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Abstract: A material-convective continuum formulation is presented which differs significantly from the finite elasto-plasticity
descriptions of general-purpose finite element simulation tools likeDyna3D, Abaqus,Marc, etc. The material-convective continuum
formulation offers physical significance in particular with respect to the geometrical interpretation of the (plastic) deformation
tensors—in contrast to the so-called Updated Lagrangian Formulation of general-purpose finite element simulation tools which is
unphysical due to its inaccurate (directional non-convective) integration of the (plastic) deformation increments: this inaccurately
integrated (plastic) deformation does not obey the geometrical interpretation of proper (plastic) deformation tensors and may
even lead to a violation of the first fundamental law of thermodynamics, the conservation of energy. The material-convective
time integrals are the reverse of the material-convective time derivatives, and the only material-convective time derivative of a
symmetric second-order Eulerian tensor is its Green-Naghdi rate which is rotationally and translationally convected with the
material.

Keywords:material-convective continuum formulation, Green-Naghdi rate, material-convective time integration, non-material
Zaremba-Jaumann rate, geometrical interpretation of deformation tensors

1 Introduction

The modeling of finite elasto-plasticity must be based on proper definitions of the deformation tensors—for the total deformation
tensors b=R.C.RT as well as for the partial (elastic eb=R.eC.RT, plastic pb=R.pC.RT, · · · ) ones. The six internal degrees of freedom
of properly defined symmetric (total or partial) deformation tensors may be interpreted as three principal values (eigenvalues) and
three orthogonal principal axes (eigenvectors), whose eigenvalues are functions of the present and reference edge lengths of the
corresponding present dv̂ and reference dV̂ principal infinitesimal volume elements only [and do not depend on the geometrical
path through the whole time history of all deformation configurations]. For rate-type theories of plasticity, the Eulerian plastic
deformation tensor pb must be integrated from the Eulerian plastic flow rule pb̊= · · · translational- and rotational-convective with
the material. For a Lagrangean material description, the material velocity vector

v = .x(X, t) =
∂x(X, t)
∂t

(1)

is given by the time derivative of the motion x(X, t) of a material point/particle, but what is its material-convective rotation velocity
or spin? The questions of the material-convective rotation

R = R−T=
√
F−T.F−1.F =

√
F.FT.F−T= F.

√
F−1.F−T = F−T.

√
FT.F (2)

and the material-convective spin

Ω =
.
R.RT= −R.

.
RT= −ΩT (3)

tensors are discussed with respect to the polar decomposition F=v.R=R.U of the deformation gradient F into the proper orthogonal
(orthonormal R−1=RT and right-handed |R|=1) material-convective rotation tensor R (2) and the positive definite, symmetric
Eulerian left or Lagrangean right stretch tensors

v = vT=
√
F.FT= R.U.RT or U = UT=

√
FT.F = RT.v.R , (4)

where ‘.’ denotes the dot product operator (or single contraction) and where F−1, FT or F−T are, respectively, the inverse, the
transpose or the inverse transpose of a second-order tensor F. The spectral representation of the deformation gradient

F = ∂x/∂X = ∂ x̂i/∂X̂ j Êi⊗Ê j = Ûk êk ⊗Êk︸  ︷︷  ︸ = Ûk êk ⊗ êk︸     ︷︷     ︸.R = R.Êk ⊗ÊkÛk︸      ︷︷      ︸ = dx̂k ⊗dX̂k

‖dX̂k ‖
2

R v U
(5)

unveils the polar decomposition F=v.R=R.U as well as the definition of the principal quantities (marked with a hat): the Eulerian
dx̂k and Lagrangean dX̂k eigenvectors with respect to the present κ and reference κ0 configurations, the stretch eigenvalues
? E-mail address: klaus.heiduschke@alumni.ethz.ch doi: 10.24352/UB.OVGU-2020-011 2020 | All rights reserved.

http://www.ovgu.de/techmech
http://www.lstc.com
https://www.simuleon.com/simulia-abaqus/
https://www.mscsoftware.com/de/product/marc
mailto:klaus.heiduschke@alumni.ethz.ch
https://dx.doi.org/10.24352/UB.OVGU-2020-011


K. Heiduschke Tech. Mech., Vol. 40, Is. 1, (2020), 31–45

Ûk = ‖dx̂(k ) ‖
/
‖dX̂(k ) ‖, the Eulerian unit eigenvectors êk =dx̂(k )

/
‖dx̂(k ) ‖=R.Êk with respect to the present configuration κ and

the Lagrangean unit eigenvectors Êk =dX̂(k )
/
‖dX̂(k ) ‖=RT.êk with respect to the reference configuration κ0. The ‘⊗’ operators

denote dyadic products, the length of a vector x is given by the (2-)norm ‖x‖=√xk xk =
√

(x1)2+(x2)2+(x3)2 and, throughout
this work, the summation convention is applied to repeated indices (if they are not enclosed in brackets).
This work has the following structure: after summarizing the kinematical relations of the finite total deformation in Sections 2 and
3 some finite (partial) deformation measures (like @C= {C, eC, pC, · · · } the total, elastic, plastic, · · · Cauchy-Green deformation
tensors) including their geometrical interpretation are introduced in Sections 4 and 5. These finite deformation measures are defined
by their spectral representation, and they may be pushed-forward @b=R.@C.RT or pulled-back @C=RT.@b.R to their Eulerian @b
or Lagrangean @C flavors by the polar rotation (2) of the deformation gradient (5). The corresponding partial deformation-rate
tensors @d= {ed, pd} = 1

2R.
@U−1.@

.
C.@U−1.RT do not coincide @d,@d= {ed, pd} with the additive contributions ed+ pd= d of the

total deformation rate (from the stress power equation) in Section 6. Finally, non-material «co-rotational» rates in conjunction
with the hypo-elasticity of Truesdell and the Updated Lagrangian Formulation (often applied for finite plasticity analysis within
general-purpose finite element simulation tools) are critically discussed in Section 7.

2 The material-convective Lagrangean description x(X, t)

From a Lagrangean point of view, the deformation gradient (5) maps the vicinity vector dX of a position vector X in the reference
configuration κ0 to the vicinity vector

dx = F.dX = dX.FT (6)

of a position vector x in the present configuration κ, and the vicinity vectors dx and dX describe the kinematical behavior of
infinitesimal material line elements in the present κ and reference κ0 configurations. The infinitesimal mass element dm [the
unit mass dm = ρ0 dV = ρ dv with the mass densities ρ0, ρ and the infinitesimal volumes dV , dv in the reference κ0, present
κ configurations] depicted in Figure 1 is therefore transformed material-convectively from a cube (ρ0 dV ) in the reference
configuration κ0 to a skewed parallelepiped (ρ dv) in the present configuration κ.
The three arbitrary orthogonal Lagrangean material line elements dXk of Figure 1 with the corresponding three arbitrary orthogonal
Lagrangean unit vectors Ek =dX(k )

/
‖dX(k ) ‖ are transformed (6) to the Eulerian material line elements dxk which are in general

not orthogonal, and the three orthogonal Lagrangean material unit vectors Ek stay neither orthogonal nor unit vectors when
mapped (6) with the material to F.Ek . Therefore, an arbitrary material-convective Eulerian basis is defined by the orthonormal
Eulerian base vectors

ek := R.Ek = Ek .RT (7)

co-rotated with the material-convective rotation R tensor (2) relative to the arbitrary orthonormal Lagrangean base vectors Ek so
that the component bases refered to in this work can solely be defined as orthogonal unit vector bases

Ei .E j = ei .e j = Êi .Ê j = êi .ê j = δi j =



1 {i = j}

0 {i , j}
(8)

where δi j denotes Kronecker’s delta; the components Si j , Ŝk of corresponding Lagrangean S = Si jEi ⊗E j = Ŝk Êk ⊗ Êk and
Eulerian s = R.S.RT= Si jei ⊗e j = Ŝk êk ⊗ êk symmetric tensors are then identical—relative to their material-convective bases
ei⊗e j = {R.Ei}⊗{E j.RT} and ê(k )⊗ê(k )= {R.ê(k )}⊗{ê(k ) .RT}. The arbitrary orthogonal material-convective base unit vectors Ek , ek
(7); the unit vectors

E =
dX
‖dX‖

, e := R.E = E.RT , i =
dx
‖dx‖

, I := RT.i = i.R (9)

pointing along the edges dX, dx of the infinitesimal mass elements dm= ρ0 dV in the reference configuration κ0 and dm= ρ dv in
the present configuration κ;

O
ρ0

X ρ
x

dX1= ‖dX1‖ E1

‖dX2‖ E2=dX2

‖dX3‖ E3=dX3

F.dX1= ‖dx1‖ i1=dx1

‖dx2‖ i2=dx2=F.dX2

‖dx3‖ i3=dx3=F.dX3

E1

E2

E3

R.E1=e1

R.E2=e2

e3=R.E3

Figure 1. Lagrangean mapping of an infinitesimal mass element dm= ρ0 dV = ρ dv from a cube (ρ0 dV ) in
the reference configuration κ0 to a skewed parallelepiped (ρ dv) in the present configuration κ
within an arbitrary material-convective base vector system ek:=R.Ek (without a hat)
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E1

E2

E1
e1=R.E1

R.E2=e2

e1

e1=R.E1

e2=R.E2

e1

E1

E2

E1

dX1

dX2

dX1 R.dX1

R.dX2

R.dX1

dx1=F.dX1

F.dX2= dx2

dx1

RT.dx1=U.dX1

U.dX2=RT.dx2 RT.dx1

dX2×dX3=dS1

R.dS1

ds1=dx2×dx3

RT.ds1

Figure 2. Lagrangean view on the polar decomposition of the deformation gradient F=v.R=R.U within
an arbitrary material-convective base vector system ek:=R.Ek (without a hat) exemplified for a
plane finite deformation of an infinitesimal mass element dm= ρ0 dV = ρ dv mapped (6) from a
cube (ρ0 dV ) in the reference configuration κ0 to a skewed parallelepiped (ρ dv) in the present
configuration κ

and the unit vectors

N =
dS
‖dS‖

, n := R.N = N.RT , m =
ds
‖ds‖

, M := RT.m = m.R (10)

of the surface normals dS, ds=
ρ0
ρ
F−T.dS [Nanson’s formula] differ for the mapping (6) in their Eulerian flavor from each other,

e , i ,m, as shown in Figure 1 and exemplified for a plane finite deformation in Figure 2 [which also illustrates the polar
decomposition of the deformation gradient F=v.R=R.U].
Within a principal vector basis (unit eigenvector system marked with a hat)

êk = R.Êk = Êk .RT, (11)

the eigenvectors are represented by the edges of infinitesimal mass elements dm, see Figure 3 for the Lagrangean view. These edges
are mapped (6) material-convectively from a cube dm= ρ0 dV̂ in the reference configuration κ0 to a rectangular parallelepiped
dm= ρ dv̂ in the present configuration κ. The corresponding unit eigenvectors/principal base vectors Êk , êk =R.Êk ; the edge

vectors dX̂k , dx̂k =Û(k )R.dX̂(k ); and the surface normal vectors dŜk , dŝk =
Û1Û2Û3

Û(k )
R.dŜ(k ) [from Eq.(5) and Nanson’s formula]

of the infinitesimal mass elements dm= ρ0 dV̂ in the reference configuration κ0 and dm= ρ dv̂ in the present configuration κ are
therefore collinear

Oρ0 X
ρx

dX̂1= ‖dX̂1‖ Ê1

‖dX̂2‖ Ê2=dX̂2

‖dX̂3‖ Ê3=dX̂3

dx̂1=F.dX̂1=Û1R.dX̂1

dx̂2=F.dX̂2=Û2R.dX̂2

dx̂3=F.dX̂3=Û3R.dX̂3
R.Ê1= ê1

ê2=R.Ê2

ê3=R.Ê3

Ê1

Ê2

Ê3
‖dx̂1‖
‖dX̂1‖

=Û1

‖dx̂2‖
‖dX̂2‖

=Û2

Û3= ‖dx̂3‖
/
‖dX̂3‖

Figure 3. Lagrangean mapping of the eigenvectors relative to the principal base vector systems êk=R.Êk

(marked with a hat and represented by the edges of infinitesimal mass elements dm= ρ0 dV̂ = ρ dv̂)
from a Lagrangean cube (ρ0 dV̂ ) in the reference configuration κ0 to an Eulerian rectangular
parallelepiped (ρ dv̂) in the present configuration κ
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such that

Îk = Êk =
dX̂(k )

‖dX̂(k ) ‖
= M̂k = N̂k =

dŜ(k )

‖dŜ(k ) ‖
, êk = îk =

dx̂(k )

‖dx̂(k ) ‖
= n̂k = m̂k =

dŝ(k )

‖dŝ(k ) ‖
(12)

holds.

2.1 Superposed rigid body motions

Under a superposed rigid body motion (hereafter denoted by SRBM and marked with a subscript plus)

+x(X, +t) = a(t) + Q(t).x(X, t) , +t = t − a (13)

characterized by the translation vector a(t) and second-order rotation tensor Q(t) [both functions of time t only]

• Lagrangean tensors (written in uppercase) are invariant, like the reference position vector +X=X [which specifies a material
point/particle by its position in the reference configuration κ0 at t=0] or the symmetric second-order right stretch tensor
+U=U

• Eulerian tensors (written in lowercase) are altered in particular through the rotation Q=Q−T of the SRBM, like the present
position vector (13) or the symmetric second-order left stretch tensor +v=Q.v.QT

2.2 Time derivatives of Lagrangean tensor fields

By its physical definition, the Lagrangean description is convected with the material. Therefore, the time derivative
.
S =

.
Si jEi⊗Ej = S̊ (14)

of a symmetric second-order Lagrangean tensor S=Si jEi⊗Ej =ST=Si jEj ⊗Ei is identical to its material-convective rate S̊ since
the time derivatives

.
Ek =0 of arbitrary Lagrangean base unit vectors Ek vanish. In a Lagrangean description

.
S and S̊ need not

to be distinguished. The time derivative (14) of a symmetric second-order Lagrangean tensor S= Ŝk Êk ⊗ Êk reads in spectral
representation

.
S =

.̂
Sk Êk ⊗Êk+ Ŝk

.̂
Ek ⊗Êk+ Ŝk Êk ⊗

.̂
Ek =

.̂
Sk Êk ⊗Êk + Λ.S − S.Λ , (15)

where the time derivatives.̂
Ek = Λ.Êk = −Êk .Λ = λ×Êk = −Êk×λ = −∈i jk λ̂i Ê j

(16)

of the Lagrangean principal base vectors Êk (unit eigenvectors) can either be expressed as dot products with the antisymmetric
second-order Lagrangean principal spin tensor

Λ = −ΛT= −∈i jk λk Ei⊗Ej (17)

or as cross products with the dual Lagrangean principal spin vector λ. The components of dual tensors λ = λkEk and
Λ=Λi jEi⊗Ej =−ΛT=−Λ j iEi⊗Ej obey

λk = −
1
2 ∈i jk Λi j , Λi j = −Λ j i = −∈i jk λk (18)

where

∈i jk =
(i− j )( j−k )(k−i)

2 =




1 {i j k = 123, 231, 312}
−1 {i j k = 321, 132, 213}
0 {otherwise}

(19)

denotes the Levi-Civita (1925) epsilon [also known as alternating unit symbol].

3 The spatial Eulerian description X(x, t) with material convection

From an Eulerian point of view, the inverse deformation gradient

F−1= ∂X/∂x = ∂X̂i/∂ x̂ j êi⊗ ê j =
1

Ûk

Êk ⊗ êk︸  ︷︷  ︸ = RT.êk ⊗ êk 1/Ûk︸       ︷︷       ︸ = 1/Ûk Êk ⊗Êk︸        ︷︷        ︸.RT=
dX̂k ⊗dx̂k
‖dx̂k ‖2

RT v−1 U−1
(20)

maps the vicinity vector dx of a position vector x in the present configuration κ back to the vicinity vector

dX = F−1.dx = dx.F−T (21)

of a position vector X in the reference configuration κ0, and the vicinity vectors dX and dx describe [like in Eq.(6)] the kinematical
behavior of infinitesimal material line elements in the reference κ0 and present κ configurations. The infinitesimal mass element
dm= ρ dv= ρ0 dV [the unit mass] depicted in Figure 4 is therefore transformed material-convectively from a cube (ρ dv) in the
present configuration κ back to a skewed parallelepiped (ρ0 dV ) in the reference configuration κ0.
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O
ρ0

X

ρ
x

‖dx1‖ i1=dx1

dx2= ‖dx2‖ i2

dx3= ‖dx3‖ i3

dX1=F−1.dx1= ‖dX1‖ E1

F−1.dx2=‖dX2‖ E2=dX2

‖dX3‖ E3=dX3=F−1.dx3

e1

e2

e3

E1=RT.e1

E2=RT.e2

E3=RT.e3

Figure 4. Eulerian mapping of an infinitesimal mass element dm= ρ dv= ρ0 dV from a cube (ρ dv) in the
present configuration κ back to a skewed parallelepiped (ρ0 dV ) in the reference configuration κ0
within an arbitrary material-convective base vector system Ek:=RT.ek (without a hat)

The arbitrary orthogonal material-convective base unit vectors Ek:=RT.ek ; the unit vectors i (9c), E (9a) pointing along the edges
dx, dX of the infinitesimal mass elements dm= ρ dv in the present configuration κ and dm= ρ0 dV in the reference configuration
κ0; and the unit vectors m (10c), N (10a) of the surface normals ds, dS=

ρ

ρ0
FT.ds [Nanson’s inverse formula] differ for the reverse

mapping (21) in their Lagrangean flavor from each other, E , I ,N, as shown in Figure 4 and exemplified for a plane finite
deformation in Figure 5 [which also illustrates the polar decomposition of the inverse deformation gradient F−1=RT.v−1=U−1.RT].

Within a principal vector basis (unit eigenvector system marked with a hat) the eigenvectors are represented by the edges of
infinitesimal mass elements dm, see Figure 6 for the Eulerian view. These edges are mapped back (21) material-convectively from
a cube dm= ρ dv̂ in the present configuration κ to a rectangular parallelepiped dm= ρ0 dV̂ in the reference configuration κ0. The
corresponding unit eigenvectors êk , Êk =RT.êk ; the edge vectors dx̂k , dX̂k = 1/Û(k )RT.dx̂(k ); and the surface normal vectors dŝk ,

dŜk =
Û(k )

Û1Û2Û3
RT.dŝ(k ) [from Eq.(20) and Nanson’s inverse formula] of the infinitesimal mass elements dm= ρ dv̂ in the present

configuration κ and dm= ρ0 dV̂ in the reference configuration κ0 are therefore collinear, such that (12) holds.

ρ

κ

ρ
RT(κ)

ρ0 κ0
ρ0

R(κ0)

RT

RT

U−1 v−1F−1

e1

e2

e1

E1=RT.e1

E2=RT.e2

E1

E1

E2=RT.e2

E1=RT.e1

e1

e2

e1=R.E1

dx1

dx2

dx1

U.dX1=RT.dx1

U.dX2=RT.dx2

RT.dx1

F−1.dx1=dX1

dX2=F−1.dx2

dX1

v−1.dx1=R.dX1

v−1.dx2=R.dX2

v−1.dx1=R.dX1

dx2×dx3=ds1

RT.ds1

dS1=dX2×dX3

R.dS1

Figure 5. Eulerian view on the polar decomposition of the inverse deformation gradient F−1=RT.v−1=U−1.RT

within an arbitrary material-convective base vector system Ek:=RT.ek (without a hat) exemplified
for a plane finite deformation of an infinitesimal mass element dm= ρ dv= ρ0 dV mapped (21)
from a cube (ρ dv) in the present configuration κ back to a skewed parallelepiped (ρ0 dV ) in the
reference configuration κ0
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O

ρ0

X

ρ

x
dX̂1

dX̂2=F−1.dx̂2=RT.dx̂2/Û2

dX̂3=F−1.dx̂3=RT.dx̂2/Û3

dx̂1= ‖dx̂1‖ î1

dx̂2= ‖dx̂2‖ î2

dx̂3= ‖dx̂3‖ î3

Ê1=RT.ê1

Ê2=RT.ê2

Ê3=RT.ê3

ê1

ê2

ê3

‖dX̂1‖

‖dx̂1‖
=1/Û1

‖dX̂2‖

‖dx̂2‖
=1/Û2

‖dX̂3‖

‖dx̂3‖
=1/Û3

Figure 6. Eulerian mapping of the eigenvectors relative to the principal base vector systems Êk=RT.êk
(marked with a hat and represented by the edges of infinitesimal mass elements dm= ρ dv̂= ρ0 dV̂ )
from an Eulerian cube (ρ dv̂) in the present configuration κ back to a Lagrangean rectangular
parallelepiped (ρ0 dV̂ ) in the reference configuration κ0

3.1 Time derivatives of Eulerian scalar ϕ(x, t), vector a(x, t) and symmetric second-order tensor s(x, t) fields

The non-material time derivative
dϕ(x, t)

dt
=
∂ϕ

∂t

�����x
+
∂ϕ

∂x
.c̃ (22)

of a scalar ϕ(x, t) field follows from the product rule with a non-material translation velocity vector c̃=∂x/∂t. If c̃ is replaced by
the material translation velocity v vector (1) then the time derivative (22) turns into the translational-convective time derivative

.
ϕ(x, t) =

∂ϕ

∂t

�����x
+
∂ϕ

∂x
.v = ϕ̊(x, t) (23)

which is, for a scalar ϕ(x, t) with no directional orientation, identical to the material-convective rate ϕ̊(x, t) field.
Similarly, the non-material time derivative of an Eulerian vector a(x, t)= ãk ẽk field follows as

.̃
ek = Θ̃.ẽk =−ẽk .Θ̃

da(x, t)
dt

=
∂a
∂t

�����x
+
∂a
∂x
.c̃ =

(
∂ãk

∂t

�����x
+
∂ãk

∂x
.c̃
)

︸            ︷︷            ︸ ẽk + ãk

︷           ︸︸           ︷(
∂ẽk
∂t

�����x
+
∂ẽk
∂x

.c̃
)

︸                ︷︷                ︸
dãk (x, t)/dt Θ̃.a=−a.Θ̃

(24)

where the non-material time derivatives of the non-convective base unit vectors ẽk are given by
.̃
ek =

∂ẽk
∂t

�����x
+
∂ẽk
∂x

.c̃ = Θ̃.ẽk = −ẽk .Θ̃ (25)

with a non-material antisymmetric second-order spin tensor Θ̃=−Θ̃T. If the non-material translation velocity c̃ vector and the
non-material spin Θ̃ tensor are, respectively, replaced by the material translation velocity v vector (1) and the antisymmetric
second-order Eulerian tensor (3) of material-convective spin Ω [see Dienes (1979, 1986)] then the time derivative dãk/dt ẽk
relative to the Θ̃-co-rotated basis ẽk in Eq.(24) turns into the material-convective vector rate å(x, t), the first underbraced term of
the translational-convective time derivative.

ak (x, t) .ek =Ω.ek =−ek .Ω
.a(x, t) =

∂a
∂t

�����x
+
∂a
∂x
.v =

︷            ︸︸            ︷(
∂ak

∂t

�����x
+
∂ak

∂x
.v

)
ek︸                ︷︷                ︸+ ak

︷           ︸︸           ︷(
∂ek
∂t

�����x
+
∂ek
∂x

.v
)

︸                 ︷︷                 ︸
å(x, t) Ω.a=−a.Ω

(26)

of a materially co-rotated (2) Eulerian vector a(x, t)=akek =R.A with respect to its corresponding Lagrangean vector A=akEk .
The overbraced

.ek = ∂ek
∂t

�����x
+
∂ek
∂x

.v = Ω.ek = −ek .Ω (27)

at the r.h.s. of Eq.(26) denote the time derivatives of the material-convective base unit vectors (7) defined with the antisymmetric
second-order Eulerian tensor (3) of material-convective spin Ω, which follow from

.ek = .R.Ek =
.
R.RT.ek and the inverse of Eq.(7).
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X x
O

Λ=−ΛT R.Λ.RT=−R.ΛT.RT

v= .x
Ω=
.
R.RT=−ΩT

dX̂1

dX̂2
dx̂1

dx̂2

Figure 7. Kinematics of Lagrangean dX̂k and Eulerian dx̂k eigenvectors

In the same vein, the non-material time derivative

ds(x, t)
dt

=
∂s
∂t

�����x
+
∂s
∂x
.c̃ =

(
∂ s̃i j
∂t

�����x
+
∂ s̃i j
∂x

.c̃
)

︸              ︷︷              ︸ ẽi⊗ ẽ j + s̃i j Θ̃.ẽi⊗ ẽ j︸        ︷︷        ︸− s̃i j ẽi⊗ ẽ j .Θ̃︸        ︷︷        ︸
ds̃i j (x, t)/dt Θ̃.s s.Θ̃

(28)

of a symmetric second-order Eulerian tensor s(x, t)= s̃i j ẽi ⊗ ẽj field is defined with a non-material translation velocity c̃ and a
non-material time derivative (25) of the non-convective base unit vectors ẽk . If the non-material translation velocity c̃ vector and
the non-material spin Θ̃ tensor are, respectively, replaced by the material translation velocity v vector (1) and the tensor (3) of
material-convective spin Ω then the time derivative ds̃i j/dt ẽi⊗ẽ j relative to the Θ̃-co-rotated basis ẽi⊗ẽ j in Eq.(28) turns into the
material-convective tensor rate s̊(x, t), the first underbraced term of the translational-convective time derivative

.
si j (x, t)

.
s(x, t) =

∂s
∂t

�����x
+
∂s
∂x
.v =

︷             ︸︸             ︷(
∂si j
∂t

�����x
+
∂si j
∂x

.v
)
ei⊗e j︸                       ︷︷                       ︸+ si jΩ.ei⊗e j︸        ︷︷        ︸− si jei⊗e j .Ω︸        ︷︷        ︸

s̊(x, t) Ω.s s.Ω

(29)

of a symmetric second-order Eulerian tensor s(x, t) = si jei ⊗e j =R.S.RT with respect to its corresponding Lagrangean tensor
S= si jEi ⊗E j . The time derivative (29) of a symmetric second-order Eulerian tensor s= Ŝk êk ⊗ êk =R.S.RT reads in spectral
representation

.
s =
.̂
Sk êk ⊗ êk+ Ŝk

.̂
ek ⊗ êk+ Ŝk êk ⊗

.̂
ek =

.̂
Sk êk ⊗ êk+Γ.s−s.Γ (30)

where the time derivatives

.̂
ek =

(
R.Êk

.)
=
.
R.Êk+R.

.̂
Ek =

( .
R.RT︸︷︷︸+R.Λ.RT) .êk = Γ.êk = −êk .Γ
Ω

(31)

of the Eulerian principal base vectors êk (unit eigenvectors) follow with the antisymmetric second-order Eulerian principal spin
tensor

Γ = −ΓT= Ω + R.Λ.RT= −∈i jk (ωk+λk︸  ︷︷  ︸) ei⊗ej
γk

(32)

compiled from Ω=−∈i jk ωk ei⊗ej and R.Λ.RT=−∈i jk λk ei⊗ej [cf. Eqs.(7), (17) and Figure 7].

3.2 The material-convective Green-Naghdi rate of a symmetric second-order Eulerian tensor s(x, t) field

Since the material-convective rate S̊ of a symmetric second-order Lagrangean tensor S is identical (14) to its time derivative
.
S, the

material-convective rate

s̊ = R.
(
RT.s.R

.)︸    ︷︷    ︸.RT =
.
s −Ω.s + s.Ω

.
S

(33)

of its corresponding material-convectively forward-rotated symmetric second-order Eulerian tensor s=R.S.RT is given by the
forward-rotation R.

.
S.RT of the time derivative

.
S=

(
RT.s.R

.)
= S̊ of the back-rotated Lagrangean tensor S=RT.s.R—consistent

with Eq.(29) where the ei ⊗e j components
.
si j of the material-convective tensor rate s̊ = .si jei ⊗e j are defined relative to the

material-convective (7) basis ei⊗e j = {R.Ei }⊗{E j .RT}. The only material-convective time derivative (denoted with a superscript
ring) of a symmetric second-order Eulerian tensor is given by the Green-Naghdi rate (33) [see Eqs.(8.20)–(8.23) of Green&Naghdi
(1965) p.273] which convects the material rotationally with the antisymmetric tensor Ω of the material-convective spin (3) and
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translationally with the material velocity v vector (1). With (30) and (32), the material-convective rate (33) of the symmetric
second-order Eulerian tensor s= Ŝk êk ⊗ êk =R.S.RT reads in spectral representation

s̊ =
.̂
Sk êk ⊗ êk+

(
R.Λ.RT).s − s.

(
R.Λ.RT) = R.

( .̂
Sk Êk ⊗Êk+ Λ.S − S.Λ︸                       ︷︷                       ︸ )

.RT,.
S

(34)

cf. Eq.(15).

4 Finite deformation kinematics

From the polar decomposition of the deformation gradient F=R.U into the material-convective rotation R tensor (2) and the right
stretch U=Ûk Êk ⊗Êk tensor (4b) and with the material-convective spin Ω tensor (3) and the spin tensors Λ, Γ of the Lagrangean
(17), Eulerian (32) principal axes, the velocity gradient

.
F.F−1=

(.
R.U+R.

.
U
)
.
(
U−1.RT) = ( .̂

Uk êk ⊗Êk+Ûk
.̂
ek ⊗Êk+Ûk êk ⊗

.̂
Ek

)
.
(
Ê`⊗ ê` 1/Û̀

)
=
.
R.RT︸︷︷︸+R.(.U.U−1) .RT=

.̂
Uk

Ûk
êk ⊗ êk+Ω+R.Λ.RT︸       ︷︷       ︸−F.Λ.F−1= .̂Uk

Ûk
êk ⊗ êk+Ω+R.

(
Λ−U.Λ.U−1

)
.RT

Ω Γ

(35)

may additively be split into (its symmetric part) the Eulerian deformation-rate tensor

d = 1
2
(.
F.F−1+F−T.

.
FT

)
= 1

2R.
(.
U.U−1+U−1.

.
U
)
.RT=

.̂
Uk

Ûk
êk ⊗ êk− 1

2R.
(
U.Λ.U−1−U−1.Λ.U

)
.RT

= 1
2
(
v̊.v−1+v−1.v̊

)
= 1

2v
−1.b̊.v−1= 1

2F
−T.
.
C.F−1

(36)

and into (its antisymmetric part) the Eulerian vorticity tensor

w = 1
2
(.
F.F−1−F−T.

.
FT

)
=Ω+ 1

2R.
(.
U.U−1−U−1.

.
U
)
.RT=Ω− 1

2R.
(
U.Λ.U−1+U−1.Λ.U−2Λ

)
.RT. (37)

The b̊ and
.
C at the r.h.s. of Eq.(36) are material-convective rates [cf. (33) and (14)] of the positive definite, symmetric left and right

Cauchy (1827b)-Green (1839) deformation tensors

b = bT= F.FT= v2 = R.C.RT and C = CT= FT.F = U2 = RT.b.R , (38)

respectively. The Lagrangean deformation-rate tensor

D = RT.d.R = 1
2
(.
U.U−1+U−1.

.
U
)
=

.̂
Uk

Ûk
Êk ⊗Êk−

1
2
(
U.Λ.U−1−U−1.Λ.U

)
= 1

2U
−1.
.
C.U−1 (39)

follows from the material-convective backward rotation of Eq.(36). The principal components ŵk , ω̂k , λ̂k of the antisymmetric
tensors w=−∈i jk ŵk êi⊗ êj , Ω=−∈i jk ω̂k êi⊗ êj , Λ=−∈i jk λ̂k Êi⊗Êj [cf. (17)] are, from the r.h.s. of Eq.(37), related by

ŵ1 = ω̂1−
1
2
( Û2
Û3
+

Û3
Û2
−2

)
λ̂1, ŵ2 = ω̂2−

1
2
( Û3
Û1
+

Û1
Û3
−2

)
λ̂2, ŵ3 = ω̂3−

1
2
( Û1
Û2
+

Û2
Û1
−2

)
λ̂3. (40)

4.1 Symmetric total or partial Cauchy-Green deformation tensors and their rates

The left @b= {b, eb, pb, · · · } and right @C= {C, eC, pC, · · · } total or partial (elastic, plastic, · · · ) Cauchy-Green deformation tensors
are [analogously to the definitions (38)] defined through the same material-convective rotation R tensor (2) as

@b=
(@Ûk

)2 @êk⊗@êk =R.@C.RT, @C=
(@Ûk

)2 @Êk⊗
@Êk ,

@êk =R.@Êk =
@Êk .RT, (41)

with the total or partial (elastic, plastic, · · · ) eigenvalues @Ûk = {Ûk , eÛk , pÛk , · · · }, i.e. the principal stretch ratios, and the unit
eigenvectors @Êk = {Êk,

eÊk,
pÊk, · · · }, i.e. the principal directions. Under SRBM the tensors of Eq.(41) obey: @

+b=Q.@b.QT,
@
+ êk =Q.@êk =@êk .QT and @

+C=@C, @
+Êk =

@Êk . With the left @v= {v, ev, pv, · · · } and right @U= {U, eU, pU, · · · } total or partial
(elastic, plastic, · · · ) stretch tensors given by

@v=@Ûk
@êk⊗@êk =R.@U.RT and @U=@Ûk

@Êk⊗
@Êk =RT.@v.R , (42)

the total or partial (elastic, plastic, · · · ) Eulerian deformation-rate tensors may be defined by

@d = 1
2
(@v̊.@v−1+@v−1.@v̊) = 1

2
@v−1.@b̊.@v−1= 1

2R.
(@.U.@U−1+@U−1.@.U)

.RT= 1
2R.

@U−1.@
.
C.@U−1.RT (43)

[cf. Eq.(36)], the corresponding material-convectively back-rotated Lagrangean deformation-rate tensors by

@D = RT.@d.R = 1
2
(@.U.@U−1+@U−1.@.U)

= 1
2
@U−1.@

.
C.@U−1 (44)

[cf. Eq.(39)], and the total or partial (elastic, plastic, · · · ) Eulerian vorticity tensors by

@w =Ω+ 1
2
(@v̊.@v−1−@v−1.@v̊) =Ω+ 1

2R.
(@.U.@U−1−@U−1.@.U)

.RT (45)

[cf. Eq.(37)]. Under SRBM the Eulerian tensor of material-convective spin (3) obeys +Ω=
.
Q.QT+Q.Ω.QT, the Eulerian vorticity

tensors (45) obey @
+w=

.
Q.QT+Q.@w.QT, the left or right stretch tensors obey @

+v=Q.@v.QT or @+U=@U, and the rate of deformation
tensors (43) or (44) obey @

+d=Q.@d.QT or @
+D=@D, respectively.
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4.2 Symmetric total or partial generalized strain tensors, their rates and their work-conjugate stresses

By applying total or partial Eulerian @b = @Bi jk` ei ⊗ e j ⊗ ek ⊗ e` = @a
−1, @a = @Ai jk` ei ⊗ e j ⊗ ek ⊗ e` = @b

−1 or Lagrangean
@B = @Bi jk` Ei ⊗E j ⊗Ek ⊗E` = @A

−1, @A = @Ai jk` Ei ⊗E j ⊗Ek ⊗E` = @B
−1 fourth-order transformation tensors, which are

inverse to each other @Bi jmn
@Amnk` =

1
2
(
δik δ j` + δi` δ jk

)
, which obey the symmetries @Bi jk` =

@Bi j`k =
@Bj ik` =

@Bk`i j

and @Ai jk` =
@Ai j`k =

@Aj ik` =
@Ak`i j and which are defined through the distinct eigenvalues @Ûλ = {Ûλ, eÛλ, pÛλ, · · · } and the

corresponding symmetric second-order Eulerian @vλ = @bλ = {bλ, ebλ, pbλ, · · · } or Lagrangean @Uλ = @Cλ = {Cλ, eCλ, pCλ, · · · }
eigenprojection tensors, kinematical relations similar to Eqs.(43)–(44) of Eulerian

@d = @a..@e̊ , @e̊ = @b..@d (46)

or Lagrangean

@D = @A..@
.
E , @

.
E = @B..@D (47)

type may be specified for the symmetric total or partial Eulerian @e̊=R.@
.
E.RT or Lagrangean @

.
E=RT.@e̊.R material-convective

(Green-Naghdi) rates of generalized strain tensors [for a comprehensive discussion of the definition, calculation and algorithmic
treatment of the generalized strain-rate kinematics see Heiduschke (2019)], where ‘..’ denotes the double dot product operator
a..b= tr(a.bT)=ai j bi j = tr(aT.b)=b..a, that is the double contraction defined here by the traces of dot products of the second-order
tensors a and b.
The relations of the symmetric Eulerian tensor t of Cauchy (1823, 1827a) stress or of the symmetric Lagrangean tensor T= ρ0

ρ RT.t.R
of back-rotated Kirchhoff (1852) stress to the symmetric total or partial Eulerian @s= ρ

ρ0
R.@S.RT or Lagrangean @S= ρ0

ρ RT.@s.R
work-conjugate tensors of generalized stress are given through the same fourth-order transformation tensors @a, @b, @A, @B in
Eulerian form by

@s = @a..t , t = @b..@s (48)

or in Lagrangean form by
@S = @A..T , T = @B..@S (49)

respectively.

4.3 The non-material Zaremba-Jaumann rate

The Zaremba-Jaumann rate tensor

ZJ ˆ̌s =
.
s − w.s + s.w (50)

[see Zaremba (1903) eq.(32) on p.607, eq.(37) on p.610; and Jaumann (1911) eq.(11c) on p.395] has about the same structure as
the material-convective Green-Naghdi rate s̊=

.
s−Ω.s+s.Ω tensor (33) just with the Eulerian vorticity w tensor (37) instead of the

material-convective spin Ω tensor (3). Therefore the Zaremba-Jaumann rate ZJ ˆ̌s is, in general, not rotationally convected with the
material and thus a non-material rate. The difference between the material-convective Green-Naghdi rate s̊ and the non-material
Zaremba-Jaumann rate ZJ ˆ̌s is [from (37)] given by

s̊ − ZJ ˆ̌s = −(Ω−w).s + s.(Ω−w) = 1
2R.

(.
U.U−1−U−1.

.
U︸          ︷︷          ︸)
.RT.s − 1

2s.R.
(.
U.U−1−U−1.

.
U︸          ︷︷          ︸)
.RT

2Λ−U.Λ.U−1−U−1.Λ.U 2Λ−U.Λ.U−1−U−1.Λ.U
(51)

[cf. Green&McInnis (1967) eq.(2.17) on p.222].

4.4 Material-convective rates and corresponding time integrals with respect to the plastic flow rules

For the rate-type theories of plasticity, the (translational-convective) time derivative
pΛ.pC −pC.pΛ

p
.
C =

.
pCi jEi⊗Ej = pC̊ =

.
pĈk

pÊk ⊗
pÊk︸          ︷︷          ︸+

︷          ︸︸          ︷
pĈk

p
.̂
Ek ⊗

pÊk +

︷          ︸︸          ︷
pĈk

pÊk ⊗
p
.̂
Ek

pΛ co-rotated with the plastic Lagrangean principal axes

(52)

of the symmetric Lagrangean right Cauchy-Green plastic deformation tensor pC (41b) [which is identical to the material-convective
plastic rate pC̊] constitutes the plastic flow rule p

.
C= · · · which specifies the material flow behavior of plasticity; the plastic flow

rule must be properly time integrated in order to obtain a proper plastic deformation tensor/measure

pC(t) =

t∫
τ=0

.
pCi j(τ) dτ Ei⊗Ej+pC(0) = pCi j(t) Ei⊗Ej

=

t∫
τ=0

.
pĈk(τ) pÊk(τ)⊗ pÊk(τ)︸                   ︷︷                   ︸ dτ+pC(0) = pĈk(t) pÊk(t)⊗ pÊk(t) .

pΛ co-rotated with the plastic Lagrangean principal axes

(53)
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The material-convective time integral pC=
∫

p
.
C dt+pC0=

pCi j Ei⊗Ej =
(∫ .

pCi j dt+pCi j (0)
)
Ei⊗Ej of a symmetric Lagrangean

plastic flow tensor p
.
C is simply given by its arbitrary Ei ⊗Ej components pCi j =

∫ .
pCi j dt+ pCi j (0) which follow from the

time integrals of each single plastic flow component. The spectral representation at the r.h.s. of Eq.(52) reveals that the plastic

Lagrangean unit eigenvectors pÊk are spinning with pΛ [cf. Eqs.(16)–(19)]; thus the terms
.

pĈk
pÊk ⊗

pÊk [in matrix component
notation placed on the diagonal] represent the pΛ co-rotated tensor rate [underbraced in Eq.(52)] which corresponds to the pΛ

co-rotated time integral [underbraced in Eq.(53)]. Only if the plastic deformation is integrated material-convectively from the
corresponding plastic flow rule p

.
C=RT.pb̊.R= · · · then the resulting plastic deformation pC=RT.pb.R is a proper tensor with

geometrical interpretation—as further discussed in (the next) section 5.
The translational-convective time derivative

pb̊ [materially Ω co-rotated Green-Naghdi rate] pΓ.pb −pb.pΓ
p
.
b =

︷      ︸︸      ︷.
pCi jei⊗ej + pCi j

.ei⊗ej︸     ︷︷     ︸ + pCi jei⊗
.ej︸     ︷︷     ︸ = .

pĈk
pêk ⊗ pêk︸         ︷︷         ︸+

︷        ︸︸        ︷
pĈk

p
.̂
ek ⊗ pêk +

︷        ︸︸        ︷
pĈk

pêk ⊗ p
.̂
ek

Ω.pb −pb.Ω pΓ co-rotated with the plastic Eulerian principal axes

(54)

of the symmetric Eulerian left Cauchy-Green plastic deformation tensor pb (41a) shows at the l.h.s. of Eq.(54) that the material-
convectively co-rotated Eulerian unit vectors ek (7) spin (27) with Ω (3); thus the

.
pCi jei ⊗ej terms [cf. Eq.(29)] represent the

materially Ω co-rotated Green-Naghdi rate [overbraced at the l.h.s. of Eq.(54)] which corresponds to the materially Ω co-rotated
time integral

Ω co-rotated with the material

pb(t) =

t∫
τ=0

︷             ︸︸             ︷.
pCi j(τ) ei(τ)⊗ej(τ) dτ+pb(0) = pCi j(t) ei⊗ej

=

t∫
τ=0

.
pĈk(τ) pêk(τ)⊗ pêk(τ)︸                  ︷︷                  ︸ dτ+pC(0) = pĈk(t) pêk(t)⊗ pêk(t)

pΓ co-rotated with the plastic Eulerian principal axes

(55)

[overbraced at the l.h.s. of Eq.(55)]. The spectral representation at the r.h.s. of Eq.(54) reveals that the plastic Eulerian unit

eigenvectors pêk are spinning with pΓ [cf. Eqs.(31)–(32)]; thus the terms
.

pĈk
pêk ⊗ pêk [in matrix component notation placed on the

diagonal] represent the pΓ co-rotated tensor rate [underbraced at the r.h.s. of Eq.(54)] which corresponds to the pΓ co-rotated time
integral [underbraced at the r.h.s. of Eq.(55)].

5 The geometrical interpretation of total and partial Cauchy-Green deformation tensors

The total or partial (elastic, plastic, · · · ) reference @L= {L=dX, eL, pL, · · · } and present @̀ = {`=dx, e`, p`, · · · } vicinity vectors of a
particle’s reference X and present x position are related to each other [analogously to Eq.(6)] by

@̀ =
(
R.@U

)
.@L =

(@v.R)
.@L = @L.

(
RT.@v

)
= @L.

(@U.RT) (56)

and [analogously to Eq.(21)] inversely by

@L =
(@U−1.RT) .@̀ = (

RT.@v−1
)
.@̀ = @̀ .

(@v−1.R)
= @̀ .

(
R.@U−1

)
. (57)

For a Lagrangean description with (56) the total and partial (elastic, plastic, · · · ) left (41a) and right (41b) Cauchy-Green

deformation tensors may be projected onto the Lagrangean E=
@L
‖@L‖

=
RT.

{@v−1.@̀ }
‖@v−1.@̀ ‖

=RT.e=e.R and Eulerian e=R.E=E.RT unit

vector directions [cf. Eqs.(9a) and (9b)] of the total or partial reference vicinities @L= {L, eL, pL} in order to result in the (scalar)
quadratic stretch ratios (without a hat)

(
@U

)2
= *

,

‖@̀ ‖

‖@L‖
+
-

2

=
@̀ .@̀

@L.@L
=

1
‖@L‖

@L︸   ︷︷   ︸.@C.@L
1
‖@L‖︸   ︷︷   ︸ = E.@C.E = e.@b.e .

E E

(58)

The Lagrangean deformation tensor projection (58) [multiplied by ‖@L‖2] of a right Cauchy-Green (partial) deformation tensor @C
exhibits according to [Ogden (1984) p.95 with Ogden’s A :=F] the following geometrical interpretation: since @C is symmetric and
positive definite, the quadratic form

@L.@C.@L = ‖@̀ ‖2 = constant (59)

represents a reciprocal Lagrangean deformation ellipsoid with principal axes {@Ê1, @Ê2, @Ê3} and semi-axes proportional to
{1/@Û1, 1/@Û2, 1/@Û3} formed from the reference vicinity vectors @L centered at the particle’s reference position vector X which
material is mapped onto an Eulerian sphere

@̀ .@̀ = ‖@̀ ‖
2
= constant (60)
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of radius ‖@̀ ‖ centered at the particle’s present position vector x. If the quadratic form (59) is forward-rotated with R and expressed
by the left Cauchy-Green (partial) deformation tensors @b=R.@C.RT as

{@L.RT}.@b.{R.@L} =
(@b.{R.@L}

)
.{R.@L} = ‖@̀ ‖2 = constant (61)

then the @b may geometrically be interpreted as a reciprocal Eulerian deformation ellipsoid with principal axes {@ê1, @ê2, @ê3}
and semi-axes proportional to {1/@Û1, 1/@Û2, 1/@Û3} centered at the particle’s present position vector x.
For an Eulerian description with (57) the total or partial (elastic, plastic, · · · ) left and right inverse Cauchy-Green deformation

tensors may be projected onto the Eulerian i=
@̀

‖@̀ ‖
=
R.

{@U.@L
}

‖@U.@L‖
=R.I=I.RT and Lagrangean I=RT.i= i.R unit vector directions

[cf. Eqs.(9c) and (9d)] of the total or partial present vicinities @̀ = {`, e`, p`} in order to result in the (scalar) inverse quadratic stretch
ratios (without a hat)(

1
@U

)2
=

(
‖@L‖
‖@̀ ‖

)2
=

@L.@L
@̀ .@̀

=
1
‖@̀ ‖

@̀︸  ︷︷  ︸.@b
−1
.@̀

1
‖@̀ ‖︸  ︷︷  ︸ = i.@b−1.i = I.@C−1.I .

i i

(62)

The Eulerian deformation tensor projection (62) [multiplied by ‖@̀ ‖2] of an inverse left Cauchy-Green (partial) deformation tensor
@b−1 exhibits according to [Ogden (1984) pp.94–95 with Ogden’s B :=F−T ] the following geometrical interpretation: since @b−1 is
symmetric and positive definite, the quadratic form

@̀ .@b−1.@̀ = ‖@L‖2 = constant (63)

represents an Eulerian deformation ellipsoid with principal axes {@ê1, @ê2, @ê3} and semi-axes proportional to {@Û1, @Û2, @Û3}
formed from the present vicinity vectors @̀ centered at the particle’s present position vector x which material is mapped back onto
the Lagrangean sphere

@L.@L = ‖@L‖2 = constant (64)

of radius ‖@L‖ centered at the particle’s reference position vector X [cf. Finger (1892) pp.1105–1122]. If the quadratic form (63) is
back-rotated with RT and expressed by the inverse right Cauchy-Green (partial) deformation tensors @C−1=RT.@b−1.R as

{@̀ .R}.@C−1.{RT.@̀ } =
(@C−1.{RT.@̀ }

)
.{RT.@̀ } = ‖@L‖2 = constant (65)

then the @C−1 may geometrically be interpreted as a Lagrangean deformation ellipsoid with principal axes {@Ê1, @Ê2, @Ê3} and
semi-axes proportional to {@Û1, @Û2, @Û3} centered at the particle’s reference position vector X.
The total and partial (elastic, plastic, · · · ) stretch ratios (without a hat)

@U=
‖@̀ ‖

‖@L‖
=
√
E.@C.E =

√
e.@b.e =

1√
i.@b−1.i

=
1√

I.@C−1.I
(66)

of the E, e or i, I unit directions (9) follow from the Lagrangean (58) or Eulerian (62) deformation tensor projections, respectively.

6 The additivity of the (partial) stress power and Truesdell’s hypo-elasticity

The additive split of the Eulerian (total) deformation-rate tensor

d = ed + pd + · · · (67)

into the partial (elastic, plastic, · · · ) deformation rates {ed, pd, · · · }—collectively referred to as

@d = {d, ed, pd, · · · } = 1
2F
−T.

.
@C.F−1 (68)

—is a physical consequence of the additivity of the (partial) stress power per unit mass

ep pp

p =
1
ρ
t..d =

︷ ︸︸ ︷
1
ρ
t..ed+

︷ ︸︸ ︷
1
ρ
t..pd+ · · · =

1
2ρ0

S..
.
C =

1
2ρ0

(
U−1.T.U−1

)︸       ︷︷       ︸ .. .eC + 1
2ρ0

(
U−1.T.U−1

)︸       ︷︷       ︸ .. .pC + · · ·
S S

(69)

with the reversible elastic ep and the irreversible (plastic, · · · ) contributions {pp, · · · }—collectively referred to as

@p = {p, ep, pp, · · · } =
1
ρ
t..@d =

1
2ρ0

(
U−1.T.U−1

)
..

.
@C =

1
2ρ0

S..

.
@C (70)

—where
41
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‘..’ denotes the double dot product operator (or the double contraction),
t denotes the symmetric Eulerian tensor of Cauchy (1823, 1827a) stress,

T=
ρ0
ρ
RT.t.R denotes the symmetric Lagrangean tensor of back-rotated Kirchhoff (1852) stress,

S=U−1.T.U−1=
ρ0
ρ
F−1.t.F−T denotes the symmetric Lagrangean tensor of second Piola (1825)-Kirchhoff (1852) stress

and the partial (elastic, plastic, · · · ) contributions of @d (43) and @d,@d (68) as well as @
.
C= {

.
C, e
.
C, p
.
C, · · · }=@

.
U.@U+@U.@

.
U=

2@U.RT.@d.R.@U and @
.
C,

.
@C= {

.
C,
.
eC,
.
pC, · · · }=2 FT.@d.F differ in general from each other.

The notion of hypo-elasticity [Truesdell (1955)] for the modeling of hypo-elastic material is taken as a synonym for incremental
stress-strain realations (of stress-rate and strain-rate type) [like eq.(99.4) of Truesdell&Noll (1965) p.403], which reads in our
notation

ZJ ˆ̌t =
.
t−w.t+t.w = h(t, d) (71)

and which is defined with the non-material Zaremba-Jaumann rate ZJ ˆ̌t tensor of Cauchy stress [cf. (50)]. The modeling of
hypo-elastic material may then be generalized to hypo-{elastic, plastic, · · · } material by applying the additive split (67) to the
tensors @d of the (partial) deformation rate (68). But how should the corresponding non-material Zaremba-Jaumann rate be
defined—with the Eulerian tensor (37) of total vorticity w as

ZJ ˆ̌t =
.
t−w.t+t.w = h(t, ed) (72)

or with the Eulerian tensor of elastic vorticity ew [cf. Eq.(45)] as

eZJ ˆ̌t =
.
t−ew.t+t.ew = h(t, ed) ? (73)

Since both Zaremba-Jaumann rates ZJ ˆ̌t and eZJ ˆ̌t are non-material rate tensors, they are both inappropriate for the modeling of
anisotropic (elastic) material behavior—as pointed out by Green&McInnis (1967). A proper material description should be
based on material-convective rates and Truesdell’s generalized hypo-elastic material equations should better be written with the
Green-Naghdi rate t̊ [cf. (33)] and the material-convective spin Ω tensor (3) as

t̊ =
.
t−Ω.t+t.Ω = h(t, ed) . (74)

For a material-convective rate (33) of a symmetric second-order Eulerian tensor [cf. (54)] the corresponding material-convective
time integral of that tensor is well defined [cf. (55)]. This is not the case with Zaremba-Jaumann rates and other non-material
rate tensors which corresponding time integrals «lose» the orientation of the material and, therefore, are inappropriate for the
formulation of material anisotropy.

7 Critical discussion of non-material «co-rotational» rates and the Updated Lagrangian Formulation

The non-material Zaremba-Jaumann rate ZJ ˆ̌t tensor of Cauchy stress [cf. (50)] only differs from the material-convective Green-
Naghdi rate t̊ tensor [cf. (33)] if the Eulerian vorticity w tensor (37) differs from the material-convective spin Ω tensor (3) and
this is, from the spectral representation at the r.h.s. of Eq.(37), only the case for moving Lagrangean principal axes, i.e. if their
spin Λ, 0 does not vanish. The following three finite-deformation examples with moving Lagrangean principal axes exhibit
flaws of the non-material Zaremba-Jaumann rate—as generally pointed out by Green&McInnis (1967) with respect to Truesdell’s
hypo-elasticity [see Truesdell (1955); Truesdell&Noll (1965)].

7.1 Simple shear

For the example of monotonically increasing simple finite shear [see e.g. Fig.1 of Lee et al. (1983) p.554] unphysical oscillatory
shear stress is predicted for the time integrals of the Zaremba-Jaumann stress rate only [see Figs.2–3 of Lee et al. (1983) p.555;
Figs.1–4 of Dafalias (1983) pp.563–564; Fig.1 of Johnson&Bammann (1984) p.736; Fig.2 of Flanagan&Taylor (1987) p.311;
Figs.1–5 of Bruhns et al. (2001) pp.678–679; and many others]. These examples emphasize that not every «co-rotational» rate is
appropriate for a proper material formulation.

7.2 Closed elastic deformation cycles

For the examples of closed elastic deformation cycles the corresponding tensors of the somehow time integrated Zaremba-Jaumann
stress rate at the beginning and the end of a cycle deviate from each other, allegorizing a perpetuum mobile and, therefore, violating
the conservation of energy [see e.g. Figs.1 and 2 of Kojic&Bathe (1987) pp.176 and 178; Figs.1–4, 7, 10, 12 of Meyers et al. (2003)
pp.95–101; Figs.1–7 of Bruhns (2009) pp.196–203]. These examples show for closed elastic deformation cycles that Truesdell’s
hypo-elasticity with the Zaremba-Jaumann stress rate ZJ ˆ̌t [cf. (50)] or with other non-material «co-rotational» rate tensors can
violate the first fundamental law of thermodynamics.
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7.3 Updated Lagrangian Formulation

The comparison of the deformation, depicted in Figure 8, with its time derivation and subsequent integration [based on various
time integration procedures] may, especially for the so-called Updated Lagrangian Formulation, lead to a violation of the first
fundamental law of thermodynamics [see Figs.1–5 of Heiduschke (1995a) pp.2167, 2171 and Heiduschke (1996) pp.749, 752–753].

Figure 8. Two-dimensional homogeneos pure distortional (isochoric, equivoluminal) finite deformation with
a material-convective rotation angle ϕ and constantly moving Lagrangean principal axes

When the Updated Lagrangian Formulation is applied within general-purpose finite element simulation tools (like Dyna3D and its
derivates, Abaqus, Marc, · · · ) then the resulting tensor-rate integrals are also not integrated convective with the material, and these
simulations do not obey the conservation of energy so that the stress and plastic strain tensor components provided just reflect
unphysical house numbers.

8 Conclusion

A sound formulation of continuum mechanics requires a geometrical interpretation of the involved deformation tensors describing
the total and partial (elastic, plastic, · · · ) deformation with respect to the tensorial orientations and magnitudes; deformation tensors
which possess such a geometrical interpretation are proper deformation tensors. In particular the plastic Cauchy-Green deformation
measures pb=R.pC.RT and pC are proper deformation tensors only if they are integrated translational- and rotational-convective
with the material from the corresponding plastic flow rules pb̊ = R.p

.
C.RT = · · · and p

.
C = · · · of a Green-Naghdi type. There

are many non-material formulations (including Treusdell’s hypo-elasticity and the Updated Lagrangian Formulation of the
general-purpose finite element simulation tools {Dyna3D and its derivates, Abaqus,Marc, and the like} which do not follow the
material translational- and rotational-convectively; these non-material formulations may even violate the energy conservation
balance. A proper continuum formulation must therefore be described translational- and rotational-convective with the material,
as suggested in the work at hand, where the total and partial deformation tensors are rotated with the same material-convective
rotation R tensor (2) back and forth to their Lagrangean and Eulerian flavors. For a material-convective formulation the time
derivatives of the total and partial Eulerian deformation tensors should be defined with the Green-Naghdi rate (33) which is
co-rotated with the material by the material-convective rotation R tensor (2) and its associated spin Ω tensor (3). For incremental
Eulerian material laws [like the hypo-elasticity of Truesdell (1955) or Truesdell&Noll (1965)], where the rates of deformation
tensors are specified within the constitutive equations, the time integrals of these rates only result in proper deformation tensors
when they are integrated translational- and rotational-convective with the material. Otherwise, the resulting inaccurately integrated
deformation tensor components are just unphysical house numbers, which may even lead to a violation of the first fundamental law
of thermodynamics, the conservation of energy, as pointed out in the critical discussion of Section 7.

Figure 9. Initial and final configurations/finite element triangular meshes (recursively refined within the
critical forming domains) for the deep drawing process of a B-pillar reinforcement modeled
through a material-convective logarithmic strain space formulation
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Anisotropic material behavior requires a material-convective continuum formulation as presented in this work. The logarithmic
strain space formulation—which is implemented into the special-purpose finite element simulation tools Urmel [see Heiduschke
(1998)], Pafix (subsequently renamed to Hynamic) [see Anderheggen et al. (1993); Heiduschke (1995b)], and AutoForm [see
Anderheggen (1991); Heiduschke et al. (1991); Kubli (1996); Heiduschke (1997)]—is such a material-convective description
which has proven as most accurate, stable and efficient.
A sheet metal forming process of a B-pillar reinforcement is simulated through a material-convective logarithmic strain space
formulation from the initial configuration κ0 with a triangular mesh for the plane metal sheet to the final configuration κ where the
finite element mesh is automatically refined recursively within the critical forming domains, see Figure 9.
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