rotating medium heated from below for 
oscillatory mode having  𝑀𝑀1 = 1000, 𝑇𝑇𝑎𝑎 = 104 and 105. 

Taylor no. 𝑇𝑇𝑎𝑎 Coefficient  of 
viscosity  𝛿𝛿 

Magnetization 
𝑀𝑀3 

Critical wave no. 
𝑎𝑎𝑐𝑐 

𝑁𝑁𝑐𝑐𝑜𝑜 = (𝑅𝑅𝑀𝑀1)𝒄𝒄𝒐𝒐 

 
 
 
 
 
 

 
 

0.01 

1 4. 7997 13765 
3 4. 5176 11132 
5 4. 4251 10718 
7 4. 3727 10642 
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104 

0.03 5 4. 3568 11793 
7 4. 2785 12101 

 
 

0.05 

1 4. 7727 14375 
3 4. 4367 12521 
5 4. 2928 12882 
7 4. 1922 13588 

 
 

0.07 

1 4. 7595 14682 
3 4. 3986 13226 
5 4. 2326 13988 
7 4. 1127 15103 

 
 

0.09 

1 4. 7465 14682 
3 4. 3619 13228 
5 4. 1759 13995 
7 4. 0393 15117 

 
 
 
 
 
 
 
 

105 

 
 

0.01 

1 6. 9344 40017 
3 6. 708 36018 
5 6. 6353 35660 
7 6. 5903 35840 

 
 

0.03 

1 6. 913 40787 
3 6. 644 37979 
5 6. 5303 38799 
7 6. 4462 40148 

 
 

0.05 

1 6. 8919 41557 
3 6. 5823 39935 
5 6. 4314 41919 
7 6. 3133 44417 

 
 

0.07 

1 6. 8711 42327 
3 6. 5228 41885 
5 6. 3379 45022 
7 6. 1901 48656 

 
 

0.09 

1 6. 8505 43097 
3 6. 4653 43830 
5 6. 2494 48112 
7 6. 0754 52872 

 

 

Fig.5 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐𝑜𝑜) versus coefficient of field 
dependent viscosity (𝛿𝛿) for oscillatory mode for Taylor number 𝑇𝑇𝑎𝑎 = 104 and σ = 0.9. 
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Fig.6 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐𝑜𝑜) versus coefficient of field 
dependent viscosity (𝛿𝛿) for oscillatory mode for Taylor number 𝑇𝑇𝑎𝑎 = 105 and σ = 0.9. 

 

Fig.7 Effect of magnetic field on the variation of magnetic Rayleigh number (𝑁𝑁𝑐𝑐𝑜𝑜) versus coefficient of field 
dependent viscosity (𝛿𝛿) for oscillatory mode for Taylor number 𝑇𝑇𝑎𝑎 = 104 and 𝑇𝑇𝑎𝑎 = 105 when σ = 0.9. 

4     Discussion and Conclusion 

In the present communication, the influence of magnetic field dependent viscosity on the thermal convection in 
a rotating ferrofluid layer heated from below in the presence of uniform vertical magnetic field has been 
investigated. The magnetization parameter 𝑀𝑀1 is considered to be 1000 (Vaidyanathan et al., 1997). The value 
of 𝑀𝑀2 being negligible (Finlayson, 1970), has been taken as zero. The values of the parameter 𝑀𝑀3 are varied 
from 1 to 7. The values of the coefficient of magnetic field dependent viscosity 𝛿𝛿, has been varied from 0.01 to 
0.09. 

Emphasize has been given to a paper published by Vaidyanathan et al. (2001). These researchers have carried 
out their analysis by considering MFD viscosity as 𝜇𝜇 =  𝜇𝜇1�1 + 𝛿𝛿.𝐵𝐵�⃗ �. But they further resolved 𝜇𝜇 into 
components 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦 and 𝜇𝜇𝑧𝑧 along the coordinate axes which is technically wrong. Since 𝜇𝜇, being a scalar 
quantity, cannot be resolved into components. Thus a correction to their analysis is very much sought after in 
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order to give a correct interpretation of the problem. Keeping these facts in mind, the basic equations have been 
reformulated to the correct perspective and then mathematical and numerical analysis has been performed. The 
results so obtained have significant variations from the existing results which were otherwise obtained by using 
wrong assumption. 

From table 1 and from figures 2-4, it is evident that the critical value of magnetic Rayleigh number, 𝑁𝑁𝑐𝑐 =
(𝑅𝑅𝑀𝑀1)𝑐𝑐 decreases with the increase in the magnetization parameter 𝑀𝑀3. Hence the magnetization has 
destabilizing effect on the system. The physical interpretation of this may be given as follows: As the value of 
𝑀𝑀3 increases the departure of linearity in the magnetic equation of state increases resulting into the increase in 
the velocity of the ferrofluid in the vertical direction favoring the manifestation of instability. This increase in 
magnetization releases extra energy, which adds up to thermal energy to destabilize the flow more quickly. Thus 
the magnetization parameter destabilizes the system. The similar result also obtained by Vaidyanathan et al. 
(2001), but the difference in the values of 𝑁𝑁𝑐𝑐 is quite significant and increases with the increase in the value of 
𝛿𝛿. It is also evident from figures 2-4 that for stationary convection, the value of magnetic Rayleigh number 
decreases as the MFD viscosity parameter 𝛿𝛿 increases, predicting the destabilizing behavior of viscosity 
parameter 𝛿𝛿. This unexpected result that ‘the role of viscosity is inverted in the presence of rotation’, has also 
been predicted by Chandrasekhar (1981) for the case of ordinary fluid. 

It is also found from table 1 and figure 4, that the magnetic Rayleigh number increases with increase in the 
values of Taylor number 𝑇𝑇𝑎𝑎. Thus the rotation has stabilizing effect on the system. Again the difference in the 
existing values (Vaidyanathan et al., 2001) and the values obtained herein is significant. 

It is interesting to note from figures 5 and 6 that for the case of oscillatory motions the value of magnetic 
Rayleigh number increases as the MFD viscosity parameter 𝛿𝛿 increases, thus resulting into the postponement of 
instability. Thus, MFD viscosity has a stabilizing effect on the system for the case of oscillatory convection, 
which is a result also obtained by Vaidyanathan et al. (2001). 

Further, we may note from figures 5 and 6 that for the case of oscillatory convection also, 𝑀𝑀3 prepone the onset 
of convection. Thus magnetization 𝑀𝑀3 has destabilizing effect on the system for the case of oscillatory 
convection also. Finally, figure 7 predicts the stabilizing behavior of rotation on the system for the case of 
oscillatory convection. 
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Abstract: Three-layered composite structures find a broad application. Increasingly, composites are being used whose layer
thicknesses and material properties diverge strongly. In the perspective of structural mechanics, classical approaches to analysis
fail at such extraordinary composites. Therefore, emphasis of the present approach is on arbitrary transverse shear rigidities and
structural thicknesses of the individual layers. Therewith we employ a layer-wise approach for multiple (quasi-)homogeneous
layers. Every layer is considered separately whereby this disquisition is based on the direct approach for deformable directed
surfaces. We limit our considerations to geometrical and physical linearity. In this simple and familiar setting we furnish a
layer-wise theory by introducing constraints at interfaces to couple the layers. Hereby we restrict our concern to surfaces where
all material points per surface are coplanar and all surfaces are plane parallel. Closed-form solutions of the governing equations
enforce a narrow frame since they are strongly restrictive in the context of available boundary conditions. Thus a computational
solution approach is introduced using the finite element method. In order to determine the required spatially approximated
equation of motion, the principle of virtual work is exploited. The discretization is realized via quadrilateral elements with
quadratic shape functions. Hereby we introduce an approach where nine degrees of freedom per node are used. In combination
with the numerical solution approach, this layer-wise theory has emerged as a powerful tool to analyze composite structures. In
present treatise, we would like to clarify the broad scope of this approach.

Keywords: general composite structure, high contrast plates, generalized approach, layer-wise theory

1 Introduction

1.1 Motivation

Nowadays, composite structures are applied in a wide range of applications. Composites with unusual and unique properties are
becoming more and more important. This statement refers to the fact that composites are increasingly being developed which
consist of a broad spectrum of mechanical and geometrical properties. The definition of a composite structure in the context of
thin-walled structural elements is primarily defined by its geometry, i.e. lengths Lα and layer thicknesses hK while K is a layer
index.

Lα � H H =

NK∑

K

hK (1)

In general, the number of layers of the composite NK is arbitrary. However, we restrict our concern to composite structures with
three layers (NK = 3). Up to now, classifications for composite structures are missing. Main representatives of this genus are
depicted in Fig. 1. This subdivision is sufficient at least for engineering applications. The symmetry of the structural design
depicted there is not a compelling limitation. Certainly there are other special cases. However, we can distinguish three kinds of
three-layered composite structures (TLCS). Theses are laminates, sandwiches, and anti-sandwiches. They can be distinguished
by typical geometric and material relationships. Sandwiches and anti-sandwiches exhibit shear-deformable core layers while the
skin layers are shear-rigid. Conspicuously, sandwiches and anti-sandwiches are geometrically contrary. Laminates, on the other
hand, have similar layer thicknesses and the material properties are all in the same order of magnitude.
Several theories for the treatment of mechanical problems at such composite structures exist. Thereby we reduce our perspective
to the efficient and elegant treatment by means of theories for thin walled-structures, cf. Naghdi (1972). A comprehensive view
at thin-walled structural elements incorporating historical remarks on relevant protagonists is given in Altenbach and Eremeyev
(2017). In Carrera (2002, 2003), basic approaches to treat composite structures are discussed whereby it is distinguished
between equivalent single layer models and layer-wise models. For the former, the classical laminate theory and first-order shear
deformation theory are prominent instances. These modeling approaches are predominantly suitable for monocoque structures
(single-layered, homogeneous, isotropic). Another acquaintance is the sandwich theory. However, these approaches fail when
focusing on strongly divergent material properties and structural thicknesses. There are many theoretical approaches to this,
but most of them are only suitable for special compositions and thus have only a limited scope of application. Therefore, a
? E-mail address: marcus.assmus@ovgu.de doi: 10.24352/UB.OVGU-2019-019 2019 | All rights reserved.
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three-layered composite structures

laminate

• layer thicknesses:
◦ similar scale

• layer stiffnesses:
◦ similar scale

sandwich

• skin layers:
◦ thin
◦ shear rigid

• core layer:
◦ thick
◦ shear soft

anti-sandwich

• skin layers:
◦ thick
◦ shear rigid

• core layer:
◦ thin
◦ shear soft

suitable mechanical approaches

first-order shear deformation theory sandwich theory ?

Fig. 1: Attempt of a general classification of three-layered composite structures used for applications in engineering sciences

generalized approach for a wide range of applications is of interest. Present treatise is dedicated to a generalized framework to
handle structural mechanics problems at TLCS. For this, we introduce the so called eXtended layer-wise theory (XLWT) which
also provides a very efficient solution approach for a wide range of mechanical problems in present genus.

1.2 Structure

In order to give our representation an easily readable and condensed shape, we make use of the direct tensor notation. Therefore,
we explain present notational conventions and recapitulate the basics of tensor calculus before starting with the actual executions.
After that, we will directly enter into the main features of our approach. In doing so, we follow the executions presented in
Naumenko and Eremeyev (2014). This base is enlarged since we consider arbitrary transverse shear stiffnesses for all three layers.
Thereby we follow a procedure called direct approach in spirit of Cosserat and Cosserat (1909), cf. Ganghoffer (2017). We
operate on a deformable directed surface ab initio. This is a surface in the three-dimensional space in which a vector field is
additionally assigned to each point (Zhilin, 1976). We introduce this surface as primitive concept, i.e. it is just an illustrative
mean for the stretching, shearing, bending, and twisting of a single layer. However, in present context we introduce the restriction
that all material points of this two-dimensional subset are coplanar, i.e. our surface is initially non-curved. In contrast to derived
approaches where a hierarchic procedure for the derivation of two-dimensional balance equations and kinematic relations is
presented, cf. Naghdi (1972), we are liberated from such purely pragmatic approaches, as they are usually applied in engineering
sciences (Libai and Simmonds, 1983). This is why the attribute geometrically exact is often used in literature.
In progress, we embed the direct approach in a systematic framework to establish a layer-wise theory. Thereby, three surfaces
are stacked plane parallel equidistantly whereby interfaces and outer faces are initiated for physical reasons. After introducing
constraints, the governing equations of the composite structure are derived by the aid of global variables. These equations remain
valid for arbitrary structural thicknesses and material parameters.
To construct approximate solutions we make us of the calculus of variations and exploit the principle of virtual work. Subsequently,
a numerical method by the aid of the finite element method (FEM) is introduced to solve the algebraic form of the partial differential
equations of the boundary value problem.
This is followed by a detailed analysis of the range of application whereby we reduce our investigations to symmetric composites
for the sake of brevity. In particular, the roles of different transverse geometry and material compositions are discussed in some
detail. As a central result, it is shown that the present approach spans a broad application range at least in context of engineering
applications. Finally, the basic findings are summarized and relevant conclusions are drawn. In order to provide users with a
complete tool for solving problems with three-layered composites, supplementary relevant matrices like constitutive quantities
and differential operators are collected in the Appendix.
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Notation. Throughout the whole text, a direct tensor notation is preferred. First- and second-order tensors are denoted by
lowercase and uppercase bold letters, e.g., a and A, respectively. Fourth-order tensors are designated by uppercase blackboard
bold letters, e.g. A. In continuation, some operations between these tensors need to be defined which will be done based on a
Cartesian coordinate system. These operations are the dyadic product

a ⊗ b = aibj ei ⊗ e j = C , (2)

the scalar product

a∙ b = aibj ei ∙ e j = aibi = α , (3)

the composition of a second and a first order tensor

A ∙ a = Almaiel ⊗ em∙ ei = Aliaiel = d , (4)

the double scalar product between a fourth and a second order tensor

A : B = ApqrsBnoep ⊗ eq ⊗ er ⊗ es: en ⊗ eo = ApqrsBsr ep ⊗ eq = D , (5)

the double scalar product between two fourth-order tensors

A :B = ApqrsBtuvw ep ⊗ eq ⊗ er ⊗ es: et ⊗ eu ⊗ ev ⊗ ew = ApqrsBsrvw ep ⊗ eq ⊗ ev ⊗ ew = F , (6)

the cross product between tow first-order tensors

a × b = ai bj ei × e j = aibjεi jk ek = c , (7)

the cross product between a second and a first-order tensor

A × b = Almbj el ⊗ em × e j = Almbjεmjk el ⊗ ek = J . (8)

Herein we have introduced the Levi-Civita symbol εi jk .

εi jk = −1/2 ( j − i)(k − j )(i − k) (9)

The inverse of a tensor is defined by

A−1∙ A = A∙ A−1 = 1
[
A−1]−1

= A (10)

while the transposed of a tensor is given by

a∙ A>∙ b = b∙ A∙ a . (11)

Herein, 1 = ei ⊗ ei is the identity on first order tensors. A tensor is said to be symmetric if A> = A holds. The nabla operator
is defined as ∇ = ei∂/∂Xi for threeâĂŘdimensional considerations. ∇∙� and ∇� is the gradient of a tensor, where � holds true
for every differentiable tensor field. The transposed gradient is defined as ∇>� = [∇�]>, and ∇sym� = 1/2

[
∇� + ∇>�

]>
is the

symmetric part of the corresponding gradient, where � holds for all firstâĂŘorder tensors. However, in protruding introduction
we have used latin indices, e.g. i ∈ {1, 2, 3}. The application of greek indices such as α ∈ {1, 2} applies analogously. A subscript
zero refers to the reference placement of the material body manifold and a superscript star is used to designate prescribed quantities
at boundaries. Material body manifolds are denoted by letters in gothic print (e.g. S or R). For numerical vectors and matrices
we make use of upright, sans-serif, lowercase and uppercase bold letters, e.g., a and A, respectively.

2 Background

2.1 Theoretical Approach

As mentioned at the beginning, we follow the direct approach, i.e. we start operating on two-dimensional body manifolds ab
initio. We introduce mid-surfaces SK for all three layers of the composite structure considered, namely the top layer (index t),
the core layer (index c), and the bottom layer (index b). Nonetheless, our model is based on three-dimensional body manifolds
so that every physical layer occupies the region SK × [−hK/2, hK/2] whereby we assume uniform layer thicknesses. Herein we
use K = {t, c, b} as layer index. The surface SK is endowed with an orthonormal coordinate system {eα, n}. Every surface is
spanned by a two-dimensional position vector rK = XK

α eα, i.e. all material points are coplanar. The parameters XK
α ∀α = {1, 2}

are the coordinates of the corresponding surface.
Additionally, interfaces IK between the layers are used while the outer surfaces O (front) and B (back) are cultivated as load
application areas. All surfaces, and thus also all interfaces as well as both outer surfaces are plane-parallel. The distance of the
surfaceSK to the interfaces IK or respectively to the outer surface O and B is ∓hK/2. The origin of the global coordinate system
for present composite structure is set at Sc concerning the transverse direction so that −ht − hc/2 ≤ X3 ≤ hc/2 + hb holds, cf.
Fig. 2.
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top layer (t)
core layer (c)
bottom layer (b)

eee1

eee2eee2

nnn

eee1

eee2eee2

nnn

B

Sb

Ib

Sc

It

St

O

outer surfaces (O,B)
interfaces (IK )
top surface (St )
core surface (Sc )
bottom surface (Sb )

general composite structure (NK=3) approach: multi-layered surface continuum

Fig. 2: General composite structure and theoretical considerations restricted to individual surfaces and interfaces

2.1.1 Kinematics

We are dealing with a five-parameter theory, i.e. every surface features three translational and two rotational degrees of freedom.
These are summarized in the vectors of translations a and of rotations ϕ.

aK = vK + wK n with vK = vKα eα (12a)

ϕK = ϕKα eα (12b)

In contrast to a Cosserat surface (with ϕ = ϕαeα + ϕ3n ∀i ∈ {1, 2, 3}) we neglect drilling rotations ϕ3. This is justified since the
resistance against wrinkling is much higher compared to that of bending, which is however a pragmatic approach, as is typical
in engineering sciences. We furthermore introduce a more physical rotation vector ψ = −ϕ2e1 + ϕ1e2 in the spirit of Mindlin
(1951), related to the one introduced in Eq. (12b) by ϕ = ψ × n. Based on the degrees of freedoms utilised here, the following
special set of deformation measures emerges.

GK = ∇symvK (13a)

KK = ∇symϕK (13b)

gK = ∇wK + ϕK (13c)

Here, GK = GK
αβeα ⊗ eβ is the in-plane strain tensor, KK = KK

αβeα ⊗ eβ is the curvature change tensor, and gK = gKα eα is the
transverse shear strain vector.

2.1.2 Kinetics

Boundary quantities are defined by forces and moments acting at the surface which is in analogy of Cauchys theorem (Cauchy,
2009). Thereby we introduce tangential forces sK

S
and orthogonal forces pK

S
, as well as out-of-plane moments mK

S
acting at every

single surface.

nK
ν = lim

ΔL→0

ΔsK
S

ΔL
mK
ν = lim

ΔL→0

Δ(mK
S
× n)

ΔL
qK
ν = lim

ΔL→0

ΔpK
S

ΔL
(14)

Herein L is a length measure. The vectors and the scalar of the left hand-sides indicate the boundary resultants of the in-plane
state nK

ν , the out-of-plane state mK
ν and the transverse shear state qK

ν . The orientation of the cut is defined by the corresponding
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normal. Thereby we make use of the boundary normals n and ν, whereby n∙ ν = 0 holds. Following Cauchy, a tensor field exists
to the boundary resultants introduced in Eq. (14). The following applies to boundaries with normals n.

n∙ NK = o n∙ LK = o n∙ qK = 0 (15)

However, with the boundary normal ν, which points along the plane directions, the following boundary loads result.

ν∙ NK = nK
ν ν∙ LK = mK

ν ν∙ qK = qK
ν (16)

Analogous to Cauchys Lemma, the resultants at opposite edges are equal in magnitude, but antithetically.

nK
ν (−ν) = −nK

ν (ν) mK
ν (−ν) = −mK

ν (ν) qK
ν (−ν) = −qK

ν (ν) (17)

Tensors for the stress resultants arise from Eqs. (15) and (16). Here NK = NK
αβeα ⊗ eβ is the in-plane force tensor, LK =

MK
αβeα ⊗ eβ is the polar tensor of moments, and qK = QK

α eα is the transverse shear force vector.

2.1.3 Constitutive Relations

We reduce our concern to homogeneous and isotropic materials and consider a simple elastic material in the spirit of Noll
(1958), where the kinetics in maximum depend on the first gradient of the deformation measures. Since we consider decoupled
deformations states, the dependencies can be given by the mappings F K

i being constitutive functions.

membrane state: NK = F K
1

(
GK

)
(18a)

bending state: LK = F K
2

(
KK

)
(18b)

transverse shear state: qK = F K
3

(
gK

)
(18c)

When linearizing the functions F K
i , which is justified in a completely linear theory, we can determine the following constitutive

tensors (Aßmus et al., 2017b).

F K
1 : AK = 2BKhK P1 + 2GKhK P2 (19a)

F K
2 : DK = 2BK

(
hK

)3

12
P1 + 2GK

(
hK

)3

12
P2 (19b)

F K
3 : ZK = 2GK κ

KhK

2
P (19c)

We thereby make use of the projector representation which allows a clear split into dilatoric and deviatoric portions (Rychlewski,
1984). The fourth-order tensors Pα and the second-order tensor P used therein are defined as follows.

P1 = 1/2 P ⊗ P (20)

P2 = Psym − P1 (21)

P = eα ⊗ eα (22)

Herein, P is the first metric tensor and Psym = 1/2 (eα ⊗ eβ ⊗ eα ⊗ eβ + eα ⊗ eβ ⊗ eβ ⊗ eα) is the symmetric part of the
fourth-order identity of a plane surface. In Eqs. (19a)–(19c) we’ve introduced two material parameters BK and GK . This is the
compression modulus of the surface BK = YK/(2 − 2νK ) and the shear modulus GK = Yk/(2 + νK ), while Yk is Young’s modulus and νK

is Poisson’s ratio. We furthermore make use of the structural thickness of the individual layer (hK ) and an individual transverse
shear correction factor (0 < κK ≤ 1, Vlachoutsis (1992)). In order to relate this representation to the ones used in classical
theories for thin-walled members, the stiffnesses associated with the individual deformation portions are introduced. These are
the membrane stiffness DK

M, the bending stiffness DK
B , and the transverse shear stiffness DK

S , determined by the arithmetic means
of the stiffness measures introduced in (19a)–(19c).

DK
M =

1
2

[
2BKhK +2GKhK

]
(23a)

DK
B =

1
2

[

2BK

(
hK

)3

12
+2GK

(
hK

)3

12

]

(23b)

DK
S = κKGKhK (23c)

By the aid of these engineering stiffnesses, one can reformulate Eqs. (19a)–(19c) to a LamÃľ-like representation (Lamé, 1866),
cf. Aßmus (2019). However, through above procedure we can write the constitutive relations as linear mappings in analogy to
Hooke’s law (Hooke, 1678).

NK = AK : GK (24a)

LK = DK : KK (24b)

qK = ZK ∙ gK (24c)
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Fig. 3: Geometry, material, boundary conditions and discretization to determine the range of application of present approach

2.1.4 Boundary Conditions

For the description of the boundary conditions we distinguish between Dirichlet ∂SD and Neumann boundaries ∂SN, which are
defined at the boundary ∂S of every two-dimensional body manifold.

∂SK = ∂SK
D ∪ ∂SK

N ∂SK
D ∩ ∂SK

N = ∅ (25)

First, we define constraints in the form of prescribed translations and rotations.

vK (r0) =
(
vK

)?
(r0)

ϕK (r0) =
(
ϕK

)?
(r0) ∀ rK0 ∈ ∂SD (26)

wK (r0) =
(
wK

)?
(rK0 )

Further, it is possible to link forces and moments that can act as loads at the boundary of the surface continuum with the stress
resultants.

ν∙ NK =
(
nK
ν

)?
ν∙ LK =

(
mK
ν

)?
ν∙ qK =

(
qK
ν

)?
∀ rK0 ∈ ∂SN (27)

2.1.5 Coupling Constraints

In order to couple the three layers whose basic equations have been considered separately up to this point, kinematic constraints
are introduced. These are as follows.

• straight line hypothesis (Mindlin, 1951) holds true for everySK ∀ K ∈ {t, c, b} separately

• identical deflections of all layers

• no slipping at interfaces (virgin state)
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We use these restrictions to formulate subsequent constraints.

vt +
ht

2
ψt = vc −

hc

2
ψc onIt (28a)

vb −
hb

2
ψb = vc +

hc

2
ψc onIb (28b)

w = wt = wc = wb ∀SK (28c)

By the aid of these simplifications we can reduce the number of independent degrees of freedom to nine, i.e. ut1, ut2, ub
1 , ub

2 , w,
ϕt1, ϕt2, ϕb1 , and ϕb2 .

2.1.6 Global Variables

Due to the constraints introduced, the degrees of freedom depend on measures of the top and bottom layer only. That is why we
introduce global variables with superscript indexes ◦ and Δ. These quantities are introduced with respect to the global coordinate
system with origin at −ht − hc/2 ≤ X3 ≤ hc/2 + hb . We inaugurate these global quantities for the degrees of freedom

v◦ = 1/2
[
vt + vb

]
vΔ = 1/2

[
vt − vb

]
(29a)

ϕ◦ = 1/2
[
ϕt + ϕb

]
ϕΔ = 1/2

[
ϕt − ϕb

]
, (29b)

the deformation measures

G◦ = 1/2
[
Gt + Gb

]
GΔ = 1/2

[
Gt − Gb

]
(30a)

K◦ = 1/2
[
K t + Kb

]
K Δ = 1/2

[
K t − Kb

]
(30b)

g◦ = 1/2
[
gt + gb

]
gΔ = 1/2

[
gt − gb

]
, (30c)

the constitutive tensors

A◦ = At + Ab AΔ = At − Ab (31a)

D◦ = Dt + Db DΔ = Dt − Db (31b)

Z◦ = Z t + Zb ZΔ = Z t − Zb , (31c)

and the stress resultants

N◦ =
∑

K

NK N Δ = N t − Nb (32a)

L◦ =
∑

K

LK +
1
2
[hc + hb]Nb +

1
2
[hc + ht ]N t LΔ = Lt − Lb (32b)

q◦ =
∑

K

qK qΔ = qt − qb . (32c)

For the sake of simplicity we introduce subsequent abbreviations for geometric measures.

h◦ = 1/2
[
ht + hb

]
hΔ = 1/2

[
ht − hb

]
(33a)

This helps us to keep the equations in the subsequent procedures as compact as possible. We have to point out that this introduction
is arbitrary. As described in Aßmus (2019), all of these global quantities are clearly traceable to layer-wise quantities K ∈ {t, c, b}.

2.1.7 Variational Form

As usual, closed-form solutions are feasible for special compositions, boundary conditions, and loading scenarios only. Ap-
proaches to such solutions can be found in Naumenko and Eremeyev (2014) (plate strip with shear-rigid skins) or Eisenträger
et al. (2015) (plate with shear-rigid skins), for example. A general closed-form solution of the present problem does not exist,
which would have to be proven. In contrast to such laborious solution approaches, computational solutions gained huge popularity
nowadays. The most popular one seems one seems to be the finite element method Finite Element Method (FEM). The FEM is
based on the weak formulation since this relation usually represents a variational principle which is satisfied by the solution. This
is achieved here by exploiting the principle of virtual work (PVW). PVW is characterized by the global virtual work balance.

δWint = δWext (34)

Considering aforementioned governing equations while involving the global variables introduced, weighting the balance equa-
tions with test functions equivalent to the vectors of the degrees of freedom and subsequent partial integration over the area of
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investigation R, we can derive the following expressions for the virtual internal work

δWint =

∫

R

{

δG◦:A◦: G◦ + δGΔ:A◦: GΔ + δG◦:AΔ: GΔ

+ δGΔ:AΔ: G◦ +

[

δG◦ +
1
2

hΔδK◦ +
1
2

h◦δKΔ
]

:Ac:

[

G◦ +
1
2

hΔK◦ +
1
2

h◦KΔ
]

+ δg◦∙ Z◦∙ g◦ + δgΔ∙ Z◦∙ gΔ + δg◦∙ ZΔ∙ gΔ + δgΔ∙ Z◦∙ g◦

+

[

δg◦ −
1
hc

(
2δvΔ + (hc + h◦) δϕ◦ + hΔδϕΔ

)]

∙ Zc ∙

[

g◦ −
1
hc

(
2vΔ + (hc + h◦) ϕ◦ + hΔϕΔ

)]

+ δK◦:D◦: K◦ + δKΔ:D◦: KΔ + δK◦:DΔ: KΔ + δKΔ:DΔ: K◦

+
1

(hc)2
[
2δGΔ + h◦δK◦ + hΔδKΔ

]
:Dc:

[
2GΔ + h◦K◦ + hΔKΔ

]
}

dR , (35a)

and the virtual external work

δWext =

∫

∂Rp

{ [

δv◦ +
1
2

hΔδϕ◦
]

∙ n◦
ν +

[

δvΔ +
1
2
(hc + h◦) δϕ◦

]

∙ nΔν

+
1
2

h◦δϕΔ∙ nc
ν + δwq◦ν + δϕ

◦∙m◦
ν + δϕ

Δ∙mΔν

−
1
hc

[
2δvΔ + (hc + h◦) δϕ◦ + hΔδϕΔ

]
∙mc

ν

}

d ∂Rp

+

∫

Rp

[
ht

2

(
δϕ◦ + δϕΔ

)
∙ s −

(
δv◦ + δvΔ

)
∙ s + δwp

]

dRp (35b)

Hereby, Rp and ∂Rp denote the area and boundary of the reference surface R, where boundary conditions with respect to the
stress resultants are prescribed.

NK
p = NK

�
�
∂Rp

LK
p = LK

�
�
∂Rp

qKp = qK
�
�
∂Rp






∀ K ∈ {◦,Δ, c} (36)

Furthermore, stress resultants on the boundary of the surface continuum have been introduced.

nK
ν = ν∙ NK

p

mK
ν = ν∙ LK

p

qK
ν = ν∙ qKp






∀ K ∈ {◦,Δ, c} (37)

However, we can identify nine independent global degrees of freedom, i.e. v◦1 , v◦2 , vΔ1 , vΔ2 , w, ϕ◦1, ϕ◦2, ϕΔ1 , and ϕΔ2 .

2.2 Computational Implementation

The FEM is based on a strict separation of structural Ω and element level Ωe.

Ω =

NE⋃

e=1

Ωe Ωi ∩ Ωj = ∅ for i , j while i, j = {1 . . . NE} (38)

In what follows we utilize quadrilateral elements of Ωe. However, the virtual works of the overall domain are formed by the
summation of the individual contributions of the sub-domains, i.e. of the finite elements.

δWint =

NE∑

e=1

δWe
int δWext =

NE∑

e=1

δWe
ext (39)

Herein, NE is the number of elements in the overall domain. In the sequel, for reasons of practicability, we make use of the vector-
matrix notation, cf. Voigt (1889). In principle, the present approach is in accordance with the procedure presented in Eisenträger
et al. (2015) while we here give a detailed disclosure of the computational implementation. However, the origin for the numerical
implementation certainly lies in the work of Simo and Fox (1989) and Simo et al. (1989).
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2.2.1 Approximation of Field Quantities

In present context it is sufficient to use the two-dimensional position vector for the geometrical description of a material point at
the reference surface R.

x =
[
X1 X2

]>
(40)

This is possible since we have reduced our concern to a global coordinate system {eα, n} with the definition of a reference
surface R which coincides with the mid surface of the core layer. Thus all layers can be represented by only one element in
thickness direction. In order to discretize equations, the vector of DOF’s at every node i is specified as follows.

ai =
[
v◦

i

1 v◦
i

2 vΔ
i

1 vΔ
i

2 wi ϕ◦
i

1 ϕ◦
i

2 ϕΔ
i

1 ϕΔ
i

2

]>
∀ i = {1, . . . , NN} (41)

while NN = 8 is the number of nodes per element for the present implementation. It becomes apparent that this definition results
from the introduction of global degrees of freedom as presented in Eqs. (29a) and (29b). All node vectors of the degrees of
freedom are combined in the element vector.

ae =
[
a1 a2 a3 . . . aNN

]>
(42)

In order to obtain the fields of DOF’s over the element with respect to the natural coordinates ξ , the DOF’s are interpolated into
the shape functions, applying the isoparametric element concept.

a (ξ) =
[
v◦1 (ξ) v◦2 (ξ) vΔ1 (ξ) vΔ2 (ξ) w (ξ) ϕ◦1 (ξ) ϕ

◦
2 (ξ) ϕ

Δ
1 (ξ) ϕΔ2 (ξ)

]>
≈ N (ξ) ae (43)

Herein N (ξ) is the matrix of shape functions.

N (ξ) =
[
N1 (ξ) N2 (ξ) . . . NNN (ξ)

]
(44)

2.2.2 Shape Functions and Coordinate Transformations

As demonstrated, shape functions have to be introduced to approximate solutions. In the sequel we make use of SERENDIPITY-
type shape functions, i.e. introduce functions of the polynomial degree PG = 2 (Szabó and Babuška, 1991).

Ni(ξ) =1/4
[
1 + ξi1ξ1

] [
1 + ξi2ξ2

] [
ξi1ξ1 + ξ

i
2ξ2 − 1

]
i ∈ {1, . . . , 4} (45a)

Ni(ξ) =1/2
[
1 + ξi1ξ1

] [
1 − ξ2

2

]
i ∈ {6, 8} (45b)

Ni(ξ) =1/2
[
1 + ξi2ξ2

] [
1 − ξ2

1

]
i ∈ {5, 7} (45c)

With the aid of these shape functions, we can assemble the matrix of shape functions at every node i .

Ni (ξ) = Ni (ξ) I , (46)

Thereby, I is a unit matrix, whose number of columns and rows is equal to the number of DOF’s per node. This interpolation
is performed in the natural coordinates of the finite element −1 ≤ ξα ≤ 1 ∀α ∈ {1, 2}. Since the functions are represented by
isoparametric coordinates, a transformation relation between the two coordinate systems (physical and natural) is sought. This is
realized via the so called Jacobi matrix J(ξ). In two dimensions, the transformations can be represented as follows (Oñate, 2013).

∂

∂ξ
= J(ξ)

∂

∂x

∂

∂x
= J(ξ)−1 ∂

∂ξ
(47)

The Jacobi matrices and the individual derivatives are as follows.

J(ξ) =










∂X1

∂ξ1

∂X2

∂ξ1
∂X1

∂ξ2

∂X2

∂ξ2










J(ξ)−1 =
1

|J(ξ)|










∂X2

∂ξ2
−
∂X2

∂ξ1

−
∂X1

∂ξ2

∂X1

∂ξ1










(48)

2.2.3 Kinematic Relations

We hereby introduce global deformation measures e for the membrane (index M), bending (index B), and the transverse shear
state (index S).

eMB (ξ) =
[
e◦M eΔM e◦B eΔB

]>
eS (ξ) =

[
e◦S eΔS

]>
(49)
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The sub measures introduced therein are defined as follows.

e◦M =
[
G◦

11 G◦
22 2G◦

12

]>
=

[
v◦1,1 v◦2,2 v◦1,2 + v◦2,1

]>
(50a)

eΔM =
[
GΔ

11 GΔ

22 2GΔ

12

]>
=

[
vΔ1,1 vΔ2,2 vΔ1,2 + vΔ2,1

]>
(50b)

e◦B =
[
K◦

11 K◦
22 2K◦

12

]>
=

[
ϕ◦1,1 ϕ◦2,2 ϕ◦1,2 + ϕ

◦
2,1

]>
(50c)

eΔB =
[
KΔ

11 KΔ

22 2KΔ

12

]>
=

[
ϕΔ1,1 ϕΔ2,2 ϕΔ1,2 + ϕ

Δ

2,1

]>
(50d)

e◦S =
[
g◦1 g◦2

]>
=

[
w,1 + ϕ

◦
1 w,2 + ϕ

◦
2

]>
(50e)

eΔS =
[
gΔ1 gΔ2

]>
=

[
ϕΔ1 ϕΔ2

]>
(50f)

All of aforementioned measures represent fields, i.e. they depend on the natural coordinates. However, for reasons of space this
dependency was not explicitly specified here. These deformation fields are approximated analogously to the degrees of freedom.

eMB (ξ) ≈ BMB (ξ) ae eS (ξ) ≈ BS (ξ) ae (51)

The B matrices are compiled from the differential operator D and the matrix of the shape functions N.

BMB (ξ) = DMBN (ξ) BS (ξ) = DSN (ξ) (52)

The construction of the matrices B and D is given in App. A.1.

2.2.4 Constitutive Equations

To implement the constitutive laws, the expressions of the virtual work must be converted into vector-matrix notation also. The
basic procedure for transferring constitutive quantities is given in App. A.1. The constitutive equations of the composite level are
as follows while we introduce s as global kinetic measure.

s◦M =
(
Ĉ◦

M + Ĉc
M

)
e◦M + ĈΔMeΔM +

1
2

Ĉc
M

(
hΔe◦B + h◦eΔB

)
(53a)

sΔM = Ĉ◦
MeΔM + ĈΔMe◦M (53b)

scM = Ĉc
M

[

e◦M +
1
2

(
hΔe◦B + h◦eΔB

)
]

(53c)

s◦S = Ĉ◦
Se◦S + ĈΔSeΔS + Ĉc

S

(
e◦S + A1a

)
(53d)

sΔS = Ĉ◦
SeΔS + ĈΔSe◦S (53e)

scS = Ĉc
S

(
e◦S + A1a

)
(53f)

s◦B = Ĉ◦
Be◦B + ĈΔBeΔB −

1
hc

Ĉc
B

(
2eΔM + h◦e◦B + hΔeΔB

)
−

1
2

Ĉ◦
M

[
hΔe◦M + (hc + h◦) eΔM

]
−

1
2

ĈΔM
[
hΔeΔM + (hc + h◦) e◦M

]
(53g)

sΔB = Ĉ◦
BeΔB + ĈΔBe◦B (53h)

scB = −
1
hc

Ĉc
B

(
2eΔM + h◦e◦B + hΔeΔB

)
(53i)

The constitutive matrices ĈK
M, ĈK

B , ĈK
S ∀K ∈ {◦,Δ, c} and the auxiliary matrix A1 introduced here are enclosed in App. A.1.

2.2.5 Spatial Discretization of Virtual Work

The virtual internal work from Eq. (35a) can now be rewritten as follows.

δWe
int =

∫

Ωe

δae>
[
B>

S

(
C◦

S + CΔS + CΔS
>
+ A>

2 Ĉc
SA2

)
BS + B>

S A>
2 Ĉc

SA1N +
(
B>

S A>
2 Ĉc

SA1N
)>

+ N>A>
1 Ĉc

SA1N

+ B>
MB

(
C◦

MB + CΔMB + CΔMB
>
+ A>

3 Ĉc
MA3 + A>

4 Ĉc
BA4

)
BMB

]
ae dΩe (54)

In addition to the material properties in CK
� und ĈK

� ∀� ∈ {M,B,MB, S} ∧ K ∈ {◦,Δ, c}, the expression now only contains the
degrees of freedom [ae]>. Ai ∀ i ∈ {2, 3, 4} are auxiliary matrices so that all quantities correspond to the specified vector of
degrees of freedom. The detailed structure of all matrices from (54) can be found in App. A.1. Now we can get the stiffness
matrices for membrane-bending and transverse shear separately.

Ke
MB =

∫

Ωe

[

B>
MB

(
C◦

MB + CΔMB + CΔMB
>
+ A>

3 Ĉc
MA3 + A>

4 Ĉc
BA4

)
BMB

]

dΩe (55a)

Ke
S =

∫

Ωe

[

B>
S

(
C◦

S + CΔS + CΔS
>
+ A>

2 Ĉc
SA2

)
BS + B>

S A>
2 Ĉc

SA1N +
(
B>

S A>
2 Ĉc

SA1N
)>

+ N>A>
1 Ĉc

SA1N

]

dΩe (55b)
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The separation is introduced to counter artificial stiffening effects correlated to transverse shear locking. The overall stiffness
matrix is now additively composed of both sub matrices.

Ke = Ke
MB + Ke

S (56)

Eq. (35b) is converted in an analogous way. This results in the following expression.

δWe
ext =

∫

∂Ωe
p

δae>N>A5t d ∂Ωe
p +

∫

Ωe

δae>N>q dΩe (57)

The vectors t and q contain loads distributed over a curve or a surface.

t =
[
n◦
ν nΔν nc

ν q◦ν m◦
ν mΔν mc

ν

]>
(58)

q =
[
−s1 −s2 −s1 −s2 p ht

2 s1
ht

2 s2
ht

2 s1
ht

2 s2
]>

(59)

The vectors n◦
ν , nΔν , nc

ν , m◦
ν , mΔν , and mc

ν refer to expressions in Eq. (37), which are given there in tensor notation. These can be
converted into vector-matrix notation and referenced to the domain element Ωe. However, the right-hand-side vector re comprises
line loads re1 and surface loads re2 on the element.

re = re1 + re2 (60)

The sub vectors are determined as follows.

re1 =

∫

∂Ωe
p

N>A5t d ∂Ωe
p re2 =

∫

Ωe
p

N>q dΩe
p (61)

2.2.6 Assembly and Structural Equation

Structure level quantities are generated by summing all elements e ∈ [1,NE] in Ω. In symbolic notation we make use of the ∪
operator.

K =

NE⋃

e=1

Ke a =

NE⋃

e=1

ae r =
NE⋃

e=1

re (62)

Though this assembling we can formulate the spatially approximated weak form.

δWint = δWext

δa ∙ K a = δa ∙ r (63)

From Eqs. (34) and (39) it can be deduced that the sum of the virtual works must be zero.

δW ≈ δa ∙ [K a − r] = 0 (64)

For arbitrary virtual degrees of freedom δa the discrete equation of motion is obtained.

K a = r (65)

The solution of this system of equations is realized by the left-hand multiplication with the inverse of the stiffness matrix K−1.

K−1K a = I a = a = K−1 r (66)

The stiffness matrix must not be singular, since the invertibility is then no longer guaranteed. In order to prevent this, so many
Dirichlet boundary conditions must be introduced into the structural equation that no rigid body motions are possible. However,
in present context we made use of the finite element program system ABAQUS. To solve problems in the manner set forth above,
we have programmed a user-defined element (UEL) in a FORTRAN subroutine.

3 Application Range

3.1 Preliminary Remarks

In present contribution we want to emphasize the universality of the proposed approach by highlighting the range of applicability.
To be more precise, we seek to determine the broadness in the filed of TLCS. Therefore, we will execute parameter studies at
the simple case of constant, homogeneous, and orthogonal loading with a small test load while free supports are applied at all
layer boundaries with normals eα. The spatial discretization is realized via an structured mesh where all elements show an aspect
ratio AR= he

max/he
min = 1 while all elements feature inner angles with 90◦. Herein, heα is the element edge length. The mesh grid is
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geometry

L1 = 1620.0 mm

L2 = 810.0 mm

hs = 0.005 . . . 0.495 H

hc = 0.01 . . . 0.99 H

H = 7.4 mm

material

Y s = 7.3·104. . . 10−3 N mm−2

Yc = 10−3. . . 7.3·104 N mm−2

νs = 0.41

νc = 0.41

κK = 1.00

boundary conditions

loads
p = 5 · 10−4 N mm−2 (uniform & orthogonal)
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w(X1=0) = w(X1=L1) = 0 mm
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Fig. 4: Geometry, material, boundary conditions and discretization to determine the range of application of present approach

256 × 128 = 32768 elements (heα ≈ 6.33 mm) to guarantee convergence for all subsequent scrutinies. For the sake of simplicity
we reduce our concern to a symmetric composite structure. Therefore, the following relations holds true, while we introduce the
superscript index s for the skin layers.

ht = hb = hs Yt = Yb = Ys νt = νb = νs (67)

Consequently, the following also applies.

Bt = Bb = Bs Gt = Gb = Gs Dt
� = Db

� = Ds
� ∀� ∈ {M,B, S} (68)

We consider a test structure with plane dimensions L1 = 1620 mm and L2 = 810 mm as exemplary values. For present work we
want to investigate the limit behavior for three-layered composite structures. Therefore, we introduce two geometrical limiting
cases and a transversely evenly distributed geometrical case in context of aforementioned restrictions. These are as follows.

• hc = hs (even distributed)

• hc = 0.99 H (thick core bound)

• hc = 0.01 H (thin core bound)

The corresponding skin layer thicknesses arise from the restriction for the overall thickness H.

hs =
H − hc

2
H

!
= 7.4 mm (69)

For the evenly distributed (equal thicknesses) composite this results in a transverse geometry with hk = 37/15 mm ∀K ∈ {c, s}.
The thin core bound is characterized by hc = 0.074 mm while the thick core is by hc = 7.326 mm. However, for all cases it
becomes obvious that Lα � H holds true.
To determine the working range of XLWT we vary the shear modulus ratio GR, which is a significant measure of the diverging
material properties of core and skin layers, determined as follows.

GR=
Gc

Gs
(70)

For the sake of simplicity, we reduce our concern to transverse shear correction factors κK ≡ 1 ∀K ∈ {t, c, b}. The variety of
material parameters is given Fig. 4. This results in a shear modulus ratio GRmin below 10−7 for present investigations, i.e. a
maximum difference of more than seven magnitudes of order between the shear moduli alone. In present investigations, this
also applies to the Young’s modulus ratio YR= Yc/Y s since νc = νs holds. In this context, the designation high contrast plates
retains validity. However, we reduce our concern to the case of GR ≤ 1. In connection with engineering applications, this
represents a reasonable limit. Applications with soft skins while the core is stiff seem extremely uncommon. For the opposite
limit therefore GRmax = 1 holds. Therewith, we can depict two bounds arising from monocoque structures known from theory.
So it is possible to determine clearly, two, so-called monolithic limits. This is the shear-rigid monolith (Kirchhoff theory) and the
shear-deformable monolith (Mindlin or Reissner theory). From these limits we carry out two investigations whereby we vary the
shear modulus ratio through systematically. In a first attempt we decrease the shear modulus of the core layer Gc when starting
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Fig. 5: Results of parameter studies starting from shear-rigid (left) and shear-deformable (right) monolithic limit of symmetric
TLCS

from Yc = Ys = 73, 000 N/mm2 (⇒ GR= 1, shear-rigid). The second attempt is implemented by the increase of the shear modulus
of the skin layers Gs when starting from Yc = Ys = 0.001 N/mm2 (⇒ GR= 1, but shear-deformable). As evaluation criterion we
use the deflection of the composite. However, for all variations of GR, we normalize our results of the maximum deflection wmax

in the following way for the admissible regime of GR.

w̃ =
wmax(GR)

wmax(GRmax)
wmax = w (Xα/2) GRmin ≤ GR≤ GRmax (71)

3.2 Results and Discussion

The results of present investigations are depicted in Fig. 5. On the left-hand side are the results of the examination starting from
the shear-rigid monolithic limit and on the right-hand-side are the ones of the examination starting from the shear-deformable
monolithic limit.
As previously indicated, for material and geometrical constellations we have used extremal parameters, at least in context of
engineering applications (technical feasibility limits and limits of the sensuality). The range of application is localized by the
thin core bound (lower bound) and the thick core bound (upper bound) for both procedures. Unsurprisingly, the even distributed
composite lies between these two results. The course of the this even distributed composite follows that of the thin core bound.
Also appears logical that deflections are increasing when starting present investigations from shear-rigid monolithic limit with
decreasing Gc . Vice versa, deflections are decreasing when starting from shear-deformable monolithic limit while increasing
Gs . For both investigations the range of application increases with decreasing shear modulus ratio. The results of all geometrical
extremal cases coincide in the case GR= 1.
As can be found in some publications already (Naumenko and Eremeyev, 2014; Aßmus et al., 2017a), the thin core bound reaches
its limits asymptotically when starting from a shear-rigid limit. This also applies to the even distributed composite. In both
cases we can identify so called layered limits. This is the case when skin layers glide on each other with almost none resistance.
However, for the thick core bound, such a limit does not exist when stating from a shear-rigid monolith. In addition, no asymptotic
behavior can be detected either.
Contrary, when starting from the shear-deformable monolithic limit, the thick core bound exhibits an asymptotic behavior, while
the layered limit of this bound is clearly identifiable. On the other hand, the existence of layered limits for both, thin core bound
and even distributed composite are questionable, at least in the admissible range of GR.
In principle, it must therefore be stated that the use of the eXtended layer-wise theory presented here is indispensable, especially
for cases in which no layered limit is achieved. However, it is precisely these limit cases that open up the scope of the approach
presented here. By the best knowledge of the authors, there is no other known theory for the treatment of mechanical problems
at three-layered composite structures with such a wide range of applicability. As already mentioned at the beginning, modern
applications require such generalized approaches in order to meet the requirements of strongly diverging material pairings and
geometry compositions.
For the sake of completeness, the numerical burden should be mentioned. The computation times were around 30 to 60 seconds
on a standard pc (Intel i7-3820 processor, 32 GB RAM, 64 Bit Windows 7 operating system), depending on the material and
geometrical constellations. Such short computation times emphasize the efficiency of the approach presented here.
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4 Concluding Remarks

4.1 Conclusion

In this work we have introduced a generalized framework for three-layered composite structures to consider strong divergent
geometrical and material properties. This was done in the framework of a layer-wise procedure while starting by the aid of
the direct approach. Therewith, present approach is geometrically exact. This expression arises from the exact kinematic
representation of the two-dimensional surface. This means, that results gained are exact on the mid surface of the individual
layer only. The restrictions introduced to couple layers are justifiable for engineering applications. There they will find a broad
application, at least in the determination of composite stiffness relations.
In context of the computational solution procedure introduced, the approach to reduce all considerations to a single reference
surface simplifies the calculation of present structures where at the same time a large number of composites with arbitrary
properties can be computed. Furthermore, we only have low requirements on the shape functions and boundary conditions
since present approach requires C0 continuity only, i.e. only the DOFs themselves have to be continuous on the element
boundaries (Hinton et al., 1990). That is a not negligible advantage over C1 continuous elements as they are needed for the use
of shear-rigid theories, i.e. when using the Kirchhoff theory (Kirchhoff, 1850).
We note that the purpose of this paper is to show the the broad scope of application and general validness of the layer-wise model.
In that sense, the first-order shear deformation theory and the classical laminate theory that are commonly used arise as special
cases when different simplifications are imposed. This is surely also the case to what is known as sandwich theory which has not
been identified in the context of present investigations. Some general examples for special cases at layer-level have been given
in Aßmus et al. (2019), which show that plate model obtained by the direct approach attains universality, at least in context of
engineering applications. However, the broadness of applicability of present layerwise generalisation seems unique.

4.2 Outlook

In present context we reduced our concern to the static load case, linear elastic material behaviour, and small deformations. As
in classical continuum theory, extensions lie in the consideration of

• inertia,

• dynamic loading, and

• damping.

Regarding enlargements with respect to kinematics introduced, it is possible to consider

• moderate deformations, i.e.

◦ large deflections

◦ small in-plane displacements

◦ small rotations

• or large deformations, i.e.

◦ large deflections

◦ large displacements

◦ large rotations

while the latter being preferred in context of a consistent generalization. At least in this case, we also have to refomulate the
kinematical restrictions (28a) and (28b). The constitutive relations can be extended to nonlinear elastic or inelastic behaviour, e.g.

• viscoelasticity,

• (visco-)plasticity,

• fatigue, and

• damage.

In addition, the consideration of anisotropic material behavior is certainly also a focal point. This may also have to include
coupling effects between the different deformation states considered at layer-level, which until now have only been superimposed.
All theses extensions hold true for the individual layers. However, within the modular structure of the approach presented here it is
simple to enlarge its frame to analyze three-layered composite structures for arbitrary deformations, material behavior and loading
conditions, at least up to the borders that exist in classical theory of three-dimensional continua (e.g. uniqueness, etc.). Couplings
with thermodynamics, electrodynamics and other non-mechanical influences such as hygroscopic ones are also conceivable.
A special feature of the present approach using a layer-wise contemplation is the consideration of delamination. Thereby it
is possible to relax the kinematical constraints (28a) and (28b) whereby advanced traction-separation laws for the interaction
between the layers can be introduced.
However, present theory is based on whats known as plate or more generally shell theories. It is generally accepted, that such
theories are not capable to prognosticate full and exact information concerning a three-dimensional body manifold which forms
the basis of every treatment.
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Appendix

A.1 Constitutive Relations in Vector-Matrix Formulation

Consequently, the matrices required in the FEM are to be given in terms of global variables (indices ◦, Δ, c) for the three layered
composite in vector-matrix form. The constitutive tensors of the global quantities can be introduced in matrix notation as follows,
introducing C as a global stiffness quantity for the sake of simplicity.

ĈK
M =








aK
M + 2bKM bKM 0

aK
M aK

M + 2bKM 0
0 0 bKM








∀ K ∈ {◦,Δ, c} (A.1a)

ĈK
B =








aK
B + 2bKB bKB 0

aK
B aK

B + 2bKB 0
0 0 bKB








∀ K ∈ {◦,Δ, c} (A.1b)

ĈK
S = aK

S

[
1 0
0 1

]

∀ K ∈ {◦,Δ, c} (A.1c)

Here, the following abbreviations have been introduced based on the engineering interpretations for membrane stiffness DM,
bending stiffness DB, and transverse shear stiffness DS.

aK
L =






Dt
Lν

t + Db
Lν

b if K = ◦

Dt
Lν

t − Db
Lν

b if K = Δ

Dc
Lν

c if K = c

∀ L ∈ {M,B} (A.2a)

bKL =






1−νt

2 Dt
L + 1−νt

2 Db
L if K = ◦

1−νt

2 Dt
L − 1−νt

2 Db
L if K = Δ

1−νt

2 Dc
L if K = c

∀ L ∈ {M,B} (A.2b)

aK
S =






Dt
S + Db

S if K = ◦

Dt
S − Db

S if K = Δ

Dc
S if K = c

(A.2c)

With the above representation, the generalized stiffness matrices can be specified.

C◦
MB =










Ĉ◦
M 0 0 0
0 Ĉ◦

M 0 0
0 0 Ĉ◦

B 0
0 0 0 Ĉ◦

B










(A.3a)

CΔMB =










0 ĈΔM 0 0
0 0 0 0
0 0 0 ĈΔB
0 0 0 0










(A.3b)

C◦
S =

[
Ĉ◦

S 0
0 Ĉ◦

S

]

(A.3c)

CΔS =

[
0 ĈΔS
0 0

]

(A.3d)

The zero matrices in the Eq. (A.3a) and (A.3b) each possess three columns and rows, while the null matrices in Eq. (A.3c) und
(A.3d) have only two columns and rows each. The B matrices for combining the approximation of local continuous kinematic
measures with the discrete degrees of freedom of the element are given as follows.

BMB =
[
BMB1 BMB2 . . . BMBNN

]
BMBi =

[
B̂◦

Mi
B̂ΔMi

B̂◦
Bi

B̂ΔBi

]>
(A.4a)

BS =
[
BS1 BS2 . . . BSNN

]
BSi =

[
B̂◦

Si
B̂ΔSi

]>
(A.4b)
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The sub measures introduced herein are given in the following matrices.

B̂◦
Mi

=








Ni
,1 0 0 0 0 0 0 0 0

0 Ni
,2 0 0 0 0 0 0 0

Ni
,2 Ni

,1 0 0 0 0 0 0 0








(A.5a)

B̂ΔMi
=








0 0 Ni
,1 0 0 0 0 0 0

0 0 0 Ni
,2 0 0 0 0 0

0 0 Ni
,2 Ni

,1 0 0 0 0 0








(A.5b)

B̂◦
Bi

=








0 0 0 0 0 0 Ni
,1 0 0

0 0 0 0 0 −Ni
,2 0 0 0

0 0 0 0 0 −Ni
,1 Ni

,2 0 0








(A.5c)

B̂ΔBi
=








0 0 0 0 0 0 0 0 Ni
,1

0 0 0 0 0 0 0 −Ni
,2 0

0 0 0 0 0 0 0 −Ni
,1 Ni

,2








(A.5d)

B̂◦
Si

=

[
0 0 0 0 Ni

,1 0 Ni 0 0
0 0 0 0 Ni

,2 −Ni 0 0 0

]

(A.5e)

B̂ΔSi
=

[
0 0 0 0 0 0 0 0 Ni

0 0 0 0 0 0 0 −Ni 0

]

(A.5f)

The differential operators for membrane, bending, and transverse shear state as well as their auxiliary matrices are structured as
follows.

DMB =
[
D◦

M DΔM D◦
B DΔB

]>
(A.6a)

DS =
[
D◦

S DΔS
]>

(A.6b)

The sub operators used therein are structured as follows.

D◦
M =









∂
∂X1

0 0 0 0 0 0 0 0
0 ∂

∂X2
0 0 0 0 0 0 0

∂
∂X2

∂
∂X1

0 0 0 0 0 0 0









(A.7a)

DΔM =









0 0 ∂
∂X1

0 0 0 0 0 0
0 0 0 ∂

∂X2
0 0 0 0 0

0 0 ∂
∂X2

∂
∂X1

0 0 0 0 0









(A.7b)

D◦
B =









0 0 0 0 0 ∂
∂X1

0 0 0
0 0 0 0 0 0 ∂

∂X2
0 0

0 0 0 0 0 ∂
∂X2

∂
∂X1

0 0









(A.7c)

DΔB =









0 0 0 0 0 0 0 ∂
∂X1

0
0 0 0 0 0 0 0 0 ∂

∂X2

0 0 0 0 0 0 0 ∂
∂X2

∂
∂X1









(A.7d)

D◦
S =

[
0 0 0 0 ∂

∂X1
1 0 0 0

0 0 0 0 ∂
∂X2

0 1 0 0

]

(A.7e)

DΔS =

[
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

]

(A.7f)
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The auxiliary matrices Ai ∀ i ∈ {1, . . . , 5} for transforming the terms of virtual work into the vector-matrix notation are defined
as follows.

A1 =
1
hc

[
0 0 −2 0 0 − (h◦ + hc) 0 −hΔ 0
0 0 0 −2 0 0 − (h◦ + hc) 0 −hΔ

]

(A.8a)

A2 =

[
1 0 0 0
0 1 0 0

]

(A.8b)

A3 =
[
I 0 1

2 hΔI 1
2 h◦I

]
(A.8c)

A4 =
1
hc

[
0 2I h◦I hΔI

]
(A.8d)

A5 =





















1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 − 2

hc 0
0 0 0 1 0 0 0 0 0 0 0 0 − 2

hc

0 0 0 0 0 0 1 0 0 0 0 0 0
1
2 hΔ 0 1

2 (h
◦ + hc) 0 0 0 0 0 −1 0 0 −h◦+hc

hc 0
0 1

2 hΔ 0 1
2 (h

◦ + hc) 0 0 0 1 0 0 0 0 −h◦+hc

hc

0 0 0 0 1
2 h◦ 0 0 0 0 0 −1 − hΔ

hc 0
0 0 0 0 0 1

2 h◦ 0 0 0 1 0 0 − hΔ

hc





















(A.8e)

The unit matrix I and the zero matrices 0 in Eqs. (A.8c)–(A.8d) feature three columns and rows each.
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Abstract:Based on the asymptotic homogenization method, the local problems related to two-phase periodic fibrous dielectric
composites with isotropic and complex constituents are solved. A hexagonal periodicity distribution of the fibers is considered.
Explicit formulas for the real and imaginary parts of the effective dielectric properties are derived. Such formulas can be
computed for any desired precision related to a truncation order of an infinite system of algebraic linear equations. Two simple
analytical expressions are specified for the first two truncation orders. Comparisons with results via other approaches show a good
concordance. Hexagonal periodic lattices of acoustic scatterers are useful structures for acoustic applications.

Keywords:Effective properties, two-phase fibrous dielectric composites, complex dielectric properties, hexagonal array.

1 Introduction

The effective conductivity tensor of two-dimensional complex dielectric composites consisting of a hexagonal periodic array of
circular inclusions embedded in a matrix is studied, where both matrix and inclusions have complex dielectric properties. Perfect
contact conditions at the interface between the matrix and the inclusions are considered. This problem is of interest, for instance,
in acoustic applications, see e.g. Guild et al. (2014).
The solution is based on the asymptotic homogenization technique combined with series expansions of elliptic functions. A similar
procedure has been used in recent works. For instance, Godin (2012) solved rigorously the problem for two-dimensional real
dielectric composites using series expansions of Weierstrass’ function and its derivatives depending on unknown real coefficients.
Then, the problem is reduced to an infinite system and found its solution as a convergent power series allowing to obtain analytical
formulas of the effective conductivity tensor for different lattice of inclusions. An analogous procedure was followed in Godin
(2013) for the determination of the effective complex permittivity of a similar two-dimensional composite but with complex
properties of the constituents. In that case the method of undetermined coefficients was used with complex coefficients allowing
the derivation of efficient formulas for the effective properties. Unlike the real case a non-monotonic behavior of the real and
imaginary parts of the effective tensor as function of area fraction of the inclusions is shown. This procedure has been extended
to investigate the macroscopic behavior of periodic tubular structures in Godin (2016) and the propagation of electromagnetic
waves through a two-dimensional composite material containing a periodic rectangular array of circular inclusions by Godin and
Vainberg (2019). These studies have been found relevance in some applications. For instance, the results of Godin (2013) have
been applied in Guild et al. (2014) to acoustics showing a good agreement with experimental data and inertial enhancement. In
Ren et al. (2016), the results of Godin (2013) were used for calculating eddy current losses in soft complex magnetic composites.
Recently, in Bravo-Castillero et al. (2018) the study of the effective behavior of complex dielectric composites was done by the
homogenization of the equivalent system of equations with real coefficients. Closed-form formulas for the effective coefficients
were obtained for a square periodic distribution of the inclusions which were employed to study gain-enhancement and loss
enhancement properties of the homogenized material. This procedure offers independent models to compute the real and imaginary
parts of the effective complex dielectric conductivity. In this work, based on the methodology in Bravo-Castillero et al. (2018),
the effective tensor of two-dimensional complex dielectric is determined for the case of a hexagonal periodic distribution of the
inclusions.
The work is organized as follows. After the Introduction, section 2 is devoted to the statement of the problem. A summary of the
homogenization process, and the models for the local problems and the effective coefficients is presented in section 3. In section 4,
the solution of the local problems is described and the formulas for the real and imaginary part of the effective tensor are derived.
In section 5, some numerical examples are discussed. Finally, some concluding remarks are given in section 6.

2 Statement of the Problem

Let Ω ⊂ R2 be a two-dimensional domain with infinitely smooth boundary ∂Ω. The components of the complex dielectric
permittivity tensor of a two-phase fibrous reinforced composite (FRC) occupying Ω are (αε + iβε)δjl ( j, l = 1, 2) where i2 = −1, δ
? E-mail address: julian@mym.iimas.unam.mx doi: 10.24352/UB.OVGU-2019-020 2019 | All rights reserved.
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is the Kronecker’s delta, ε is a small geometric parameter that characterizes the periodicity and αε and βε are the real and imaginary
part, respectively. The usual global or slow coordinates x ∈ Ω and local or fast coordinates y with y = x/ε are introduced. A
hexagonal array of the periodic cell Y in global coordinates is considered so that it covers the domain Ω = Ωε1 ∪Ω

ε
2 ∪ Γ

ε where
Γε ≡ ∂Ωε2 and Ωε1 ∩Ω

ε
2 = ∅; Ω

ε
1 represents the matrix or connected set, Ωε2 denotes the fibers or disconnected set (an ε-periodic

distribution of circles of radius Rε) and Γε is the interface between Ωε1 and Ωε2 . The boundary ∂Ω is chosen so that it does not
intersect any fiber of Ωε2 (Fig. 1). Fig 1 also shows a blow-up of the periodic hexagonal cell cross-section Y ⊂ R2 referred as
y-coordinates with an embedded circle of radius R and boundary Γ. Therein, Y1 denotes the matrix or connected set and Y2 the
fiber or disconnected set. The regions Ωε1 and Ωε2 are occupied with two homogeneous materials with different electric permittivity

O
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Fig. 1: (Left) Domain Ω with boundary ∂Ω. (Centre) A blow-up domain contained in Ω showing a FRC type of geometry in
global coordinates. (Right) Hexagonal cell in y-coordinates.

properties and the jl-components of the electric permittivity tensor are given by

αε + iβε =

α(1) + iβ(1) in Ωε1,

α(2) + iβ(2) in Ωε2 .
(1)

The complex electric potential uε = ϕε + iψε in Ω is sought as ε tends to zero so that Maxwell’s equation in the quasi-static
approximation in absence of free conduction currents are satisfied in Ωε1 and Ωε2 together with continuity of electric potential and
normal component of electric displacement field across the interface Γε . The Dirichlet condition “uε = ũ1 + iũ2” is given on ∂Ω.
The related boundary value problem with complex coefficients is equivalent to the following system of two-coupled real partial
differential equations

∂

∂xj

(
Aε

jl

∂Uε

∂xl

)
= 0 in Ω \ Γε, (2a)

nUεo = 0 on Γε, (2b)�(
Aε

jl

∂Uε

∂xl

)
nj

�
= 0 on Γε, (2c)

Uε = Ũ on ∂Ω, (2d)

where Uε = (ϕε, ψε)T , Ũ = (ũ1, ũ2)
T and 0 = (0, 0)T is the null vector of R2. The superscript T means transposition and the

components of the 2 × 2 symmetric matrix-valued Aε are given by

Aε
11 = αε, Aε

12 = A
ε
21 = −β

ε, Aε
22 = −α

ε, (3)

where Einstein repeated indexes summation convention is adopted. The j-th component of unit normal vector to Γε, denoted
with nj , is taken in the direction from Ωε1 to Ωε2 . The notation n.o is used to denote the jump of the enclosed function across the
interface Γε in the direction of the normal n.

3 Homogenization, Effective Coefficients and Local Problems

Following Bravo-Castillero et al. (2018) a formal asymptotic solution of (2a)–(2d) can be constructed up to O(ε2) as follows

Uε (x) = U(0)(x) + εNk(y)
∂U(0)(x)
∂xk

, (4)

with

U(0)(x) =
(
ϕ(0)(x), ψ(0)(x)

)T and Nk(y) =
(
wk(y) gk(y)
ζk(y) ξk(y)

)
,
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where the 2 × 2 matrices Nk are Y-periodic solutions of the local problems

∂

∂yj

(
A jl (y)

∂Nk(y)
∂yl

+A jk(y)
)
= O in Y \ Γ, (5a)

nNk(y)o = O on Γ, (5b)�(
A jl (y)

∂Nk(y)
∂yl

+A jk(y)
)

nj

�
= O on Γ, (5c)

with 〈Nk(y)〉 = O. In (5a)–(5c), O denotes the 2 × 2 null matrix.
The term U(0) in (4) is the solution of the homogenized problem

Â jk
∂2U(0) (x)
∂xj∂xk

= 0 in Ω, (6a)

U(0) = Ũ in ∂Ω, (6b)

where the effective coefficients Â jl are constants and given by

Â jk =

〈
A jk(y) +A jl(y)

∂Nk(y)
∂yl

〉
. (7)

The angular brackets represent the volume average per unit length over the unit periodic cell, i.e. 〈 f (y)〉 ≡
∫
Y

f (y)dy. The
components of the effective coefficient Â are

Â11 = α̂, Â12 = Â21 = −β̂, Â22 = −α̂. (8)

The effective coefficients α̂ and β̂ can be found by using the following formulas

α̂ =


〈α〉 − nαo

|Y |

∫
Γ
g1dy2 −

nβo
|Y |

∫
Γ
ξ1dy2, for k = 1

〈α〉 + nαo
|Y |

∫
Γ
g2dy1 +

nβo
|Y |

∫
Γ
ξ2dy1, for k = 2

(9a)

β̂ =


〈β〉 −

nβo
|Y |

∫
Γ
g1dy2 +

nαo
|Y |

∫
Γ
ξ1dy2, for k = 1

〈β〉 +
nβo
|Y |

∫
Γ
g2dy1 −

nαo
|Y |

∫
Γ
ξ2dy1, for k = 2

(9b)

where 〈 f 〉 = f1 |Y1 | + f2 |Y2 |, with |Y | = |Y1 | + |Y2 |. The local functions gk and ξk are solutions of the local problems defined as
follows

Problem Ik : Find the Y-periodic functions gk , ξk , such that:

∆gk = 0, ∆ξk = 0, in Y \ Γ, (10a)�
gk
�
= 0,

�
ξk
�
= 0, on Γ, (10b)�(

α
∂ξk

∂yl
+ β

∂gk

∂yl

)
nj

�
= − nαo nk on Γ, (10c)�(

β
∂ξk

∂yl
− α

∂gk

∂yl

)
nj

�
= − nβo nk on Γ, (10d)

with
〈
gk

〉
= 0 and

〈
ξk

〉
= 0. In (10a), ∆ ≡ ∂2

∂y2
1
+ ∂2

∂y2
2
is the two-dimensional Laplace operator in a Cartesian coordinate system.

4 Solution of the Local Problem Ik for Hexagonal Array

In order to solve the problem (10a)–(10d), let us consider a hexagonal lattice of inclusions of radius R (see Fig. 1). Particularly,
doubly-periodic harmonic functions that satisfy the given interface conditions and the null average condition over the hexagonal
cell are sought. Following Guinovart-Díaz et al. (2001), for k = 1, 2, the solutions of the local problems are sought in the form

g1
1 = Re


∞ o∑
q=1

(
a1
qz−q − A1

qzq
) , g1

2 = Re

∞ o∑
q=1

c1
qzq


g2

1 = Im

∞ o∑
q=1

(
a2
qz−q − A2

qzq
) , g2

2 = Im

∞ o∑
q=1

c2
qzq


(11)
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and

ξ1
1 = Re


∞ o∑
q=1

(
b1
qz−q − B1

qzq
) , ξ1

2 = Re

∞ o∑
q=1

d1
qzq


ξ2

1 = Im

∞ o∑
q=1

(
b2
qz−q − B2

qzq
) , ξ2

2 = Im

∞ o∑
q=1

d2
qzq


(12)

where Re and Im indicate the real and imaginary parts, respectively. The superscript o specifies that the sum is carried out over
odd indices, the unknown coefficients ak

q , bkq , ckq and dk
q are real and

Ak
q =

∞ o∑
p=1

pak
pη

k
pq, Bk

q =

∞ o∑
p=1

pbkpη
k
pq, (13)

with

(k = 1) η1
pq =


2π√

3
, p + q = 2

(p + q − 1)!
p!q!

Sp+q, p + q > 2
(k = 2) η2

pq =


−π, p + q = 2

(p + q − 1)!
p!q!

Sp+q, p + q > 2

and Sj are the reticulate sums given by

Sp+q =
∑

n2+m2,0

1
(mω1 + nω2)

p+q ,

where ω1 = 1 and ω2 = e
π
3 i are the periods. As the cross-section of the inclusion is described by a circle of radius R, the interface

in the unit cell is defined by Γ = Reiθ with 0 ≤ θ < 2π, then substituting (11)–(12) into the interface conditions (10b)–(10d), one
obtain the following infinite system of algebraic equations

©«
I + (−1)k+1 χαWk χ+βαI + (−1)k+1 χ−βαWk

χ+βαI + (−1)k+1 χ−βαWk −
(
I + (−1)k+1 χαWk

) ª®¬
(
Ãk

B̃k

)
= (−1)k+1

(
V1

V2

)
, (14)

where I is the infinite identitymatrix, Ãk = (ãk
1, ã

k
3, . . .)

T , B̃k = (b̃k1, b̃
k
3, . . .)

T , ak
q = ãk

qRq/
√

q, bkq = b̃kqRq/
√

q,V1 = (χαR, 0, . . .)T ,
V2 = (χ−βαR, 0, . . .)T , and

(k = 1) W1 =


2π√

3
R2, p + q = 2

∞ o∑
p=1

√
pqη1

pqRp+q, p + q > 2.
(k = 2) W2 =


−πR2, p + q = 2
∞ o∑
p=1

√
pqη2

pqRp+q, p + q > 2.

Furthermore,

χα =
nαo

α(1) + α(2)
, χ+βα =

β(1) + β(2)

α(1) + α(2)
and χ−βα =

nβo
α(1) + α(2)

. (15)

The matrix Wk, k = 1, 2 is real, symmetric and bounded, and consequently the classical results from the theory of infinite systems
Kantorovich and Krylov can be used to solve (14). In this sense, the infinite linear system can be truncated into an appropriate
order p = q = 2no − 1, with no ∈ N. In this way, (14) is transformed into a linear system of order 2no. Now, the use of (11) and
(12) into (9a) and (9b) leads to,

α̂ = α(1) − (−1)k+1 2π
|Y |

(
α(1)ak

1 + β
(1)bk1

)
, (16a)

β̂ = β(1) − (−1)k+1 2π
|Y |

(
β(1)ak

1 − α
(1)bk1

)
. (16b)

For the particular case of real dielectric composites with isotropic constituents (i.e., for β(1), β(2) = 0 ), the formulas for the effective
coefficients (16a)–(16b) reduce to formulas (3.15)–(3.16), p . 228 in Guinovart-Díaz et al. (2001).
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5 Analytical Formulas, Numerical Examples and Some Comparisons

5.1 Analytical Formulas

Following Bravo-Castillero et al. (2018), the system (14) can also be written as follows(
ηI + (−1)k+1λWk

) (
Ãk

B̃k

)
= (−1)k+1

(
V1

V2

)
, (17)

where

η =

(
1 χ+βα
χ+βα −1

)
, λ =

(
χα χ−βα
χ−βα −χα

)
, I =

(
I Θ

Θ I

)
and Wk =

(
Wk Θ

Θ Wk

)
,

with Θ denoting the infinite null matrix. After multiplication of (11) by λ−1 and noticing that λ−1(V1,V2)T = Re1, where e1 is the
infinite vector (1, 0, 0, . . .)T . Then, equation (17) becomes(

Ãk
no

B̃k
no

)
= (−1)k+1(θIno + (−1)k+1Wk

no
)−1ReT2no, (18)

or equivalently

(
Ãk

no
B̃k
no

)
= (−1)k+1

(
θ11Ino + (−1)k+1Wk

no
θ12Ino

−θ12Ino θ11Ino + (−1)k+1Wk
no

)−1

ReT2no, (19)

where the sub-index no represents the truncation order of the vectors Ãk , B̃k , e1, and the matrices I andWk . The matrix θ = λ−1η
has the form

θ =

(
θ11 θ12
−θ12 θ11

)
, (20)

and its components are

θ11 =
χα + χ

−
βα χ

+
βα

(χα)2 + (χ
−
βα)

2 and θ12 =
χα χ

+
βα − χ

−
βα

(χα)2 + (χ
−
βα)

2 . (21)

Using the finite system (19), we find the unknowns Ãk
no

and B̃k
no

for different orders of truncation, which are then substituted into
the effective coefficients expressions (16a)–(16b). In this way, formula (19) is helpful in finding closed-forms for the effective
coefficients.

1. If no = 1, equation (19) takes the form

(
ãk

1

b̃k1

)
= (−1)k+1

(
θ11 + (−1)k+1Wk

11 θ12

−θ12 θ11 + (−1)k+1Wk
11

)−1 (
R

0

)
, (22)

where Wk
pq denote the elements of Wk . Then,

ãk
1 = (−1)k+1 (θ11 + (−1)k+1Wk

11)R

(θ11 + (−1)k+1Wk
11)

2 + θ2
12
, (23a)

b̃k1 = (−1)k+1 θ12R
(θ11 + (−1)k+1Wk

11)
2 + θ2

12
. (23b)

Substitution of equations (23a)–(23b) in the expressions for the effective coefficients (16a)–(16b) yields

α̂ = α(1) −
2(α(1)θ11 + β

(1)θ12)Y2 + 2α(1)Y2
2

(θ11 + Y2)2 + θ
2
12

, (24a)

β̂ = β(1) −
2(β(1)θ11 − α

(1)θ12)Y2 + 2β(1)Y2
2

(θ11 + Y2)2 + θ
2
12

, (24b)

where Vγ is the volume fraction of the phase γ. Particularly, Y1 + Y2 =
√

3
2 with Y2 = πR2.
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2. If no = 2, equation (19) takes the form

©«
ãk

1
ãk

3
b̃k1
b̃k3

ª®®®¬ = (−1)k+1
©«
θ11 + (−1)k+1w11 0 θ12 0

0 θ11 + (−1)k+1w33 0 θ12
−θ12 0 θ11 + (−1)k+1w11 0

0 −θ12 0 θ11 + (−1)k+1w33

ª®®®¬
−1 ©«

R
0
0
0

ª®®®¬ . (25)

To find ã1
1, ã1

3, b̃1
1 and b̃1

3, the above linear system (25) must be solved. Then, the coefficients ã1
1 and b̃1

1 are substituted into the
effective coefficients expressions (16a)–(16b).

5.2 Numerical Examples

Now, we compare the effective coefficients (16a)–(16b) for successive truncation orders no = 1, 2, 3, 4. In particular, we fix

κ(1) = 1 − 5i κ(2) = 30 − 0.3i,

and denote by Vp =
π
4 the percolation limit where the cylinders are in contact. Fig 2 and 3 displays the real and imaginary

parts of the effective complex dielectric coefficient κ̂ as a function of the inclusion volume fraction Vo. It is observed that the
first approximation is a very good estimation of the complex effective dielectric coefficient for Vo < 0.7. Besides, the effective
coefficients for a truncation order at no = 3 and 4 are quite similar. This agreement shows that the second order approximation is
good enough for higher orders of approximations. Therefore, in what follows, we restrict our analysis to first, second and third
approximation orders of the effective coefficients.
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Fig. 2: The real part of the complex effective dielectric coefficient κ̂ as a function of the volume fraction Y2 shown for successive
truncation orders no = 1, 2, 3, 4.
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Fig. 3: The imaginary part of the complex effective dielectric coefficient κ̂ as a function of the volume fraction Y2 shown for
successive truncation orders no = 1, 2, 3, 4.
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5.3 Comparisons

We compare our results with those obtained in Godin (2013) for

κ(1) = 2 − 0.3i and κ(2) = 1 − 8i.

The approximation to the real (imaginary) part of the complex effective coefficient reported in Godin (2013), are determined by

α̂ = Re (ε∗) and β̂ = Im (ε∗) , (26)

where

ε∗ = κ(1)
1 + αλ f
1 − αλ f

,

and

α =
κ(2) − κ(1)

κ(2) + κ(1)
, f =

2
√

3
πR2 =

2
√

3
Y2, λ = 1 + 5α2S2

3 R12 + α2
(
25α2S4

3 + 11S2
6

)
R24 +O

(
R36

)
and while the only non-zero real lattice sums are S3k, k = 1, 2, ..., here

S3 =
∑

n2+m2,0

1(
m + ne

π
3 i

)6 ≈ 5.86303 S6 =
∑

n2+m2,0

1(
m + ne

π
3 i

)12 ≈ 6.00964.

As it was pointed out in the previous section, it is sufficient to work up to a truncation order of no = 3. Fig 4 and 5 show the
comparison between the results using the present approach and those from Godin (2013). In particular, we note that the second
order approximation of the effective coefficients agrees with the result in Godin (2013), whereas the results using a first order
truncation is close to the data reported in Godin (2013). These comparisons assure the use of the obtained short formulas arising
from (19) to investigate the complex effective dielectric coefficient.
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Fig. 4: Comparison of the real part of the complex effective dielectric coefficient κ̂ depending on the volume fraction Y2 calculated
using (16a)–(16b) truncated at no = 1, 2, 3. Also plotted the results from Godin (2013).
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Fig. 5: Comparison of the imaginary part of the complex effective dielectric coefficient κ̂ depending on the volume fraction Y2
calculated using (16a)–(16b) truncated at no = 1, 2, 3. Also plotted the results from Godin (2013).

6 Concluding Remarks

A system of two equations with real periodic and rapidly oscillating coefficients (2a)–(2d) is studied via asymptotic homogenization
for predict the macroscopic behavior of two-phase fibrous dielectric composites wherein the constituents exhibit complex dielectric
isotropy. Series expansions of complex potentials with unknown real coefficients (11)–(12) are used to solve the local problems
(10a)–(10d) for a hexagonal periodic distribution of the fibers. The unknown coefficients are solutions of an infinity system of
linear algebraic equations (14). An explicit solution (19) of the infinite system was derived for any truncation order. Formula (19)
is useful in finding closed-forms expressions for the effective coefficients. Therefore, two simple analytical formulas (24a)–(24b)
and (25) are specified for the two first truncation order. Numerical examples illustrated a very good concordance of such formulas
with those reported in Godin (2013). These results could be useful for acoustic applications wherein hexagonal periodic lattices of
acoustic scatterers structures are present Guild et al. (2014). Besides, these formulas can be used for estimating gain and loss
enhancement properties of active and passive composites in certain volume fraction intervals as in Bravo-Castillero et al. (2018).
Besides it is interesting to mention that results display for either the real part of the effective dielectric coefficient a monotonic
behavior and the imaginary part a non-monotonic one, or the opposite. Some examples show gain- or loss-enhancement properties.
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Application of the Classical Beam Theory for Studying 
Lengthwise Fracture of Functionally Graded Beams 
 
 
V. Rizov, H. Altenbach  
 
 
The present paper deals with analysis of lengthwise cracks in linear-elastic functionally graded beam 
configurations. A general approach for deriving of the strain energy release rate is developed by applying the 
classical beam theory. A crack located arbitrary along the beam thickness is considered, i.e. the crack arms 
have different thicknesses. The approach holds for beams which are functionally graded in the thickness 
direction (the modulus of elasticity can be distributed arbitrary along the thickness of the beam). The approach 
is applied to analyze the strain energy release rate for a lengthwise crack in a functionally graded cantilever 
beam. The beam is loaded by one concentrated force applied at the free end of the upper crack arm. An 
exponential law is used to describe the continuous variation of the modulus of elasticity along the beam 
thickness. The solution to the strain energy release rate in the cantilever beam is verified by applying the J-
integral approach. The solution is verified further by using the compliance method for deriving the strain energy 
release rate. The effects of crack location along the beam thickness, crack length and material gradient on the 
strain energy release rate in the functionally graded cantilever beam are analyzed by applying the solution 
derived.     
 
 
 
1 Introduction 
 
The quick development of engineering demands an extensive use of high performance structural materials such 
as functionally graded materials. The novel inhomogeneous composites known as functionally graded materials 
are composed of two or more constituent materials. The basic idea of the functionally graded materials is that by 
allowing a gradual variation of the composition of the constituent materials in one or more spatial directions, the 
material properties are modified to meet different material performance requirements in different parts of a 
structural member (Gasik, 2010; Jha et al., 2013; Knoppers et al., 2003; Mahamood and Akinlabi, 2017; 
Miyamoto et al., 1999; Nemat-Allal et al., 2011; Wu et al., 2014; Zhang et al., 2011). Thus, it is not surprising 
that application of functionally graded materials as advanced structural materials in the practical engineering has 
increased significantly for the last three decades.  
 
Understanding the fracture behaviour is very important for the structural applications of functionally graded 
materials (Carpinteri and Pugno, 2006; Dolgov, 2005; Dolgov, 2016; Erdogan, 1995; Paulino, 2002; Rizov, 
2017; Rizov, 2018; Tilbrook et al., 2005; Upadhyay and Simha, 2007; Uslu Uysal and Güven, 2016). The 
presence of cracks drastically reduces the load-bearing capacity of functionally graded structural members and 
components. Also, the structural integrity and reliability of functionally graded materials and structures 
essentially depend upon their fracture behaviour. Therefore, development of methods for fracture analyses is vital 
for evaluation of operational performance of functionally graded engineering structures. 
   
The present paper aim is to develop an approach for analyzing the lengthwise fracture behaviour of functionally 
graded beams in terms of the strain energy release rate by applying the classical linear-elastic beam theory. 
Analyses of lengthwise fracture are needed since some functionally graded materials can be built-up layer by 
layer (Mahamood and Akinlabi, 2017) which is a premise for appearance of lengthwise cracks between layers. It 
should be mentioned that while the previous publications (Rizov, 2017; Rizov, 2018) are focussed on analyzing 
the strain energy release rate for lengthwise cracks in individual beam configurations, the present paper develops 
a general approach for the strain energy release rate. The beams under consideration are functionally graded in 
the thickness direction (it is assumed that the modulus of elasticity varies continuously along the beam thickness). 
The general approach developed is applicable for a lengthwise crack located arbitrary along the beam thickness. 
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Besides, the law that describes the distribution of the modulus of elasticity in the thickness direction is arbitrary. 
The approach is used to calculate the strain energy release rate for a functionally graded cantilever beam 
configuration containing a lengthwise crack. The J-integral method is applied to verify the solution to the strain 
energy release rates. The solution is verified also by using the compliance method. Parametric investigations are 
performed in order to evaluate the effects of various material and geometrical parameters on the lengthwise 
fracture behaviour. 
 
 
 
2 Deriving of the Strain Energy Release Rate    
 
A portion of a functionally graded beam containing a lengthwise crack is shown in Figure 1. The beam has a 
rectangular cross-section of width, b , and thickness, h2 . The thicknesses of the lower and upper crack arms are 

denoted by 1h  and 2h , respectively.  

 
Figure 1. Portion of a functionally graded beam with a lengthwise crack ( a∆  is a small increase of the crack 

length, 1h  and 2h  are, respectively, the thicknesses of the lower and upper crack arms). 
 
The bending moment and axial force in the beam cross-section ahead of the crack tip are denoted by M  and 
N , respectively. In order to derive the strain energy release rate, G , a small increase, a∆ , of the crack length 
is assumed. The strain energy release rate is written as 
 

            
A
UG
∆
∆

−= ,                                                                                                                                            (1) 

 
where U∆  is the change of the strain energy, A∆  is the increase of crack area.  Since 
 
           abA ∆=∆ ,                                                                                                                                              (2) 
 
formula (1) is re-written as 
 

           
ab

UG
∆
∆

−= .                                                                                                                                            (3) 

 
The change of the strain energy is expressed as a difference between the strain energy cumulated in the beam 
portion of length, a∆ , before the increase of crack and the strain energy cumulated in the portions of two crack 
arms of length, a∆ , behind the crack tip 
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where 01u , 02u  and 03u  are, respectively, the strain energy densities in the lower and upper crack arms and the 

un-cracked beam portion ahead of the crack tip, 1z , 2z  and 3z  are, respectively, the vertical centroidal axes of 
the cross-sections of lower and upper crack arms and the un-cracked beam portion. By combining of (3) and (4), 
one arrives at the following expression for the strain energy release rate: 
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Figure 2. Cross-section of the lower crack arm ( 11 nn −  is the position of the neutral axis).  

 
The strain energy density in the cross-section of lower crack arm behind the crack tip is written as 
 

            σε
2
1

01 =u ,                                                                                                                                            (6) 

 
where σ  is the normal stress, ε  is the lengthwise strain. The normal stress is obtained by applying the Hooke’s 
law 
 
           εσ E= ,                                                                                                                                                   (7) 
 
where the modulus of elasticity, E , is distributed continuously in the thickness direction 
 
         ( )1zEE = .                                                                                                                                                 (8) 
 
Beams of high length to thickness ratio are considered in the present paper. Therefore, according to the 
Bernoulli’s hypothesis for plane sections the lengthwise strain is distributed linearly along the thickness of the 
lower crack arm 
 
        ( )

1111 nzz −= κε ,                                                                                                                                        (9) 
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where 1κ  is the curvature of the lower crack arm, 

11nz  is the coordinate of the neutral axis (Figure 2). It should 
be mentioned that the neutral axis shifts from the centroid since the material is functionally graded in the 
thickness direction and, also, the beam is under combination of axial force and bending moment.   
   
The curvature and the coordinate of the neutral axis of the lower crack arm are determined from the following 
equations for equilibrium of the cross-section: 
 

          

1

1

2

1 1

2

h

h

N b dzσ
−

= ∫ ,                                                                                                                                       (10)             

                                                                                       

            

1

1

2

1 1 1

2

h

h

M b z dzσ
−

= ∫ ,                                                                                                                                 (11) 

 
where 1N  and 1M  are, respectively, the axial force and the bending moment in the cross-section of the lower 
crack arm behind the crack tip. In equations (10) and (11), σ  is determined by the Hooke’s law (7). Equations 
obtained after solving the integrals in (10) and (11) for a particular law for distribution of the modulus of 
elasticity along the beam thickness should be solved with respect to the curvature and the coordinate of the 
neutral axis.  
 
By substituting of (7), (8) and (9) in (6), one obtains the following expression for the strain energy density in the 
lower crack arm: 
 

          ( ) ( )1

2

01 1 1 1 1
1
2 nu E z z zκ = −  .                                                                                                            (12) 

 
Formula (12) is applied also to calculate the strain energy density in the cross-section of the upper crack arm 
behind the crack tip. For this purpose, 1z , 1κ  and 

11nz  are replaced, respectively, with 2z , 2κ  and 
22nz  

where 2κ  and 
22nz  are the curvature of the upper crack arm and the coordinate of neutral axis of the upper 

crack arm. Equilibrium equations (10) and (11) are used to determine 
22nz  and 2κ . For this purpose, 1N , 

1M , σ , 2/1h  and 1z  are replaced, respectively, with 2N , 2M , gσ , 2/2h  and 2z  where 2N  and 

2M  are the axial force and the bending moment in the cross-section of the upper crack arm behind the crack 

tip, gσ  is the normal stress in the upper crack arm. The Hooke’s law (7) is applied to determine gσ  (the 

lengthwise strain is obtained by replacing of 1z , 1κ  and 
11nz with 2z , 2κ  and 

22nz in formula (9)).  
 
Formula (12) is used also to determine the strain energy density in the beam cross-section ahead of the crack tip 
by replacing of 1z , 1κ  and 

11nz , respectively, with 3z , 3κ  and 
33nz . The curvature, 3κ , and the 

coordinate of the neutral axis, 
33nz , of the beam cross-section ahead of the crack tip are obtained after replacing  

of 1N , 1M , σ , 2/1h  and 1z , respectively, with N , M , rσ , h  and 3z  in equilibrium equations 

(10) and (11). The normal stress, rσ , in the beam cross-section ahead of the crack tip is found by (7). The 

distribution of lengthwise strain is determined by (9). For this purpose, 1z , 1κ  and 
11nz  are replaced with 

3z , 3κ  and 
33nz , respectively.  
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Finally, the strain energy densities in the two crack arms and in the beam cross-section ahead of the crack front 
are substituted in formula (5) to calculate the strain energy release rate. It should be noted that (5) is applicable 
for various functionally graded beam configurations, loading conditions and laws for distribution of the modulus 
of elasticity along the beam thickness. Besides, the lengthwise crack can be located arbitrary along the beam 
thickness.            
 
 
 
3 Numerical Example  
 
This section of the paper presents numerical results obtained by investigating the lengthwise fracture behaviour 
of a functionally graded cantilever beam configuration by applying the approach for analysis of the strain energy 
release rate developed in section 2. 

 
Figure 3. Functionally graded cantilever beam with a lengthwise crack of length, a . 

 
The cantilever beam configuration shown in Figure 3 is considered. A lengthwise crack of length, a , is located 

arbitrary along the beam thickness. Thus, the two crack arms have different thicknesses denoted by 1h  and 2h . 
The length of beam is l . The cross-section of beam is a rectangle of width, b , and thickness, h2 . The beam is 
clamped in its right-hand end. The beam is loaded by one concentrated force, F , applied at the free end of the 
upper crack arm (the angle of orientation of F  is denoted by β ). The lower crack arm is free of stresses. Thus, 
 
            001 =u .                                                                                                                                                 (13) 
 
It is assumed that the modulus of elasticity is distributed continuously along the beam thickness according to the 
following exponential law: 
 

            ( ) h
zhs

eEzE 2
04

4+

= ,                                                                                                                                (14) 
 
where 
 
            hzh ≤≤− 4 .                                                                                                                                       (15) 
 
Axis, 4z , is shown in Figure 3. In (14),  0E  is the value of modulus of elasticity in the upper surface of the 
beam, s  is a material property that controls the material gradient along the beam thickness.    
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The fracture behaviour is analyzed in terms of the strain energy release rate by using formula (5). The strain 
energy density in the cross-section of the upper crack arm behind the crack tip is obtained by applying (12). 
Equations (10) and (11) are used to determine the curvature and the coordinate of the neutral axis. In order to 
carry-out the integration in (10) and (11), the modulus of elasticity has to be presented as a function of 2z . For 
this purpose, (14) is re-written as 
 

             ( ) h
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s

eEzE 2
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= ,                                                                                                                             (16)   
 
where 
 
          2/2/ 222 hzh ≤≤− .                                                                                                                          (17) 
 
After replacing of 1N , 1M , σ , 2/1h  and 1z  with 2N , 2M , gσ , 2/2h  and 2z , and substituting 
of (7), (9) and (16) in (10) and (11), one derives the following equations: 
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where ( )hs 2/=θ , ( )hsh 4/2=h . It follows from Figure 3 that 
 
          βsin2 FN = ,                                                                                                                                        (20)  
 

          ββ sin
2

cos 2
2

hFFaM −= .                                                                                                             (21)   

 
Equations (18) and (19) are solved with respect to 2κ  and 

22nz  by using the MatLab computer program. Then 

the strain energy density in the upper crack arm is obtained by substituting of (16), 2z , 2κ  and 
22nz  in (12).  

 
Equations (18) and (19) are used also to determine 3κ  and 

33nz . For this purpose, 2M , 2κ , 2h  and 
22nz  

are replaced, respectively, with 3M , 3κ , h2  and 
33nz  where ββ sincos3 FhFaM −= , and then 

equations (18) and (19) are solved with respect to 3κ  and 
33nz . The strain energy density in the un-cracked 

beam portion is obtained by substituting of (14), 3z , 3κ  and 
33nz  in (12).    

 
By substituting of 01u , 02u  and 03u  in (5), one derives the following expression for the strain energy release 
rate in the functionally graded cantilever beam configuration (Figure 3): 
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where 2/1 s=h .  
 
The solution to the strain energy release rate (22) is verified by applying the J-integral method (Broek, 1986). 
The J-integral is solved along the integration contour, Γ , shown in Figure 3. The J-integral solution is written as 
 
         

32 ΓΓ += JJJ ,                                                                                                                                         (23) 
 
where 

2Γ
J  and 

3Γ
J  are, respectively, the J-integral values in segments, 2Γ  and 3Γ , of the integration contour 

( 2Γ  and 3Γ  coincide with cross-sections of the upper crack arm and the un-cracked beam portion, respectively).  
 
The J-integral in segment, 2Γ , is written as  
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vp

x
upuJ yxα ,                                                                          (24) 

 
where 

2Γ
α  is the angle between the outwards normal vector to the contour of integration in segment, 2Γ , and the 

crack direction, 
2Γxp  and 

2Γyp  are the components of the stress vector, u and v are the components of the 

displacement vector with respect to the coordinate system xy, and 
2Γ

ds  is a differential element along the 
contour of integration. The components of (24) are written as 
 
           ggx Ep εσ −=−=

Γ2
,                                                                                                                           (25) 

 
           0

2
=

Γyp ,                                                                                                                                               (26)        

   
           22

dzds =Γ ,                                                                                                                                           (27) 
 

           gx
u ε=
∂
∂

,                                                                                                                                               (28) 

 
           1cos

2
−=Γα .                                                                                                                                        (29)   

 
In (25) and (28), the longitudinal strain, gε , is determined by replacing of 1z , 1κ  and 

11nz with 2z , 2κ  

and 
22nz  in formula (9) where the coordinate, 2z , varies in the interval ]2/;2/[ 22 hh− .   

 
By substituting of 02u , (25) – (29) in (24), one derives 
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The solution of the J-integral in segment, 3Γ , of the integration contour (Figure 3) is obtained also by (30). For 

this purpose, 2h , 2κ , h  and 
22nz  are replaced with h2 , 3κ , 1h  and 

33nz , respectively. Also, the sign 

of (30) is set to „minus” because the integration contour is directed upwards in segment, 3Γ .   
 
 It should be noted that the J-integral solution obtained by substituting of 

2Γ
J  and 

3Γ
J  in (23) is exact match 

of the solution to the strain energy release rate (22). This fact is a verification of the analysis developed in the 
present paper.   
 
The solution to the strain energy release rate (22) is verified further by applying the compliance method. 
According to this method, the strain energy release rate is expressed as 
 

           
da
dC

b
FG
2

2

= ,                                                                                                                                        (31) 

 
where C  is the compliance. For the cantilever beam configuration shown in Figure 3 the compliance is written 
as 
 

          
F
wC= ,                                                                                                                                                    (32) 

 
where w  is the projection of the displacement of the application point of the force, F , on the direction of F . 
By applying the integrals of Maxwell-Mohr, w  is obtained as 
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where the lengthwise axis, 4x , is shown in Figure 3. By substituting of (32) and (33) in (31), one derives 
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κββκββ ,                                            (34)  

 
where 2κ  and 3κ  are determined from equations (18) and (19).  
 
The strain energy release rates obtained by (34) are exact matches of these calculated by (22) which is a 
conformation for the correctness of the present analysis.  
 
Influence of different factors such as the crack location along the beam thickness, orientatrion of F , material 
gradient and crack length on the lengthwise fracture behaviour of the functionally graded cantilever beam is 
evaluated. For this purpose, calculations of the strain energy release rate are performed by applying solution (22). 
The strain energy release rates obtained are presented in non-dimensional form by using the formula 

( )bEGGN 0/= . The calculations are carried-out assuming that 10=F  N,  005.0=b  m and 100.0=l  
m.  
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The inluence of the orientation of F  on the fracture is investigated. For this purpose, the strain energy release 

rate is calculated assuming that oo 900 ≤≤ β . The strain energy release rate is plotted in non-dimensional form 
against β  in Figure 4 at three bh /2  ratios. Figure 4 shows that the strain energy release rate decreases with 
increasing of β . The increase of bh /2  ratio leads also to decrease of the strain energy release rate (Figure 4).    

 
Figure 4. The strain energy release rate in non-dimensional form plotted against β  (curve 1 - at 6.0/2 =bh ,  

curve 2 - at 8.0/2 =bh  and curve 3 - at 0.1/2 =bh ). 
 
The effects of the crack location along the beam thickness and the crack length on the fracture behaviour are 
analyzed.  

 
Figure 5. The strain energy release rate in non-dimensional form plotted against la /  ratio (curve 1 - at 

3.02/2 =hh ,  curve 2 - at 5.02/2 =hh  and curve 3 - at 7.02/2 =hh ). 
 
The crack location along the beam thickness is characterized by hh 2/2  ratio. The ratio, la / , characterizes the 

crack length. The strain energy release rate is calculated at three hh 2/2  ratios for various la /  ratios.  The 
effects of crack location and the crack thickness on the lengthwise fracture are illustrated in Figure 5 where the 



 238 

strain energy release rate in non-dimensional form is plotted against la /  ratio at three hh 2/2  ratios for 
2.0=s  and 0=β . The curves in Figure 5 indicate that the strain energy release rate increases with increasing 

of la /  ratio. Concerning the effect of crack location along the beam thickness, Figure 5 shows that the strain 
energy release rate decreases with increasing hh 2/2  ratio (this behaviour is due to the increase of the stiffness 

of the upper crack arm with increasing of hh 2/2  ratio).  

 
Figure 6. The strain energy release rate in non-dimensional form plotted against s (curve 1 - at 6=F  N, curve 2 

- at 8=F  N and curve 3 - at 10=F  N). 
 
The effect of the material gradient along the beam thickness on the fracture is analyzed too. The material gradient 
is characterized by the parameter, s .  

 
Figure 7. The strain energy release rate in non-dimensional form plotted against hl 2/  ratio (curve 1 – by 

applying the classical beam theory, curve 2 – by applying the asymptotically exact beam theory). 
 

The strain energy release rate is calculated at various s  for three values of the external force, F . Figure 6 
shows the strain energy release rate plotted in non-dimensional form against s  at three values of F  for 
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3.02/2 =hh . One can observe in Figure 6 that the strain energy release rate decreases with increasing of s . 
This behaviour is attributed to the increase of the beam stiffness. The increase of the external force leads also to 
increase of the strain energy release rate (Figure 6).  
 
The strain energy release rate is calculated also by applying the asymptotically exact beam theory (Le, 2017) and 
the results obtained are compared with the strain energy release rate derived by solution (22) that is based on the 
classical beam theory which uses the Bernoulli’s hypothesis. The functionally graded linear-elastic cantilever 
beam configuration shown in Figure 3 is considered. In order to evaluate the effects of the length to thickness 
ratio of the beam on the lengthwise fracture behaviour, the strain energy release rate calculated by formula (22) 
and the exact asymptotic beam theory is plotted in non-dimensional form against hl 2/  ratio in Figure 7. The 
curves in Figure 7 indicate that the strain energy release rate increases with increasing of hl 2/  ratio. Also, it is 
evident from Figure 7 that the strain energy release rate derived by using the classical beam theory is in a very 
good agreement with the results obtained by applying the asymptotically exact beam theory at 52/ ≥hl .  
   

 
 

4 Conclusions 
 
A lengthwise fracture in functionally graded beams is analyzed in terms of the strain energy release rate. The 
beams under consideration are functionally graded in the thickness direction (the modulus of elasticity varies 
continuously along the beam thickness). It is assumed that the material has linear-elastic behaviour. A general 
approach for analysis of the strain energy release rate is developed by applying the classical linear-elastic beam 
theory. The approach is applicable for a crack that is located arbitrary along the beam thickness (the two crack 
arms have different thicknesses). Thus, the approach can be used to investigate the effect of the crack location on 
the strain energy release rate for lengthwise cracks in functionally graded beam configurations. Also, the 
approach is applicable for arbitrary distribution of the modulus of elasticity in the thickness direction of the 
beam. The strain energy release rate for a lengthwise crack in a functionally graded cantilever beam is analyzed 
by using the general approach. The cantilever beam is loaded by one force applied at the free end of the upper 
crack arm. The crack is located arbitrary along the beam thickness. The continuous variation of the modulus of 
elasticity along the beam thickness is described by applying an exponential law. The J-integral approach is used 
to verify the solution to the strain energy release rate in the cantilever beam. A further check of the solution is 
carried-out by applying the compliance method. The influence of the crack location along the beam thickness, the 
orientation of F , the crack length and the material gradient on the strain energy release rate in the cantilever 
beam is analyzed by using the solution. The calculations show that the strain energy release rate decreaeses with 
increasing of β . The increase of bh /2  ratio leads also to decrease of the strain energy release rate. The 
analysis reveals that the strain energy release rate decreases with increasing the thickness of the upper crack arm. 
It is found that increase of the crack length leads to increase of the strain energy release rate. The material 
gradient in the thickness direction is characterized by the parameter, s . The investigation shows that the strain 
energy release rate decreases with increasing of s . 
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