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Abstract: Heterogeneous stress and strain fields have been investigated by Finite Element Method (FEM) in a cruciform specimen 
holed at the center and subjected to equibiaxial tensile. The stress field is zero at the boundary of the hole; it is a useful boundary 
condition to compute local stress field. Also, the heterogeneity proves out to be an advantage in order to increase the variety of 
deformation states. So, a digital image correlation (DIC) system could provide the local deformations, and the corresponding stress 
field was optimized and adapted to the specimen geometry. Indeed, on the basis of FE results, the heterogeneous Cauchy stress 
field has been computed analytically in a sub-core region of the s ample. As a result, the local strain and stress fields may be related; 
so that, the material parameters of isotropic and incompressible rubber-like materials could be identified from experimental data 
arising from a single heterogeneous test. Besides, the key ideas have been highlighted in order to solve the inverse problem related 
to the identification procedure.
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1 Introduction

Modeling the behavior of elastomeric materials is commonly carried out within the framework of hyperelasticity, cf. Ogden
(1997); Holzapfel (2000). Nevertheless, the parameter identification is still difficult task, cf. Hartmann and Gilbert (2018). It
should be noticed that, the numerical values of these parameters are input-data of the FE-codes. Due to the multi-axial behavior of
elastomeric materials, accurate mechanical test data is crucial for both obtaining the model form and model parameter calibration.
Standard tests related with this purpose require sample geometries that can lead to homogeneous deformations (uni-axial tensile,
pure shear and equi-bi-axial tensile), cf. Galliot and Luchsinger (2011); Sasso et al. (2008). In practice, the constitutive parameters
that are identified with those three types test performed separately are generally different, cf. Guo and Sluys (2006).
To bypass the problem, the material parameters could be identified from experimental data of the biaxial tensile test in order to
ensure predictive ability of a hyperelastic model, cf. Seibert et al. (2014). We emphasize that, the biaxial testing was performed
on cruciform specimens. So, the heterogeneous deformation states of equibiaxial tensile test and an inverse method (so-called,
the virtual fields method) have been used, cf. Promma et al. (2009), in order to compute the Mooney-Rivlin model constants, cf.
Mooney (1940). Nevertheless, the Mooney-Rivlin model does not suitable to reproduce the multi-axial behavior of elastomeric
materials; so that, more than two parameters are required in the range of large strains. We notice that an optimal shape of a
cruciform specimen depends on its geometry and specific constraints that are imposed by the cutting or molding. The computation
of deformation and stress states in core region of cruciform specimen is a subject of debate, cf. Seibert et al. (2014); Hu et al.
(2014); Hartmann et al. (2018) (and the literature cited therein). The strains distribution seems to be uniform; nevertheless, the
corresponding stress distribution does not. Thereby, the biaxial tensile test seems to give rise to heterogeneous stress and strain
fields even near core region of a cruciform sample. Therefore, we cannot establish a relationship between the local stresses in
central region and applied forces on the arms of a cruciform sample, even by assuming that the strains are homogeneous in a small
core area of the test specimen, and the corresponding stress distribution is homogeneous too (for homogeneous, elastic materials).
Nowadays, digital image correlation (DIC) is a powerful experimental technique to determine displacement and deformation fields
in solids, cf. Hild and Roux (2006); it provides full field displacement and deformation values. Consequently, it is straightforward
to determine the in-plane components of the deformation gradient; however, its corresponding stress state is undetermined. A
simplified method has been proposed by Chevalier et al. (2001) to evaluate a quasi-uniform Cauchy stress, so-called fB, in core
region of a cruciform specimen. Recently, both experimental study and finite element analysis have shown that a homogeneous
stress distribution cannot be obtained in near center of a cruciform sample. So the computation of stresses represents a critical
issue for biaxial tensile tests. Indeed, no method to date addresses the relationship between the applied forces and the stress state in
core region of a cruciform specimen, cf. Hartmann et al. (2018). As a result, errors made in the computation of stress tensor
components will propagate into the parameter identification, ultimately limiting our ability to accurately simulate the hyperelastic
behavior of elastomeric materials.
This work concerns with an original computation method of Cauchy stresses around a small circular hole in a cruciform sample
subjected to equibiaxial tensile. The hole (of radius a) is located in the center; that is leading to increase the heterogeneity of strain
field, which is assumed to be provided by a DIC-system. As a result, heterogeneity turns out to be an advantage to analyze both the
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stresses state and deformations distribution around the hole. We show that the proposed stress field can be used for the parameter
identification of isotropic hyperelastic solids. To be clear, we consider a core area of radius d around the hole that is located
between the extremity of such hole to the intersection of the arc whose center is the intersection of the arms and that is tangent to
these arms. In the core region, we will compute the Cauchy stresses numerically by FE: fAA (b, \) , fA \ (b, \) and f\ \ (b, \) by
using the generalized Gent model, cf. Gent (1996). Based on these numerical results, we show that, it is possible to formulate
analytically a Cauchy stress field in a core region around the hole. The stress field is depending on the spatial variables b = A/d
and \, distribution of nominal traction along border of arms, i.e. fU and geometrical parameter, i.e. 0/d. As a consequence, the
parameter identification is reduced to solving an inverse problem by combining both the data provided by DIC-system and of
proposed stresses field. Also, we could use the data arising from this heterogeneous test in order to validate known hyperelastic
constitutive equations.

2 Material modeling

In continuum mechanics, the mechanical properties of elastomeric materials are described in terms of strain-energy density
function Ψ, cf. Ogden (1997); Holzapfel (2000). For isotropic elastic material, depends on the strain principal invariants

I1 = tr (H) , I2 = 1/2
[
(tr (H))2 − tr

(
H2

)]
, I3 = det (H) (1)

where H = LL) is the left Cauchy-Green tensor and L is the gradient of the deformation.
Rubber-like materials are often assumed to be incompressible provided that the hydrostatic stress does not become too large and so
the admissible deformations must be isochoric, i.e. det (L) = 1 so that I3 = 1. Cauchy stress of an incompressible isotropic elastic
material can be determined as follows:

f = −?O + 2Ψ,1H − 2Ψ,2H−1 (2)

where p is the Lagrange multiplier, O is the identity tensor and Ψ,8 = (mΨ/mI8)8=1,2 are the partial derivatives of the strain-energy
density function.
We consider the phenomenological model of Gent, cf. Gent (1996) which is able to represent limiting chain extensibility of the
molecular chains; its strain-energy density is

Ψ =
`0
2

[
−U �< ln

(
1 − I1 − 3

�<

)
+ (1 − U) (I2 − 3)

]
(3)

where `0 is the shear modulus for infinitesimal deformations, U ∈ ]0, 1] is a dimensionless constant and �< is the limiting value
of I1 − 3, taking into account limiting polymeric chain extensibility. On taking the limit �< → ∞ in Eq. (3), we recover the
well-known Mooney-Rivlin model, cf. Mooney (1940). For further discussion of Eq. (3) and related constitutive models, (see
Horgan and Saccomandi (1999, 2001)) where the solutions to the torsion, axial shear and circular shear problems have been
obtained.

2.1 Finite element simulations

A finite element calculation is performed by assuming both plane stress state and a nearly incompressibility approach. Thus, a
mixed formulation pressure-displacement was used in order to avoid element locking. For that purpose, the strain-energy density
function is decomposed into an isochoric and volumetric parts. To this end, we declare the model of Eq. (3) as slight compressible
by replacing the principal invariants I1 and I2 by equivalent invariant ones, cf. Simo and Hughes (2006). Consequently, the
strain-energy density function has been decomposed as the sum of the two energies related to distortional and dilatational
deformations, so that Eq. (3) becomes

Ψ = Ψ̃
(
Ī1, Ī2

)
+ Ψ̂ (J) (4)

where Ī1 = I1
/
I1/33 and Ī2 = I2

/
I2/33 .

We point out that, Ψ̃
(
Ī1, Ī2

)
= (`0/2)

{[
−U �< ln

(
1 −

( (
Ī1 − 3

) /
�<

) ) ]
+ (1 − U)

(
Ī2 − 3

)}
and Ψ̂ (J) = (^0/2) (J − 1)2 , where

κ0 is the bulk modulus. The strain-energy density function (Eq. (4)) was implemented in a FE code. First, we used the material
constants of Mooney-Rivlin model, cf. Mooney (1940), i.e. 210 = U`0/2 and 201 = (1 − U) `0/2 of a Silicone rubber that are
given in Seibert et al. (2014), and by varying the material constant, i.e. �< (see, Tab. A.1). Also, these authors have designed
and optimized cruciform shape specimen in order to obtain quasi-homogeneous strain state in the core region. Consequently, the
numerical simulations were performed on a cruciform specimen defined by the circle of radius ' = 18.75<<, length !0 = 25<<
and hole of radius 0 = 0.01d (d = 16.66<<); the thickness of the sample is assumed uniform (40 = 2<<). For symmetry
reasons, only one quarter of the specimen is taken into account. The geometry and the boundary value problem including boundary
and symmetry conditions are shown in Fig. 1. The displacements*1 = *2 = * are prescribed in the extremities of the arms in
order to ensure equibiaxial loading conditions. Boundary conditions were applied on the nodes that were in perfect contact (no
slip) with the clamps. The deformed specimen is depicted in Figs. 2 along with initial shape to illustrate that large strains exist in
the core region. The components of the Green-Lagrange strain tensor, i.e. K11, K12 and K22 are obtained from finite element
results, are shown in Figs. 3 versus dimensionless radius b for different values of \. We notice that, the large strains are located
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near the hole; and the strain state is highly heterogeneous in the core region of radius d. The component K11 has a minimum and
increases gradually in the b-direction from the side of the hole. While the component K22 decreases and showing an opposite
behavior with respect to the corresponding K11. Due to the large deformability of elastomeric materials, the specimen may rotate
causing some shearing, i.e. K12, that reach a maximum near the hole. The shear strain K12 depends on the radius d (or '), near

24 
 

 
 
 
 
 

 
 

 
 

 
 

Fig. 1: One quarter of the cruciform specimen, a small hole is located in the center of the sample with applied boundary conditions

core region of the sample, if ' � !0 then K12 tends to zero, so that, planar-biaxial stretching of the cruciform sample may be
considered as a “perfect” equibiaxial tension. Consequently, the effects of free and clampedF edges influence the strain and stress
fields in the sample. We notice that, the shear deformations are zero on the symmetry axes of the sample, i.e. \ = 0 and \ = c/2 .
Ideally, the specimen subjected to equibiaxial stretching (without hole and ' � !0) should not develop local rigid-body-rotation.
Let us analyze the stress state in the core area of radius d around the hole. The Cauchy stresses i.e. f11 (G, H) , f12 (G, H), f22 (G, H)
and the mean value of the nominal stress f* at the extremity of one arm are inferred from the FE-simulations. Thereafter, the
Cauchy stresses are computed in polar coordinates as follows:(

fAA (A, \) fA \ (A, \)
fA \ (A, \) f\ \ (A, \)

)
=

(
cos \ sin \
− sin \ cos \

) (
f11 (G, H) f12 (G, H)
f12 (G, H) f22 (G, H)

) (
cos \ − sin \
sin \ cos \

)
(5)

where fAA , fA \ and f\ \ are respectively, radial, shear and hoop Cauchy stresses, G = A cos \, H = A sin \ and tan \ = H/G. The
results are shown in Figs. 4 for the radial stress, shear stress and hoop stress versus dimensionless radius b for different values of \.
Accordingly, no shear is observed on the symmetry axes of the sample corresponding to the directions of \ = 0, c/4 and c/2.
Radial stress reaches its maximum on the symmetry axes of the sample (\ = 0 and \ = c/2); also the free edge condition leads to
fAA (b = 1, \ = c/4) = 0. Hoop stress reaches maximum on the edge of the hole and tending to zero far from the hole. We point
out that, the presence of the hole requires satisfying the following boundary conditions:

fAA (b0 = 0/d, \) = fA \ (b0 = 0/d, \) = 0 (6)

We notice that, the presence of the hole requires satisfying the following boundary conditions:

fAA (b0 = 0/d, \) = fA \ (b0 = 0/d, \) = 0 (7)

In Fig. 5, we plot the nominal stress i.e. f* = 〈 5 >A24〉 /4010 versus a prescribed displacement * and by varying the material
constant �<; 〈�>A24〉 is the mean applied force on the nodes of an arm. On taking the limit of �< = 500 in Eq. (3), the well-known
Mooney-Rivlin model, cf. Mooney (1940) is recovered.

2.2 Construction of an approximation of Cauchy stress field

The computation of Cauchy stress field around a hole has been well established in the framework of linear elasticity theory, cf.
Timoshenko (1951). However, finding stress field in the framework of isotropic hyperelasticity remains scarce in the literature. In
this paper, we propose an analytical approximation of Cauchy stress field in the core sub-region of the dimensionless radius b
(0.01 ≤ b = A/d ≤ 0.5) around the hole. First, consider the equilibrium equations in the deformed configuration

mfAA

mA
+ 1
A

mfA \

m\
+ 1
A
(fAA − f\ \ ) = 0 (8)

mfA \

mA
+ 1
A

mf\ \

m\
+ 2
A
fA \ = 0 (9)
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We may re-arrange the Eqs. (8) and (9) to get:

f\ \ =
mfA \

m\
+ A mfAA

mA
+ fAA (10)

m

m\

(
A
mfAA

mA
+ fAA

)
= −

(
2fA \ + A

mfA \

mA
+ m

2fA \

m\2

)
(11)

Accordingly, the radial stress and hoop stress are inferred from the shear stress. By using the previous FE-results, we may express
the shear stress as follows:

fA \ (b, \) = −f* ℎ (b) sin 4\ for 0.01 ≤ b ≤ 0.5 (12)

where f* and ℎ (b) are respectively, the nominal stress tensile along border of arms and an unknown function to be determined.
We emphasize that the function ℎ(b) is arising from the results of finite element simulations. It was shown that this function does
not depend on both Jm, and \ for (0.01 ≤ b = A/d ≤ 0.5). Therefore, we may assume that the function ℎ (b) does not depend on
the strain energy function.
The function ℎ (b) can be evaluated as follows:

ℎ (b) = − fA \

f* sin 4\
for \ ≠ 0, c/4 and c/2 (13)

where fA \ is arisen from the FE-simulations.
ℎ (b) can be approximated with respecting the boundary conditions as follows:

ℎ (b) = V _ (b − b0)2 (14)

where _ = 1 + *
!0

is the macroscopic stretch ratio and V is adjustable numerical constant.
The graphs of the function ℎ (b) versus b for \ ≠ 0, c/4 and c/2 and V ≈ 0.447 are shown in Fig. 6. Noticing that, the graphs of
ℎ ( b )
_

are not depending on magnitude of displacement U, \, and material constant, �<. As a consequence, the variable separation
of Eq. (13) seems to be reliable.
By substituting the Eqs. (12) and (14) into Eq. (11), we obtain the following differential equation:

b
mfAA

mb
+ fAA =

f*

4
(14ℎ (b) − b ℎ′ (b)) cos 4\ + 5 (b) (15)

Where 5 (b) is a function to be determined and fAA (b = b0, \) = 0 .
The solution of Eq. (15) is

fAA (b, \) =
(f*

4
V_

) (
4b2 + 14b2

0 − 13b0b − 5b3
0b
−1

)
cos 4\ + � (b) (16)

where � (b) is inferred from the results of FE-simulations of radial Cauchy stress, i.e. fAA (b, \) (see, Appendix A).

 

 

(a) 
 

 

(b) 

Fig. 2: (a) The undeformed specimen in the reference configuration and meshes of plane stress problem; (b) The deformed
specimen in the current configuration for*1 = *2 = * = 25 <<
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Fig. 3: Plots of the Green-Lagrange strain tensor component K8 9 versus normalized radius b for *1 = *2 = * = 25 <<; (a)
Component K11 versus normalized radius b; (b) Component K22 versus normalized radius b; (c) Component K12 versus
normalized radius b

We get the hoop stress by substituting Eqs. (16) and (12) into Eq. (10)

f\ \ (b, \) =
(f*

4
V_

) (
−4b2 − 2b2

0 + 6b0b
)

cos 4\ + � (b) + b � ′ (b) (17)
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Fig. 4: (a) Cauchy radial stress, fAA (b, \) versus normalized radius b for different values of \ and *; (b) Cauchy radial stress,
fAA (b, \) versus normalized radius b for different values of \ and �<; (c) Cauchy shear stress, fA \ (b, \) versus normalized
radius b for different values of \ and*; (d) Cauchy shear stress, fA \ (b, \) versus normalized radius b for different values
of \ and �<; (e) Cauchy hoop stress, f\ \ (b, \) versus normalized radius b for different values of \ and*; (f) Cauchy hoop
stress, f\ \ (b, \) versus normalized radius b for different values of \ and �<

The Cauchy stresses are explicitly given in the Appendix A. We notice that, the proposed stress field seems to be reliable to
reproduce the FE-results in the core sub-region as shown in Figs. 7. This approximate stress field adapted to the test specimen
geometry depends on prescribed displacement, i.e. *, resulting nominal stress, i.e. f* and geometrical ratio 0/d. So, we may
assume that, the Cauchy stress field does not depending on analytical form of strain-energy density function, since the stress state
can be inferred from the geometrical variables alone and the applied force on the arms. Therefore, the data arising from this
heterogeneous test can be exploited advantageously for the parameter identification. Real elastomeric materials typically exhibit
time-dependent behavior due to viscous effects, implying that the strain and stress fields would not necessarily vary similarly. For
instance, biaxial tensile test has been performed by Johlitz and Diebels, cf. Johlitz and Diebels (2011) in order to characterize
effect of time on the behavior of a silicone rubber for which the viscoelasticity is nearly negligible. However, the analysis requires
the mechanical properties of the material a priori. Thus not applicable approach if the “real” properties of the material have not yet
to be determined. Besides, the proposed identification procedure could be extended to viscoelastic elastomers on the basis of a
constitutive equation; so, we will solve a boundary value problem that can be challenging to achieve computationally.

3 New procedure of parameter identification

The material parameters of Mooney-Rivlin model can be estimated on basis of experimental data of the biaxial tensile, cf. Seibert
et al. (2014); Promma et al. (2009). This heterogeneous single test has an advantage because three types of strain states coexist:
uniaxial tensile, pure shear and equi-bi-axial tensile in different regions of the deformed sample. Consequently, we obtain weighted
average values of model parameters; with comparison to the parameters that could be determined from the tests performing
separately. We show that the partial derivatives of strain-energy densities can be determined without knowing their analytical
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forms a priori. Moreover, the present approach can also be used for validation of hyperelastic models. We provide additional
insights in order to explain the method of parameter identification. We assume that the deformation is relatively homogeneous
around a material point in the framework of DIC measurements. As result, we may write the deformation gradient tensor of the
planar biaxial test, cf. Zhang et al. (2015) as follows:

(�) =

©«

mG1
m-1

mG1
m-2

mG1
m-3

mG2
m-1

mG2
m-2

mG2
m-3

mG3
m-1

mG3
m-2

mG3
m-3

ª®®®®®®®®®®¬
=

©«
_1 W1 0
W2 _2 0
0 0 _3

ª®¬ (18)

where -: and G: are coordinates for material particles in the reference and current configuration, respectively, _: and W: are the
stretch ratios and amount of shears, respectively.
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If we assume that the material is incompressible, i.e. J = det (L) = 1 , we may write

J =

������ _1 W1 0
W2 _2 0
0 0 _3

������ = 1⇒ _3 = (_1_2 − W1W2)−1 (19)

With DIC measurements techniques, it is straightforward to determine the components of the deformation gradient, _: and W: .
Substituting Eq. (19) into Eq. (2), gives

f11 = 2
(
_2

1 + W
2
1 − _

2
3
)
Ψ,1 −

[ (
_2

2 + W
2
2
)
_2

3 − _
−2
3

]
Ψ,2

f12 = 2 (_1W2 + _2W1)
(
Ψ,1 + _2

3Ψ,2
)

f22 = 2
(
_2

2 + W
2
2 − _

2
3
)
Ψ,1 −

[ (
W2

1 + _
2
1
)
_2

3 − _
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(20)

Cauchy stresses f11, f12 and f22 are inferred from the Eq. (5) as follows:(
f11 f12
f12 f22

)
=

(
cos \ − sin \
sin \ cos \

) (
fAA fA \
fA \ f\ \

) (
cos \ sin \
− sin \ cos \

)
(21)

Where fAA , fA \ and f\ \ are computed previously for given values of b, \,* and �<.
To estimate the partial derivatives, i.e. Ψ,1 and Ψ,2, we solve the system of Eqs. (21). If X is the unknown column vector that
representing the partial derivatives, i.e. Ψ,: and f the corresponding computed components of the Cauchy stress tensor, then Eqs.
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Fig. 7: (a) Comparison of the computed Cauchy radial stress fA \ (b, \) and simulated numerically by FE, versus normalized radius
b and for different values of \; (b) Comparison of the computed Cauchy hoop stress fAA (b, \) and simulated numerically
by FE, versus normalized radius b and for different values of \; (c) Comparison of the computed Cauchy shear stress
f\ \ (b, \) and simulated numerically by FE, versus normalized radius b and for different values of \
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(20) can be written as follows:

A X = 2 (22)

where A is the 3 × 2 matrix of the linear system of Eqs. (20).
The right-hand side vector 2 is contaminated by noise (error e), which originates from computation of Cauchy stresses and
measurement errors. The solution of Eq. (22) becomes ill-posed if the matrix A is not invertible; noting that A, is not square.
Mostly, the solution of an ill-posed problem without numerical stabilization is not acceptable ?. A least squares fit of Eq. (22) is
performed by first multiplying both sides with the transpose of A:(

A)A
)−1
(A)A)X =

(
A)A

)−1
A)2 (23)

Eq. (24) is the solution in the least squares sense, and the hyperelastic functions X are determined with minimizing the square of
the sums of the squares of the differences between experimental and theoretical stresses at different strain values (error e2 = 4) e)
leading to the best fit:

X =

(
A)A

)−1
A)2 (24)

4 Conclusion

An original method has been developed in order to compute the Cauchy stress field around a small hole located in the center of
a cruciform specimen, which is subjected to equibiaxial tensile test (stretch ratio 1/1). It has been shown that, both the stress
and strain fields are heterogeneous in the core region; the heterogeneity seems to be an advantage for parameter identification.
To improve the accurate parameter identification, an analytical relationship has been established between the applied forces on
the sample edges and Cauchy local stresses. We emphasize that, the strain-energy density of a rubber-like material could be
obtained directly from experimental data arising from this heteregeneous test. Also, the experimental data of this test could be
used for the validation of a given constitutive model. We recall that the first and second principal invariants, i.e. I1 and I2 are
identical in the range of small deformations. As a result, the partial derivatives are very sensitive to experimental noise; thereby,
the parameter-identification becomes then ill-posed problem. Besides, the present analysis could be validated experimentally, that
will an interesting challenge.
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Appendix A: Computation of the Cauchy stresses

The equilibrium equations are given by

m

m\

(
A
mfAA

mA
+ fAA

)
= −

(
2fA \ + A

mfA \

mA
+ m

2fA \

m\2

)
(A.1)

f\ \ =
mfA \

m\
+ A mfAA

mA
+ fAA (A.2)

fA \ = −f* ℎ (b) sin 4\, for \ ≠ 0, c/4 and c/2 (A.3)

By substituting Eq. (A.3) into Eq. (A.1), we obtain the following differential equation

b
mfAA

mb
+ fAA =

f*

4
(14ℎ (b) − b ℎ′ (b)) cos 4\ + 5 (b) (A.4)

The solution of Eq. (A.4) is

fAA (b, \) = � (b, \) b−1 = Ω (b, \) + b−1# (\) (A.5)

where

Ω (b, \) =
(
V
f*

4
_

) (
4b2 + 14b2

0 − 13b0b
)

cos 4\ + � (b) (A.6)

where � (b) is a function to be determined and related to the function 5 (b) .
The boundary condition leads to fAA (b0, \) = 0

# (\) =
(
−5

4
Vf*_

)
b3
0 cos 4\ (A.7)

The radial Cauchy stress is given by

fAA (b, \) =
(
V
f*

4
_

) (
4b2 + 14b2

0 − 13b0b − 5b3
0b
−1

)
cos 4\ + � (b) (A.8)

where � (b)is inferred from the results of FE-simulations of radial Cauchy stress.
The graphs of the function � (b) = fAA (b, \) −

(
V
f*

4 _
) (

4b2 + 14b2
0 − 13b0b − 5b3

0b
−1) cos 4\ versus b for different values of \

are shown in Fig. 8.
This function can be approximated by

� (b) = f*
√
_Υ (_) , Υ (_) = 0

[
1 − 4−1 ( b−b0)

]
+ 2 (b − b0) (A.9)

where the constants 0 = 0.4, 1 = 67 and 2 = 0.06. .
The hoop stress is inferred from Eq. (A.2) as follows:

f\ \ (b, \) =
(
V
f*

4
_

) (
− 4b2 − 2b2

0 + 6b0b
)

cos 4\ + � (b) + b � ′ (b) (A.10)

Tab. A.1: Model parameters values

parameter value
210 [MPa] 0.111
201 [MPa] 0.039
`0 [MPa] 0.9
^0[MPa] 10000
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