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Abstract:The paper examines a modelling approach for thermomechanically coupled problems and an experimental concept for a
material law validation and verification for self-heating with small to moderate temperature ranges. The study compares two
different model formulations and is generally applicable to a variety of material classes. One model is based on a rheological
network with an extension for dissipative deformation below the elastic limit. The other model operates without a yield condition.
Both models are applied to published experimental data in terms of rate-independent behaviour and the evaluation is carried out
on stress-strain-level, temperature evolution and the energy transformation ratio. Furthermore the two models are applied to a
strain rate-dependent load case conducted at our institute discussing the same entities. It is pointed out, that the approach of a
thermomechanical analysis is valuable and informative to assess the observed deformation processes and to describe the material
behaviour with a thermodynamically valid parameter set.

Keywords:Thermomechanics, self–heating, viscoplasticity, energy transformation ratio, thermography

1 Introduction

The foundation of the thermomechanical analysis was given by Thomson’s work and the publication of the thermoelastic
effect Thomson (1853). By the end of the 1960ies, the fully coupled thermomechanical problem was formulated in the framework
of continuum mechanics enhanced with the concept of internal state variables (see Truesdell and Noll (2004); Coleman and Gurtin
(1967)).
In the same period, scientists exploited the often experimentally observed temperature build-up during cyclic mechanical testing.
Oldyrev and others tried to quantify fatigue properties related to damage in glass fibre reinforced plastics by measuring the
temperature evolution by thermocouples (see Oldyrev (1967); Oldyrev and Tamuzh (1969)).
Since then, the experimental equipment has improved towards contact-free measurement principles, which has led to high-resolution
infrared (IR) camera systems. This development initialised a new series of publications dealing with thermomechanics from the
theoretical and/or experimental point of view. The general principle of IR cameras is limited to certain temperature ranges but not
restricted to any specific material class, since thin black coatings improve reflection and radiation properties and do not effect the
thermomechanical properties of the specimen [Ummenhofer and Medgenberg (2006); Chrysochoos (2012); Fedorova et al. (2014);
Cholewa et al. (2016)].
In general, a deformation process can be considered as a full thermomechanical process, while viscoelastic and (visco)plastic
deformations are dissipative and lead to self-heating. Most often, the thermal and mechanical boundary conditions are chosen in a
way that the temperature evolution is negligible. If not, a suitable combination of loading regime and thermal boundary condition
is exploitable for material characterization by solving a coupled thermomechanical problem [Muracciole et al. (2008); Guzmán
et al. (2010); Knysh and Korkolis (2015)].
Deformation processes going beyond thermoelasticity and covering a transfer of internal energy to dissipation and finally from an
internal heat supply to a temperature evolution is connected to load-induced modifications of the microstructure, which plays an
important role in describing the material behaviour of an actual component in its lifetime with a complex loading history and is a
major topic in engineering and material science.
In recent years, the successfully employed analytical methods, numerical simulations and measurement principles for metals
and alloys have been applied to other material classes and the capability of specific material models to sub-sets of new design
materials has been improved. The complex methodology w.r.t. cyclic loading of metals incorporating viscoplasticity has been
widely studied (e.g. in Chaboche (1989) and many other contributions).
When a specimen on the load path is subjected to an intermediate holding period and furthermore a relaxation is observed, Haupt
assigned the term equilibrium hysteresis to a repeated holding period on a complete load cycle Haupt (2002). According to the
associated material scheme, rate-dependency with an equilibrium hysteresis is classified as general viscoplastic behaviour. Hence,
one observes a significant temperature rise due to inelastic deformation at a sufficiently high strain rate and in a subsequent holding
period, the temperature drops due to a dominating heat conduction from the specimen to the environment. Therefore, the load
regimes, that Haupt (2002) discussed, serve as a proof of viscoplastic behaviour.
Two different viscoplastic material models are considered in this contribution. The first model was proposed in Bodner and
Lindenfeld (1995) and abstained from introducing a yield condition. The extended model of Bröcker and Matzenmiller (2013)
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as the second approach is based on a rheological network with an explicit yield condition. In a first setting the experimental
findings in Chrysochoos et al. (1989) are confirmed by the to models and furthermore compared to the elastic-plastic approach
of Kamlah and Haupt (1998). Secondly, an optimised parameter set from a pure mechanical modelling approach is post-evaluated
thermomechanically. And finally, own experimental data based on a loading regime originally suggested in Bodner and Partom
(1975) are evaluated and discussed.
Therefore the section 2 summarises the general thermomechanical framework and highlights the most important aspects of the
material models mentioned above. The following section continues with the description of the experimental setups in the two
settings referred to before. Afterwards the numerical results are presented and assessed.

2 Thermomechanical Framework and Material Models

2.1 Governing principles and equations

To account for an evolving temperature field in a thermomechanical analysis, we start with the second fundamental law of
thermodynamics. Incorporating the balances of energy1 and the balance of entropy into the second law of thermodynamics leads
to the inequality for the internal dissipation X (Claudius-Duhem inequality) (1) with q as the heat flux vector, 2 as the Cauchy
stress tensor, ¤9 as strain rate tensor, g as the temperature gradient and r as the density. The introduced symbols, which are not
denominated here explicitly, are explained in following paragraphs.

X =
1
r
2 · ¤9 − ¤k + \ ¤[ − 1

r\
q · g ≥ 0 (1)

Considering small deformations the usual additive split of the strain tensor 9 into an elastic
(
94

)
, a plastic

(
9?

)
and, also quite

common, a thermal part is applied (2), where the thermal part is an isotropic volume expansion indicated by the product of the
thermal expansion coefficient U, the temperature change (difference of current \ to the reference temperature \0) and the unity
tensor O. In terms of the principle of equipresence the specific free energy R in (3), the specific internal energy 4, the specific
entropy [ and the stress tensor 2 depend on the same set of variables, while the variables denoted by a8 represent internal variables
and are either scalar or tensor valued. With the assumptions that the named entities depend on the difference

(
9 − 9?

)
the list of

dependencies can be altered and switched to the elastic strain tensor (Kratochvil and Dillon (1969)).

9 = 94 + 9? + U
(
\ − \0

)
O (2)

R = R̂
(
9, 9? , \, a1, . . . , a=

) !
= R̂

(
94, \, a1, . . . , a=

)
and R = 4 − \[ (3)

g = ∇\ and q = −:g (4)

The coupling of the independent variables is completed by assuming Fourier’s law (4), where the positive thermal conductivity : is
the proportionality factor between the heat flux and the negative temperature gradient.
The constitutive consequences for thermodynamically admissible processes are given in eqn. (5) and (6):

[ = −mR̂
m\

!
= U

mR̂

m94
− mR̂
m\

(5)

2 = r
mR̂

m94
with 2 = ?O + Y , (6)

which leads furthermore to the Claudius-Duhem inequality in the form:

X =
1
r
2 · ¤9? −

=∑
9=1

mR̂

ma 9
¤a 9 −

1
r\

q · g ≥ 0 . (7)

Assuming that the internal dissipation is completely transferred into heat, the energy balance delivers an additional equation
for calculating the evolving temperature field. It should be noted, that according to for instance Helm (2006) and Shutov and
Ihlemann (2011) the contitutive ansatz for the free energy might be extended to include certain parts not related to any hardening
mechanisms. These phenomenological and micromechanically justified approaches introduce new material parameters to control
the amount of dissipation consistently. In the next two subsections, expressions for the internal dissipation are layed down for the
two distinct viscoplastic material models under consideration following the outlined ansatz for the free energy.
To discuss the thermomechanical analysis in more detail, additional energy related quantities are defined by having a closer look at
the first two summands of eq. (7). The first summand is denoted as the specific plastic stress power 4? , while the second is often
called specific rate of stored energy of cold work 4B:

4? :=
1
r
2 · ¤9? and 4B :=

=∑
9=1

mR̂

ma 9
¤a 9 . (8)

1neglecting the heat supply per unit mass
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Fig. 1: Modified rheological network (originally proposed by Bröcker and Matzenmiller (2013))

The expression for the plastic work and the stored energy of cold work can then be obtained by time integration:

F? =

C∫
C0

4?
(
g
)
dg and FB =

C∫
C0

4B
(
g
)
dg (9)

To quote Kamlah and Haupt (1998): “It is common use to plot the ratio FB/F? over the plastic work or the plastic strain. Besides
the instantaneous rate of energy storage, [the ratio] i := 4B/4? as a function of F? is considered, since it reflects the dynamics of
dislocational processes.” The rate of the energy storage to the plastic stress power ratio i is also referred to as (rate of) energy
transformation ratio (ETR) and gives insight into the reasonability and the physics of the considered deformation process. Identical
or similar formulations can be found in Oliferuk and Raniecki (2018), Håkansson et al. (2008), Helm (2006), Johnsen et al. (2019)
and others. To illustrate the calculated results the ETR (i) is depicted in the graphs of section 4.
Since the model analysis is conducted for pure one-dimensional loading the tensor notation is dropped in the subsequent equations,
which also suits the rheological network approach in the next section. For further derivation of the complete set of the differential
equations we assume only small temperature changes, which means that the material parameters are temperature-independent.
Furthermore the deformation process does not influence the parameters for heat conduction and heat capacity.

2.2 Rheological network with yield condition

The intuitive fundamental network rules (equal stress in consecutive network members in separated branches; equal strain in
parallel branches) simplifies the generation of complex material models by connecting a set rheological elements. A network
member is understood as either a single rheological element (e.g. the thermal expansion element as the first chain member from
the left in Fig. 1) or a so-called sub-network (here the viscoelastic resp. viscoplastic sub-network following the thermal expansion
element in the same figure).
By introducing expressions for the free energy k8 of each element type 8 and the association of the general internal variables a8
to specific deformation mechanisms according to the assumed network the implementation point of experimentally motivated
material models is achieved. The main idea followed by Bröcker and Matzenmiller (2013) is the classification of each element
contributing purely either to free energy or to internal dissipation as indicated by the colours in Fig. 1. Therefore an original
element (e.g. the traditional friction element) might be represented now by two elements to separate the energetic contributions.
For the actual mathematical expression and the detailed corresponding arguments based on experimental observations for each
rheological element the authors of this article would like to refer the reader to the original publication.
In the modification of the original network depicted here, the singular linear elastic spring on position two of the main chain is
replaced by a viscoelastic sub-network (generalised Maxwell element) to cover viscous deformation below the elastic limit, which
becomes relevant when polymer based material come into focus. The elastic limit or yield point is realised by the friction element,
there the modification needs to take place outside the viscoplastic sub-network. Taking into account this modification, the internal
variable belong either to the viscoelastic ((·)ve) or the viscoplastic ((·)vp) sub-network (cf. (12)).
With the aforementioned assumption that the difference

(
Y − YE ?

)
enters the list of dependencies, the free energy for the

one-dimensional case reads:

Y = Yve + Yvp + U
(
\ − \0

)
(10)

R = R̂
(
Yve, \, a1, . . . , a: , a:+1, . . . , a;

)
(11)

Again this leads to the Claudius-Duhem inequality in the following form for the one-dimensional case:

X =

(
1
r
f − mk

mYve

)
¤Yve +

(
1
r
fUth −

mk

m\
− [

)
¤\ + 1

r
f ¤Yvp −
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mave
· ¤ave −
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· ¤avp −

1
r\
@
m\

mG
≥ 0 (12)

where the expression ave (resp. avp) collects the internal variables with the index from 1 to : (resp. from : + 1 to ;) regarding the
corresponding sub-network.
Therefore the = viscoelastic branches do have an impact on the true stress, the entropy and the internal dissipation as the detailed
constitutive consequences (13) show.

f = r
mk

mYve
; [ =

1
r
fUth −

mk

m\
= Uth

mk

mYve
− mk
m\

and
1
r
f ¤Yvp −
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· ¤ave −
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mavp
· ¤avp −

1
r\
@
m\

mG
≥ 0 (13)
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The equation of heat conduction then follows from the local balance of energy. It depends on the sign of the spatial temperature
gradient g how the heat flux is contributing to the temperature evolution. The equation of heat conduction can be expressed as:

23 ¤\ = −\
m[

mYve
¤Yve −

m
(
k + \[

)
mave

· ¤ave +
1
r
f ¤Yvp −

m
(
k + \[

)
mavp

· ¤avp +
1
r

div@ (14)

The first summand reflects the thermoelastic coupling and the second term corresponds to the dissipation in all Maxwell elements
of the viscoelastic sub-network. The next two terms of the sum belong to the viscoplastic sub-network. It can be seen, that the
plastic stress power as the third term is not completely transferred into heat. A fraction of the mechanically introduced energy is
stored as internal energy.
Eqn. (15) to (19) summarise the core of the initial value problem to solve.

f = �∗Yve = �
∗ (Y − Yvp − Uth\

)
with �∗ = �∗

(
C
)

and lim
C→−∞

�∗
(
C
)
= �∞ (15)

with eqns for ¤Y[8 = ¤Y[8 ( ¤Yve)

E f :=
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f, b, ^

)
∈R ×R ×R | 5

(
f, b, ^

)
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}
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(
f, b, ^

)
=

��f − b�� − (
^0 + ^

)
(16)

¤Yvp =
1
[

〈 5
30

〉<
sgn

(
f − b

)
with eqns for ¤YV = ¤YV ( ¤Yvp), ¤b = ¤b ( ¤Yvp) and ¤̂ = ¤̂( ¤Yvp) (17)

¤Yth = Uth ¤\ (18)

23 ¤\ = −
1
r
�U\ ¤Yve +

1
r
_∇ ·

(
∇\

)
+ Xmat with Xmat =

1
r

[
5 + X^0 + X^ + Xb

]
¤̄Yvp + Xve ≥ 0 (19)

The first two equations cover the viscoelastic domain. The yield condition in eq. (16) incorporates kinematic and isotropic
hardening, where b represents the backstress to shift the yield surface in stress space. Eg. (17) collects the evolutionary equations
for the mechanical deformation fractions. The entity ¤YV resembles the strain evolution in the dissipative element of the friction
path in the rheological network (Fig. 1). The internal variables for hardening b and ^ account for saturation effects (see Bröcker
and Matzenmiller (2013)). The coupling is given through eq. (18) and the equation of heat conduction (19) completes the set.
The full problem formulation has to be accompanied by the initial conditions, which are an undeformed stress-free state at room
temperature. The initial values of the evolving inner variables are given by the (indentified) material parameters (cf. sections 5.1
and 5.2).

2.3 Model without yield condition and additional constitutive assumption for free energy

The second material model investigated is based back to the very first publication Bodner and Partom (1975) and has been refined
or adjusted ever since. The thermomechanical consistent material model was published in Bodner and Lindenfeld (1995) 20
years later without following the approach by Chrysochoos et al. described above to quantify the amount of dissipation. Instead
the authors suggested well designed shear tests (decoupling strategy) to overcome the difficulties of an accurate temperature
measurement.
Considering again the fundamentals outlined above, evolutionary equations for the viscoplastic strain as well as for the internal
variables forming an initial value problem are the objective.
The viscoplastic strain rate is proportional to the stress deviator (20), while the factor _ is bound to a well-designed exponential
function with saturation.

¤9? = _Y (20)

_2 = �
?

2 /�2 with �
?

2 =
1
2
¤9? · ¤9? and �2 =

1
2
Y · Y (21)

The power function obtained the following structure:

�
?

2 = �
?

2
(
�2

)
= �0

2 exp

[
−

( /2

3�2

)=]
(22)

where / represents a material state and combines all internal variables into a single scalar. The hardening approach in this form is
quite unique and splits the deformation processes into isotropic and directional hardening:

/ = / � + /� . (23)

Both, isotropic and directional, hardening parameters are proportional to the plastic stress power. To cover well described
phenomenological effects the original function for ¤/ � resp. ¤/� has been improved and enriched.

¤/ � = <1
(
/1 − / �

) ¤,? with / � (0) = /0, ¤,? = Y · ¤9? and <1 = <11 + <12 exp
(
− <13/

�
)

(24)

/� = # ·[ and ¤# = <2
(
/3[ − #

) ¤,? with #(0) = 0, [ =
2

|2 | and <2 = <21 + <22 exp
(
− <23/

�
)

(25)

Due to the assumed small temperature changes the original terms for considering thermal recovery in (24) and (25) are neglected.
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Eq. (26) serves as an additional constitutive assumption by introducing four new material parameters (0, 1, ?1 and ?2).

R/ =
0

r

(
/ �

/1

) ?1

+ 1
r

(
# · #
/2

3

) ?2

(26)

By choosing the exponents ?1 = 2 and ?2 = 1 a quadratic form is achieved but might not reflect the desirable non-linearity. Kamlah
et al. argued with the analogy to thermoelasticity and developed their model with a quadratic energy expression as well. In the
original paper Bodner et al. operate with ?1 = 4 for copper specimen.
The expressions for the rate R/ (rate of stored energy of cold work):

¤R/ = ?1
0

r

¤/ �
/1

(
/ �

/1

) ?1−1

+ 2?2
1

r

# · ¤#
/2

3

(
# · #
/2

3

) ?2−1

(27)

and the mechanical fraction of the internal dissipation X"

X" =
1
r
¤,? − ?1

0

r

¤/ �
/1

(
/ �

/1

) ?1−1

− 2?2
1

r

# · ¤#
/2

3

(
# · #
/2

3

) ?2−1

≥ 0 (28)

are then straightforward and lead to similar structured equation of heat conduction as presented above. Having the equations
outlined above at hand, a similar rheological network in analogy to the Bröcker–Matzenmiller model with just a single viscoplastic
sub-network can be drawn (cf. Fig. 2). The elements in the viscoplastic sub-network represent the analytical non-linearity of the
function above. A separation of internal dissipation and free energy is possible by eq. (26), while the internal variables / � resp. #
appear in the dissipative element on top and the corresponding non-linear spring.
For the solution of this system of differential equations the same initial conditions apply as stated at the end of the previous section.

3 Experiments

3.1 Caloric resp. temperature measurement in tensile test for the XCrNi18.9 stainless steel

In 1998, Kamlah & Haupt presented their thermomechanical elastoplastic model by proving it against experimental data provided
by the group of Chrysochoos. The XCrNi18.9 stainless steel material behaviour was investigated by tensile testing at room
temperature.
Reliable experimental data depend on a sophisticated measurement strategy, which was established in two distinct ways in the
group of Chrysochoos. The first method is the application of a microcalorimeter with a suitable calibration scheme.
The second method is based on measuring the temperature evolution and a calibration of the heat losses due to radiation and
conduction for the plain thermoelastic effect. Convection heat losses were eliminated by a primary vacuum chamber. In contrast
to the thermography applied in our own experiments the observation zone is limited to a rectangle of 15 mm × 25 mm. Current
IR cameras with an increased pixel field on the detector can cover the complete sample and its surroundings (essentially the grips
of the testing machine). The experiments are quantitatively evaluated by solving the heat conduction equation for the observation
zone.
Both methods lead to results in close agreement, which validates the experimental findings at low strain rates of 10−4 1/s.

3.2 Change of strain rate in tensile test for the copper

The setup for our own experiments is similar as outlined above but chosen to be as simple as possible, which excludes any special
measures to control the thermal boundary conditions. The tests were conducted at room temperature. Flat copper samples with a
thickness of 1.5 mm (standard: DIN 50125 - Shape Type H) were tested under different loading conditions. The reflection of
sample surface were eliminated by blackening.
As the observing camera the ImageIR 8300 of InfraTec was applied, which is characterised by a detector format of 640 × 512
pixel, a temperature resolution of at least 0.02 K at room temperature and a usable frame rate of 100 Hz. The data evaluation is
conducted interactively on the IR images by averaging the temperature values measured on well-defined geometric objects on
the sample surface. The averaging reduces the thermal noise due to reflexions of the surroundings and inhomogenous emission

Free Energy

Dissipa�on

Fig. 2: Rheological analogy of the Bodner–Lindenfeld model
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Fig. 3: Stress-strain curves (left) and temperature evolution (right) for a uni-axial tension (XCrNil8.9 stainless steel)
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properties on the sample surface. The thermal noise can be minimised by an additional radiation sources pointed on the sample.
This heat source needs to be reflected in the heat conduction equation appropriately, which is still under investigation. Temperature
profiles along and perpendicular to the loading direction are assessed as well.
The load was applied on a servohydraulic testing machine of a maximal possible load of 25 kN where the grips are not thermally
decoupled to the pressure aggregates. The temperature of the upper grip is directly connected to the piston and is observably
elevated compared to the lower grip. The lower grip behaves nearly as an ideal heat sink at constant temperature, while the
temperature of the upper grip is slowly increasing in time of operation. Nonetheless the upper grip temperature can be assumed
constant for loadings times lower than 500 s .
The applied loading scheme was adopted from the paper Bodner and Partom (1975). The authors suggested a displacement
controlled rate change during a simple tensile test. The rate change covers approximately two orders of magnitudes. The test
starts with a lower rate of 1.34 · 10−41/s up to a total strain value of 0.026 and increases then to 1.29 · 10−21/s up to a total strain
value of 0.079. It follows a second lower rate load increase up to total strain value of 0.106 and a subsequent unloading at a rate
−6.80 · 10−41/s.
The evaluation of the machine data confirmed the constant strain rates in each section of the load path. The evaluation of the
experimental data for the true stress accounts for a cross-section reduction, while the numerical calculation remains in stress-strain
space and therefore reflects a point-wise evaluation without considering the actual dimensions of the specimen and justifies total
strain values up-to 0.1 .

4 Numerical evaluation and comparison to experimental data

4.1 Caloric evaluation of tensile test

The diagrams in Fig. 3 and 4 gather the responses of three different material models. The parameter set for the Bröcker-Matzenmiller
(BM) model is chosen to reflect approximately rate-independent behaviour ([ = 1.0 s). In the Bodner-Lindenfeld (BL) model
the viscous deformation fraction is not clearly controllable by a single parameter, therefore its response is by model definition
rate-dependent. The data of the rate-independent Kamlah-Haupt (KH) model is added as a source of a stress-strain curve to
compare to and as a further reference in the remaining diagrams. The nomimal (engineering) strain is used in all diagrams with the
strain on the abscissa.
With an optimised parameter set both material models to be investigated are able to reflect the stress-strain curve given by the
parameter set in Kamlah and Haupt (1998) (cf. Fig. 3 left). Minor deviations are visible for the BM model in the transition range
of purely elastic to elastoplastic deformation.
To compare the temperature evolution artificial adiabatic boundary conditions have been formulated, since the experimental data of
the temperature-time are not available. The diagram in Fig. 3 right shows a larger deviation of the BM model to the other two
formulations of ≈ 1.7 K at the end of the load path. The thermoelastic effect in the elastic deformation range is covered by all three
models.
Even more significant deviations can be found in the energy transformation ratio (ETR) plotted in Fig. 4 over the plastic (left) resp.
over the plastic work (right). The KH model meets the maximum of the ETR at a plastic strain of about 0.03, but the overall
qualitative behaviour is approximated better by the BL model. The quasi-rate-independent ETR-curve of the BM model has its
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maximum at the very beginning of the plastic deformation. Looking at the curves plotted over the plastic work, it is remarkable
that the maximum value of plastic work of the KH model is almost 20% lower than the other two maxima. Therefore the absolute
fraction of stored energy of cold work is lower likewise in the KH model.

4.2 Change of strain rate in tensile test

The data in the following three diagrams (Fig. 5 and 6) assemble the measured values and the calculated values of the original BM
model, the extended BM model and the BL model for copper samples. The extension of the Bröcker-Matzenmiller model includes
just one single Maxwell element in the viscoelastic sub-network.
In the analysis of the tensile test with alternating strain rate the adiabatic thermal boundary conditions are not valid. In Kamlah et
al. an analytical solution was suggested, which assumes a constant temperature value for both grips. As outlined in section 3.2, the
temperature evolution observed in the grips does not match the presumption of this analytical approach. Therefore the identical
assumption as proposed in Chrysochoos et al. (1989) was chosen. It suggests an additional linear term for the rate of temperature
to account for the heat losses in the equation of heat conduction (cf. eq. (19)). The corresponding additional parameter captures
the ambient conditions, the specimen shape as well as the heat transfer at the grip-sample interface integratively. This parameter
can be calibrated for the expected temperature range.
In Fig. 5 the different temperature-time curves for the full testing period are plotted. All curves start with a thermoelastic cooling
phase at the lower strain rate. The turning pointing after ca. 10 s indicates the beginning of plastic deformation associated with
internal dissipation. Until the end of the first lower strain rate section the balance of heat supply and heat loss is nearly approached.
In the second section of the higher strain rate, the temperature change is strongly increasing and a maximum in the experimental
data of 1.4 K is found at the end of the section at 200 s. It follows a period of temperature equalisation in the third section of the
lower strain rate. The unloading is matched by a thermoelastic heating.
The optimised parameter sets for all models reflect the general behaviour, while the BL model approximates the maximum
significantly better than the original and the extended BM model. It is noted here that the BM model for copper operates with an
elevated module of elasticity taking the additional viscous model capability of the viscoelastic sub-network into account. This is
visible in the unloading section in the left diagram of Fig. 6 where the slope is best matched by the extended BM model.
The accompanying results of the stress-strain resp. ETR-plastic work curves are shown in Fig. 6. A good agreement of experimental
and model data is observed in the stress-strain curves on the left. It is pointed out, that the effect of the viscoelastic extension is
slightly visible by a reduced slope in the (visco-)elastic unloading section. An explanation can be found in the ETR-plastic work
curves on the right. The maximum value of plastic work of the extended BM model is significantly smaller compared to the other
two models because a fraction of plastic work is shifted to the viscoelastic sub-network. In general all curves in the right diagram
exhibit a similar characteristic with the maxima at a similar position on the load path. Comparing the materials themselves the
ETR maxima of the copper sample are clearly smaller than the maxima of the steel sample (see Fig. 4 right). This holds especially
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true for the BL model.

5 Conclusion

The phenomenological approach in a thermomechanical context gives an informative insight into dissipative and conservative
deformation mechanisms concerned for all discussed models. The concept of internal variables relates these mechanisms to the
evolution of state variables. A more detailed evaluation produces further information in terms of mechanisms attributing to stored
energy of cold work (which is not shown in this paper). In general this means, that for engineering tasks where an assessment of
plastic deformation is essential, the phenomenological approach is a powerful tool and the model capabilities have been shown in
both testing scenarios.
Usually the coupling due to the full thermomechanical description is neglected. The problems, that arise here, are a necessary
validity check of the material parameter set and the extensibility to different loading regimes. As outlined in this paper, three
curves and not just a stress-strain characteristic is used for a plausibility check.
To examine a material likewise, the experimental effort is increased, since the temperature evolution needs to be observed. But as
the observations of section 4.1 show, even with unrealistic thermal boundary conditions - identical with dropping the temperature
measurement altogether, the thermomechanical analysis leads to sensible parameter sets with a more solid foundation, when a
thermomechanically derived state variable like the energy transformation ratio (ETR) is additionally introduced into the parameter
identification process. The ETR characteristic is linked to specific materials resp. material classes and can therefore be integrated
in the identification process qualitatively. Thermodynamically consistent parameter bounds were notified by Kamlah and Haupt
(1998) and derived in Kamlah (1994), which is an open topic for future research.
In the second experiment with alternating strain rates differing by two orders of magnitude in a tension test with unloading, an
accurate agreement is harder to achieve and the model capabilities need to be questioned.The effect of the viscoelastic extension in
the Bröcker-Matzenmiller model in this setup is not particularly large, but the influence on the temperature-time as well as on the
ETR-plastic work characteristic is clearly visible.
As a consequence the thermomechanical analysis is to be extended in terms of the loading regime and other design materials.
More complex loading regimes like cyclic loading, tension-compression loading and an alternation of different strain rates are
going to be investigated. The applicability of the extended Bröcker-Matzenmiller model and the Bodner-Lindenfeld model without
a yield condition to polymer material is of major interest in future research work.
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Appendix

5.1 Parameter sets related to section 4.1

Tab. 1: Parameter set for Bodner–Lindenfeld model for the XCrNil8.9 stainless steel

Thermoelasticity
Modulus of Elasticity �∞ N mm−2 200 000
Density r kg/m3 7 800.0
Expansion Coefficient U K−1 1.6 · 10−5

Heat Capacity 2def J/(kg K) 480.0
Thermal conductivity : W/(m K) 20.0
Scaling factor �0 s−1 10 000
Exponent = [−] 3

Plastic work resp. Free energy parameter
Factor for isotropic h. Ψ-fraction 0 MJ <−3 0.02
Corr. exponent ?1 [−] 4.0
Factor for directional h. Ψ-fraction 1 MJ <−3 1.0
Corr. exponent?2 [−] 14.0

Isotropic Hardening
/0 MPa 220
/1 MPa 500
<11 MPa−1 0.01
<12 MPa−1 16.7
<13 MPa−1 0.007

Directional Hardening
/3 MPa 340
<21 MPa−1 0.055
<22 MPa−1 0.23
<23 MPa−1 0.05

The BM model is capable to describe isotropic as well as kinematic hardening behavoir. The presented experimental data are not
sufficient to calibrate the backstress b. Therefore the hardening mechanisms are treated equally in terms of modulus and saturation
for the pure tensile loading regime (cf. Tab. 2 and Tab. 4 in the next section).

Tab. 2: Parameter set for Bröcker–Matzenmiller model for the XCrNil8.9 stainless steel

Thermoelasticity
Modulus of Elasticity �∞ N mm−2 200 000
Density r kg/m3 7 800.0
Expansion Coefficient U KI 1.6 · 10−5

Heat Capacity 2def J/(kg K) 480.0
Thermal conductivity : W/(m K) 20.0

Friction Element
Yield Stress ^0 N mm−2 273
Lin. Dissipation Coeff. V1 [−] 0.4
Non-lin. Dissipation Coeff. V2 [−] 50

Kinematic Hardening
Kin. Hardening Modulus �^ N mm−2 4 000
Kin. Saturation ^∞ N mm−2 155.0

Isotropic Hardening
Iso. Hardening Modulus � b N mm−2 4 000
Iso. Saturation b∞ N mm−2 155.0

Viscoplasticity
Strain rate scaling factor [ s 1.0
Strain rate exponent < [−] 1

5.2 Parameter sets related to section 4.2

Tab. 3: Parameter set for Bodner–Lindenfeld model for pure copper

Thermoelasticity
Modulus of Elasticity �∞ N mm−2 80 000
Density r kg/m3 8 920
Expansion Coefficient U K−1 16.5 · 10−6

Heat Capacity 2def J/(kg K) 385.0
Thermal conductivity : W/(m K) 400.0
Scaling factor �0 s−1 10 000
Exponent = [−] 5

Plastic work resp. Free energy parameter
Factor for isotropic h. Ψ-fraction 0 MJ <−3 0.08
Corr. exponent ?1 [−] 4.0
Factor for directional h. Ψ-fraction 1 MJ <−3 2.2
Corr. exponent?2 [−] 1.0

Isotropic Hardening
/0 MPa 100
/1 MPa 120
<11 MPa−1 1.0
<12 MPa−1 2.0
<13 MPa−1 0.01

Directional Hardening
/3 MPa 150
<21 MPa−1 0.18
<22 MPa−1 0.1
<23 MPa−1 0.1
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Tab. 4: Parameter set for Bröcker–Matzenmiller model for pure copper

Thermoelasticity
Modulus of Elasticity �∞ N mm−2 100 000
Density r kg/m3 8 920
Expansion Coefficient U K−1 16.5 · 10−6

Heat Capacity 2def J/(kg K) 385.0
Thermal conductivity : W/(m K) 400.0

Friction Element
Yield Stress ^0 N mm−2 75
Lin. Dissipation Coeff. V1 [−] 0.15
Non-lin. Dissipation Coeff. V2 [−] 30

Kinematic Hardening
Kin. Hardening Modulus �^ N mm−2 2 000
Kin. Saturation ^∞ N mm−2 135.0

Isotropic Hardening
Iso. Hardening Modulus � b N mm−2 2 000
Iso. Saturation b∞ N mm−2 135.0

Viscoplasticity
Strain rate scaling factor [ s 700
Strain rate exponent < [−] 1.0
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