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Abstract:Analysis of the longitudinal fracture behaviour of an inhomogeneous stepped rod with two concentric longitudinal
cracks is developed. The stepped rod has circular cross-section and exhibits continuous material inhomogeneity in radial direction.
The material has non-linear elastic mechanical behaviour. The rod is subjected to torsion. The two cracks present concentric
circular cylindrical surfaces. Thus, the fronts of the cracks are circles. The fracture is studied in terms of the strain energy release
rate by considering the complementary strain energy stored in the rod. Solutions to the strain energy release rate are derived at
different lengths of the two cracks. The balance of the energy is analyzed in order to verify the solutions. It is shown that the
solutions can be applied also when the stepped rod is inhomogeneous in both radial and length directions. The solutions are used
in order to evaluate the influences of the locations of the two concentric cracks in radial direction and the material inhomogeneity
in radial and length directions on the longitudinal fracture behaviour of the stepped rod.
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1 Introduction

One of the most important features of the load-bearing structural members and components exhibiting continuous (smooth)
material inhomogeneity is the fact that the material properties are continuous functions of the coordinates (Tokovyy and Ma, 2008;
Tokova et al., 2017; Tokovyy and Ma, 2013, 2016). The inhomogeneous structural materials present a great deal of interest for
researchers mainly because certain kinds of inhomogeneous materials such as functionally graded materials have been increasingly
used in various branches of practical engineering in the last three decades. Functionally graded materials are inhomogeneous
composites manufactured by mixing of two or more constituent materials. Smooth spatial variation of material properties along
one or more directions in the solid is obtained by continuously changing the microstructure of functionally graded materials during
manufacturing. The fact that the material properties of functionally graded materials can be formed technologically in order to meet
different performance requirements in different parts of a structural member is the basic advantage of functionally graded materials
over the homogeneous structural materials (Altunsaray and Bayer, 2014; Jha et al., 2013; Knoppers et al., 2003; Mahamood and
Akinlabi, 2017; Miyamoto et al., 1999; Nemat-Allal et al., 2011; Uysal and Kremzer, 2017; Uysal, 2016; Uysal and Güven, 2016).
Therefore, functionally graded materials are frequently used in aeronautics, nuclear reactors, electronics and biomedicine.
Analysis of fracture behaviour plays a very important role in the design of inhomogeneous (functionally graded) structural members
and components (Carpinteri and Pugno, 2006; Erdogan, 1995; Paulino, 2002; Tilbrook et al., 2005; Uysal and Güven, 2016).
Various works on fracture behaviour of linear-elastic composite materials with continuously inhomogeneous (functionally graded)
composition have been reviewed in Tilbrook et al. (2005). Analyses of cracks oriented parallel or perpendicular to the direction of
the material gradient have been considered. Investigations of failure resistance have also been discussed. Studies of fatigue fracture
behaviour of functionally graded composites under cyclic crack loading conditions have been presented too. Different solutions
for rectilinear cracks and also for arc cracks and slightly curved cracks in graded materials by applying methods of linear-elastic
fracture mechanics have been summarized.
A method for evaluation of the strength of load-bearing functionally graded structures by using linear-elastic fracture mechanics
has been developed in Carpinteri and Pugno (2006). Cracks and re-entrant corners have been analyzed. The influences of the
varying corner angle and depth on the fracture have been analyzed assuming linear-elastic behaviour of the functionally graded
material. It has been shown that the method is useful in engineering applications for predicting the strength of the structural
members and components composed by functionally graded materials.
Fundamental problems of linear-elastic fracture mechanics of continuously inhomogeneous (functionally graded) materials and
structures have been summarized and discussed in Erdogan (1995). The debonding of functionally graded coatings has been
studied. Different aspects of surface fracture behaviour of functionally graded materials have been investigated and discussed in
details.
It should be mentioned that certain kinds of inhomogeneous materials such as functionally graded materials can be built-up layer by
layer (Mahamood and Akinlabi, 2017) which is a premise for appearance of longitudinal cracks between layers. Thus, longitudinal
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fracture of inhomogeneous beam structures has been analyzed in a series of publications recently (Rizov, 2017; Rizov, 2018; Rizov,
2018).
In contrast to Rizov (2018) where an inhomogeneous circular shaft of a constant cross-section with one longitudinal crack under
torsion is analyzed, the present paper deals with analysis of an inhomogeneous stepped rod of a circular cross-section with two
concentric longitudinal cracks loaded in torsion. The stepped rod has non-linear elastic behaviour. It should be noted that the
paper is motivated also by the fact that stepped rods loaded in torsion are widely used as components of various structures and
mechanisms. Therefore, fracture analysis of stepped rods is an important research topic. In the present paper, the fracture is
analyzed in terms of the strain energy release rate. Solutions to the strain energy release rate are derived by considering the
complementary strain energy. The solutions are verified by analyzing the balance of the energy. The solutions are applied to
evaluate the influence of the locations of the two cracks in radial direction and the material inhomogeneity on the longitudinal
fracture behaviour of the stepped rod.

2 Calculation of the strain energy release rate

2.1 Calculation of the strain energy release rate by using the complementary strain energy

An inhomogeneous stepped rod with two longitudinal concentric cracks is shown in Fig. 1. In portions, %&, &� and ��, the rod
has circular cross-sections of radiuses '1, '2 and '3, respectively. The lengths of rod portions %&, &� and ��, are ;1, ;2 and
; − (;1 + ;2), respectively. The rod is clamped in section, �. The internal and external cracks are circular cylindrical surfaces of
radiuses '1 and '2, respectively (Fig. 1). Thus, the fronts of the internal and external cracks are circles of radiuses '1 and '2,
respectively. The lengths of the internal and external cracks are 01 and 02, respectively. In portion, &�, the rod is divided by
the internal crack in internal and external part. The internal part is treated in the analysis as a rod of circular cross-section of
radius '1. The external part is treated as a ring-shaped rod of internal and external radiuses '1 and '2. In portion �� the rod is
divided by the two cracks in three parts: internal, interstitial and external part. The internal part is treated in the analysis as a rod of
circular cross-section of radius '1. The interstitial part is treated as a ring-shaped rod of internal and external radiuses '1 and '2,
respectively. The external part is treated as ring-shaped rod of internal and external radiuses '2 and '3, in portion ��. In the
portion �� the rod is divided by the external crack in two parts: internal and external part. The internal part is treated as a rod of
circular cross-section of radius '2 and length 02 − 01. The rod is loaded in torsion by three torsion moments )1, )2 and )3 applied,
respectively, in cross-sections %, & and �, as shown in Fig. 1. The rod exhibits continuous (smooth) material inhomogeneity in
radial direction. The material has non-linear elastic behaviour.
The longitudinal fracture is analyzed in terms of the strain energy release rate. For this purpose, first, an elementary increase d01
of the length of the internal crack is assumed and the strain energy release rate �01 is expressed as (Rizov, 2018)

�01 =
d*∗

;cf1d01
(1)

where*∗ is the complementary strain energy stored in the beam and ;cf1 is the length of the front of the internal crack. Since

;cf1 = 2c'1, (2)

Eq. (1) is re-written as

�01 =
d*∗

2c'1d01
. (3)

The complementary strain energy is obtained as

*∗ = *∗IN1 +*
∗
IS1 +*

∗
EX +*

∗
IN2 +*

∗
CD, (4)

 
                       
               
 
     

 
 

Fig. 1: Geometry and loading of an inhomogeneous stepped rod with two concentric longitudinal cracks
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where*∗IN1 the complementary strain energy in the rod portion %& and in the internal parts of portions&� and �� of the rod,*∗IS1
is the complementary strain energy in the external part of the rod portion &� and in the interstitial part of the portion �� of the
rod,*∗EX is the complementary strain energy in the external part of portion �� of the rod,*∗IN2 is the complementary strain energy
in the internal part of portion �� of the rod,*∗CD is the complementary strain energy in the un-cracked portion �� of the rod.
The complementary strain energy in the rod portion %& and in the internal parts of portions &� and �� of the rod is expressed as

*∗IN1 =

;1+01∫
0

'1∫
0

2c∫
0

D∗0IN1'dGd'di, (5)

where D∗0IN1 is the complementary strain energy density, ' and i are the polar coordinates, G is the longitudinal centroidal axis of
the rod. The complementary strain energy density is calculated by using the following formula (Rizov, 2018):

D∗0IN1 = gW − D0IN1, (6)

where g is the shear stress, W is the shear strain, D0IN1 is the strain energy density. In principle, the strain energy density is equal to
the area enclosed by the stress-strain diagram. Thus, D0IN1 is expressed as

D0IN1 =

∫
0

Wg(W)dW. (7)

In the present paper, the mechanical behaviour of the material is treated by applying the following non-linear stress-strain relation
(Lukash, 1998):

g =
�W√
1 + W2

, (8)

where � is the shear modulus. By substituting of (8) in (7), one obtains

D0IN1 = �

(√
1 + W2 − 1

)
. (9)

The complementary strain energy density is found by substituting of (8) and (9) in (6)

D∗0IN1 = �

(
1 − 1√

1 + W2

)
. (10)

The rod exhibits continuous material inhomogeneity in radial direction. Thus, the distribution of � in radial direction is treated by
using an exponential law

� = �0e
? '

'3 , (11)

where

0 ≤ ' ≤ '3. (12)

In (11) �0 is the value of � in the centre of the cross-section of the rod, ? is a material property that controls the material
inhomogeneity in radial direction.
The distribution of the shear strain in radial direction is treated by applying the Bernoulli’s hypothesis for plane sections since rods
of a high length to diameter ratio are under consideration in the present paper. Thus, the distribution of W in the cross-section of the
rod portion %& and in the internal parts of portions &� and �� of the rod is written as

W = Wm
'

'1
, (13)

where

0 ≤ ' ≤ '1. (14)

In (13) Wm is the shear strain at the periphery of the rod portion %& and at the periphery of the internal parts of portions &� and
�� of the rod. The following equation for equilibrium of the elementary forces in the cross-section is used to determine Wm:

)1 =

'1∫
0

2c∫
0

g'2d'di (15)

After substituting of (8), (11) and (13) in (15), the equation for equilibrium is solved with respect to Wm by using the MatLab
computer program.
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The complementary strain energy in the external part of the rod portion &� and in the interstitial part of portion �� of the rod
(Fig. 1)

*∗IS1 =

;1+01∫
0

'1∫
0

2c∫
0

D∗0IS1'dGd'di, (16)

where D∗0IS1 is the complementary strain energy density. Equation (10) is applied to derive D∗0IS1. For this purpose, W is replaced
with WIN1. The distribution of shear strain WIN1 is expressed as

WIN1 = WmIN1
'

'2
, (17)

where

'1 ≤ ' ≤ '2. (18)

In (10) WmIN1 is the shear strain at the periphery of the rod portion &� and at the periphery of the interstitial part of portion �� of
the rod. The following equation for equilibrium is used to derive WmIN1 (Fig. 1):

)2 =

'2∫
'1

2c∫
0

gIN1'
2d'di, (19)

where the distribution of the shear strain gIN1 is found by replacing of W with WIN1 in Eq. (8). After substituting of gIN1 in (19), the
equation for equilibrium is solved with respect to gmIN1 by the MatLab computer program.
The complementary strain energy*∗EX in the external part of portion �� of the rod is expressed as (Fig. 1)

*∗EX =

;1+;2+02∫
;1+;2

'3∫
'2

2c∫
0

D∗0EX'dGd'di, (20)

(20) where the complementary strain energy density D∗0EX is determined by replacing of W with WEX in Eq. (10). The distribution
of the shear strain WEX in the cross-section of the external part of the rod in portion �� is written as

WEX = WmEX
'

'3
, (21)

where

'2 ≤ ' ≤ '3. (22)

The shear strain WmEX at the periphery of the rod is found by using the following equation for equilibrium (Fig. 1):

)3 =

'3∫
'2

2c∫
0

gEX'
2d'di, (23)

where the distribution of the shear stresses gEX is obtained by replacing of W with WEX in (8). After substituting gEX in (23), the
equation for equilibrium is solved with respect to WEX by using the MatLab computer program.
The complementary strain energy*∗IN2 in the internal part of portion �� of the rod is expressed as (Fig. 1)

*∗IN2 =

;1+;2+02∫
;1+01

'2∫
0

2c∫
0

D∗0IN2'dGd'di, (24)

where the complementary strain energy density D∗0IN2 is determined by Eq. (10). For this purpose, W is replaced with WIN2. The
distribution of the shear strain WIN2 is written as

WIN2 = WmIN2
'

'2
, (25)

where

0 ≤ ' ≤ '2. (26)
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The equation for equilibrium that is used to determine the shear strain WmIN2 at the periphery of the internal part of the rod in
portion �� is expressed as

)IN2 =

'2∫
0

2c∫
0

gIN2'
2d'di, (27)

where )IN2 and gIN2 are, respectively, the torsion moment and the shear stresses in the internal portion of the rod. By using Fig. 1,
the torsion moment is found as

)IN2 = )2 − )1. (28)

The shear stresses gIN2 are found by replacing of W with WIN2 in Eq. (8). After substituting of gIN2 and (28) in (27)), the equation
for equilibrium is solved with respect to WmIN2 by using the MatLab computer program.
The complementary strain energy*∗

��
in the un-cracked portion �� of the rod is expressed as (Fig. 1)

*∗�� =

;∫
;1+;2+02

'3∫
0

2c∫
0

D∗0CD'dGd'di, (29)

where the complementary strain energy density D∗0CD is determined by applying Eq. (10). For this purpose W is replaced with W�� .
The distribution of the shear stains W�� is obtained as

WCD = WmCD
'

'3
, (30)

where

0 ≤ ' ≤ '3. (31)

In (30) WmCD is the shear strain at the periphery of the rod in portion ��. The following equation for equilibrium is used to
determine WmCD:

)CD =

'3∫
0

2c∫
0

gCD'
2d'di, (32)

where )CD and gCD are, respectively, the torsion moment and the shear stresses in the un-cracked portion of the rod. The torsion
moment is obtained as (Fig. 1)

)CD = )1 + )3 − )2. (33)

The shear stresses gCD are obtained by replacing of W with WCD in (7). After substituting of gCD and (33) in (32), the equation for
equilibrium is solved with respect to WmCD by using the MatLab computer program.
The following expression for the strain energy release rate is obtained by substituting of (4), (5), (16), (20), (24), (29) in (3):

�01 =
1
2c'1

©«
'1∫
0

2c∫
0

D∗0IN1'd'di +
'2∫

'1

2c∫
0

D∗0IS1'd'di −
'2∫
0

2c∫
0

D∗0IN2'd'di
ª®®¬ . (34)

The integration in (34) is carried-out by the MatLab computer program.
The strain energy release rate is derived also assuming an elementary increase d02 of the length of the external crack (Fig. 1). For
this purpose, Eq. (3) is re-written as

�02 =
d*∗

2c'2d02
. (35)

In (35) it is taken into account that the length of the front of the external crack is 2c'2 (Fig. 1). By substituting of (4), (5), (16),
(20), (24), (29) in (35), one derives

�02 =
1
2c'2

©«
'3∫

'2

2c∫
0

D∗0EX'd'di +
'2∫
0

2c∫
0

D∗0IN2'd'di −
'3∫
0

2c∫
0

D∗0CD'd'di
ª®®¬ . (36)

The integration in (36) is performed by the MatLab computer program.
The longitudinal fracture behaviour of the inhomogeneous stepped rod is analyzed also for the case when the external crack is
shorter than the internal one (Fig. 2). In portion �� the rod is divided by the two cracks in internal, interstitial and external parts.
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Fig. 2: Inhomogeneous stepped rod configuration in which the external crack is shorter than the internal one

The internal crack divides the portion �� of the rod in internal and external parts. Thus, the complementary strain energy in the
rod is expressed as

*∗ = *∗IN1 +*
∗
IS1 +*

∗
EX1 +*

∗
EX2 +*

∗
CD, (37)

where*∗IN1 is the complementary strain energy in the rod portion %& and in the internal parts of portions &� and �� of the rod,
*∗IS1 is the complementary strain energy in the external part of the rod portion &� and in the interstitial part of the portion �� of
the rod,*∗EX1 is the complementary strain energy in the external part of portion �� of the rod,*∗EX2 is the complementary strain
energy in the external part of portion �� of the rod,*∗CD is the complementary strain energy in the un-cracked portion �� of the
rod.
The complementary strain energy*∗IN1 is found by Eq. (5). The complementary strain energy*∗IS1 is expressed by Eq. (5). For
this purpose01 is replaced with 02. The complementary strain energy*∗EX1 is obtained by Eq. (20).
The complementary strain energy*∗EX2 in the external part of portion �� of the rod is written as

*∗EX2 =

;1+01∫
;1+;2+02

'3∫
'1

2c∫
0

D∗0EX2f'dGd'di. (38)

Equation (10) is applied to obtain the complementary strain energy density D∗0EX2f . For this purpose W is replaced with WEX2f . The
distribution of the shear strains WEX2f is written as

WEX2f = WmEX2f
'

'3
, (39)

where

'1 ≤ ' ≤ '3. (40)

The shear strain WmEX2f at the periphery of the rod in portion �� is found from the following equation for equilibrium:

)EX2f =

'3∫
'1

2c∫
0

gEX2f'
2d'di, (41)

where the torsion moment )EX2f is written as (Fig. 2)

)EX2f = )3 − )2. (42)

The shear stresses gEX2f are obtained by replacing of W with WEX2f in (8). After substituting of gEX2f and (42) in (41), the equation
for equilibrium is solved with respect to WmEX2f by the MatLab computer program.
Equation (29) is used to derive the complementary strain energy*∗

��
in the un-cracked portion �� of the rod. For this purpose

02 is replaced with 01.
By substituting of*∗IN1,*

∗
IS1,*

∗
EX1,*

∗
CD, (37) and (38) in (3), one obtains

�01 =
1
2c'1

©«
'1∫
0

2c∫
0

D∗0IN1'd'di +
'3∫

'1

2c∫
0

D∗0EX2f'd'di −
'3∫

'1

2c∫
0

D∗0EX2f'd'di
ª®®¬ . (43)
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The integration in (34) is carried-out by using the MatLab computer program.
The strain energy release rate is obtained also assuming an elementary increase d02 of the external crack in the rod shown in Fig. 2.
By substituting of*∗IN1,*

∗
IS1,*

∗
EX1,*

∗
CD, (37) and (38) in (35), one derives

�02 =
1
2c'2

©«
'2∫

'1

2c∫
0

D∗0IS1'd'di +
'3∫

'2

2c∫
0

D∗0EX'd'di −
'3∫

'1

2c∫
0

D∗0EX2f'd'di
ª®®¬ . (44)

The MatLab computer program is used to perform the integration in (4).

2.2 Calculation of the strain energy release rate by considering the energy balance

For verification, the strain energy release rates are derived also by considering the balance of the energy. First, the stepped rod
shown in Fig. 1 is analyzed. By assuming a small increase X01 of the length of the internal crack, the balance of the energy is
written as

)1Xk1 + )2Xk2 + )3Xk3 =
m*

m01
X01 + �01 ;cf1X01, (45)

where k1, k2 and k3 are, respectively, the angles of twist of the cross-sections %, & and � of the rod,* is the strain energy stored
in the rod. By combining of (2) and (45), one derives

�01 =
)1
2c'1

mk1
m01
+ )2
2c'1

mk2
m01
+ )3
2c'1

mk3
m01
− 1
2c'1

m*

m01
. (46)

The angles of twist k1, k2 and k3 are obtained by the integrals of Maxwell-Mohr. The result is

k1 =
Wm
'1
(;1 + 01) +

WmIN2
'2
(02 − 01 + ;2) +

WmCD
'3
(; − 02 − ;1 − ;2),

k2 =
WmIN1
'2

01 +
WmIN2
'2
(02 − 01 + ;2) +

WmCD
'3
(; − 02 − ;1 − ;2),

k3 =
WmEX
'3

02 +
WmCD
'3
(; − 02 − ;1 − ;2).

(47)

The strain energy in the rod is written as

* = *IN1 +*IS1 +*EX +*IN2 +*CD, (48)

where*IN1 the complementary strain energy in the rod portion %& and in the internal parts of portions&� and �� of the rod,*IS1
is the complementary strain energy in the external part of the rod portion &� and in the interstitial part of the portion �� of the
rod,*EX is the complementary strain energy in the external part of portion �� of the rod,*IN2 is the complementary strain energy
in the internal part of portion �� of the rod,*CD is the complementary strain energy in the un-cracked portion �� of the rod.
Equation (5) is used to determine *IN1. For this purpose D∗0IN1 is replaced with D0IN1. The strain energy *IS1 is obtained by
replacing of D∗0IS1 with D0IS1 in Eq. (16). The strain energy density is found by (9). For this purpose W is replaced with WIN1.
Equation (20) is applied to obtain*EX. For this purpose D∗0EX is replaced with D0EX, where D0EX is found by replacing of W with
WEX in (9). The strain energy*IN2 is found by replacing of D∗0IN2 with D0IN2 in (24). The strain energy density D0IN2 is obtained by
replacing of W with WIN2 in (9). Equation (29) is used to determine*CD by replacing of D∗0CD with D0CD. Equation (9) is applied to
obtain the strain energy density D0CD. For this purpose W is replaced with WCD.
By substituting of*IN1,*IS1,*EX,*IN2,*CD, (47) and (48) in (46), one derives

�01 =
)1
2c'1

(
Wm
'1
− WmIN2

'2

)
+ )2
2c'1

(
WmIN1
'2
− WmIN2

'2

)
− 1
2c'1

©«
'1∫
0

2c∫
0

D0IN1'd'di +
'2∫

'1

2c∫
0

D0IS1'd'di −
'2∫
0

2c∫
0

D0IN2'd'di
ª®®¬

(49)

The integration in (49) is carried-out by the MatLab computer program. The fact that the strain energy release rate obtained by
(49) matches exactly that found by (34) is a verification of analysis carried-out assuming increase of the internal crack in the rod
shown in Fig. 1.
The strain energy release rate is obtained also assuming a small increase X02 of the length of the external crack in the rod shown in
Fig. 1. For this purpose, (46) is re-written as

�02 =
)1
2c'2

mk1
m02
+ )2
2c'2

mk2
m02
+ )3
2c'2

mk3
m02
− 1
2c'2

m*

m02
. (50)
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By substituting of*IN1,*IS1,*EX,*IN2,*CD, (47) and (48) in (50), one obtains

�02 =
)1
2c'2

(
WmIN
'1
− WmCD

'3

)
+ )2
2c'2

(
WmIN2
'2
− WmCD

'3

)
− 1
2c'2

©«
'3∫

'2

2c∫
0

D0EX'd'di +
'2∫
0

2c∫
0

D0IN2'd'di −
'3∫
0

2c∫
0

D0CD'd'di
ª®®¬

(51)

The MatLab computer program is used to carry-out the integration in (51). The strain energy release rate obtained by (51) is exact
of that found by (36). This fact is a verification of analysis carried-out assuming increase of the external crack in the rod shown in
Fig. 1.
The solutions to the strain energy release rate for the case when the external crack is shorter than the internal one are also verified.
For this purpose, the strain energy in the rod shown in Fig. 2 is written as

* = *IN1 +*IS1 +*EX1 +*EX2 +*CD, (52)

where*IN1 is the complementary strain energy in the rod portion %& and in the internal parts of portions &� and �� of the rod,
*IS1 is the complementary strain energy in the external part of the rod portion &� and in the interstitial part of the portion �� of
the rod,*EX1 is the complementary strain energy in the external part of portion �� of the rod,*EX2 is the complementary strain
energy in the external part of portion �� of the rod,*CD is the complementary strain energy in the un-cracked portion �� of the
rod.
The strain energy*IN1 is obtained by replacing of D∗0IN1 with D0IN1 in (5). The strain energy*IS1 is found by replacing of 01 and
D∗0IS1 with 02 and D0IS1 in Eq. (16). The strain energy *EX1 is obtained by replacing of D∗0EX with D0EX in Eq. (20). The strain
energy*EX2 in the external part of portion �� of the rod is found by replacing of D∗0EX2f with D0EX2f in (38). The strain energy
density D0EX2f is obtained by replacing of W with WEX2f in (9). Equation (29) is applied to derive the strain energy *CD in the
un-cracked portion �� of the rod. For this purpose 02 and D∗0CD are replaced with 01 and D0CD, respectively.
By using the integrals of Maxwell-Mohr, the angles of twist of the free ends of the internal, interstitial and external parts of the rod
are written as (Fig. 2)

k1 =
Wm
'1
(;1 + 01) +

WmCD
'3
(; − 01 − ;1),

k2 =
WmIN1
'2
(;2 + 02) +

WmEX2f
'3

(01 − 02 − ;2) +
WmCD
'3
(; − 01 − ;1),

k3 =
WmEX
'3

02 +
WmEX2f
'3

(01 − 02 − ;2) +
WmCD
'3
(; − 01 − ;1).

(53)

First, a small increase X01 of the length of the internal crack is assumed (Fig. 2). Thus, by substituting of*IN1,*IS1,*EX1,*EX2,*CD,
(52), (53) in (46), one arrives at

�01 =
)1
2c'1

(
Wm
'1
− WmCD

'3

)
+ )2
2c'1

(
WmEX2f
'3

− WmCD
'3

)
− 1
2c'1

©«
'1∫
0

2c∫
0

D0IN1'd'di +
'3∫

'1

2c∫
0

D0EX2'd'di −
'1∫
0

2c∫
0

D0CD'd'di
ª®®¬

(54)

The integration in (54) is carried-out by the MatLab computer program. It should be noted that the strain energy release rate
obtained by (54) is exact match of that found by (43).
The strain energy release rate for the rod shown in Fig. 2 is derived also assuming a small increase X02 of the length of the external
crack. By substituting of*IN1,*IS1,*EX1,*EX2,*CD, (52) and (53) in (50), one obtains

�02 =
)2
2c'2

(
WmIN1
'2

− WmEX2f
'3

)
+ )3
2c'2

(
WmEX
'3
− WmEX2f

'3

)
− 1
2c'2

©«
'2∫

'1

2c∫
0

D0IS1'd'di +
'3∫

'2

2c∫
0

D0EX'd'di −
'3∫

'1

2c∫
0

D0EX2'd'di
ª®®¬

(55)

The MatLab computer program is used to perform the integration in (55). The fact that the strain energy release rate found by (55)
is exact match of that obtained by (44) is a verification of the fracture analysis carried-out assuming increase of the external crack
in the stepped rod in Fig. 2.

3 Results and discussion

In this section, the solutions to the strain energy release rate derived in the previous section of the paper are used to investigate the
influence of various geometrical parameters and material inhomogeneity on the longitudinal fracture behaviour of the stepped rod
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with two concentric longitudinal cracks. The strain energy release rate is presented in non-dimensional form by using the formula
�# = �01/(�0'3). It is assumed that )1 = 5 Nm, )2 = 8 Nm, )3 = 7 Nm, '3 = 0.010 m and ; = 0.500 m.
The influence of the location of the internal crack in radial direction on the fracture behaviour is analyzed. The rod shown in Fig. 1
is considered. The location of the internal crack is characterized by '1/'3 ratio. The influence of the location of the internal crack
on the fracture is illustrated in Fig. 3, where the strain energy release rate in non-dimensional form is presented as a function of
'1/'3 ratio at '2/'3 = 0.8 . The curves shown in Fig. 3 indicate that the strain energy release rate increases with increasing of
'1/'3 ratio. One can observe also in Fig. 3 that the strain energy release rate derived assuming increase of external crack is higher
than that obtained assuming increase of the internal crack.
The influence of the material property ? on the fracture behaviour is analyzed too. The rod in which the external crack is shorter
than the internal one is under consideration (Fig. 1). The solution to the strain energy release rate derived assuming increase of the
external crack is applied. One can get an idea about the influence of ? on the fracture in Fig. 4 where the strain energy release rate
in non-dimensional form is presented as a function of at three '2/'3 ratios for '1/'3 = 0.2 (the ratio '2/'3 characterizes the
location of the external crack in radial direction).
It can be observed in Fig. 4 that the strain energy release rate decreases with increasing of ?. This finding is attributed to the fact
that the stiffness of the rod increases with increasing of ?. The curves in Fig. 4 indicate that the strain energy release rate increases
with increasing of '2/'3 ratio.
The longitudinal fracture behaviour is analyzed also for the case when the rod exhibits continuous (smooth) material inhomogeneity
in both radial and length directions. The distribution of �0 along the length of the rod is written as

�0 = �0be@
G
; , (56)

where

0 ≤ G ≤ ;. (57)

In (56) �0b is the value of �0 at the free end of the rod, @ is a material property that controls the material inhomogeneity in the
length direction. When the rod is inhomogeneous in radial and length directions, the strain energy release rate can be obtained by
applying the solutions derived in the previous section of the paper. For this purpose, the material property �0 has to be calculated
by (56) for the corresponding crack length. The effect of @ on the fracture behaviour is illustrated in Fig. 5 where the strain energy
release rate in non-dimensional form is presented as a function of @ at 02/(; − ;1 − ;2) = 0.4 (the solutions to the strain energy
release rate obtained at increase of the external crack in the rods shown in Figs. 1 and 2 are applied). It is evident from Fig. 5 that
the strain energy release rate decreases with increasing of @ (this behaviour is due to the increase of the stiffness of the rod). The
curves in Fig. 5 show also that the strain energy release rate is higher in the stepped rod configuration in which the external crack
is shorter (Fig. 2). This finding can be explained by the fact that when the external crack is shorter, the crack front is located
in cross-section of the rod in which the stiffness is lower since the stiffness increases from the free end of the rod towards the
clamping according to (56).

4 Conclusions

The longitudinal fracture behavior of an inhomogeneous stepped rod with two longitudinal concentric cracks is analyzed in terms
of the strain energy release rate. The rod has a circular cross-section. The two concentric longitudinal cracks present circular
cylindrical surfaces. The rod under consideration exhibits continuous (smooth) material inhomogeneity in radial direction. Besides,
the material has non-linear elastic behaviour. The rod is loaded in torsion. Solutions to the strain energy release rate are derived at
different lengths of the two cracks by considering the complementary strain energy stored in the rod. The solutions are verified by
analyzing the balance of the energy. It is shown that the solutions can be applied also for stepped rods which exhibit continuous

 
  Fig. 3: The strain energy release rate in non-dimensional form presented as a function of '1/'3 ratio (curve 1 – at increase of the

internal crack and curve 2 – at increase of the external crack)
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                                                   Fig. 4: The strain energy release rate in non-dimensional form presented as a function of ? (curve 1 – at '2/'3 = 0.3, curve 2 – at

'2/'3 = 0.5 and curve 3 – at '2/'3 = 0.7)

 
                       
 
  

Fig. 5: The strain energy release rate in non-dimensional form presented as a function of @ (curve 1 – for the stepped rod shown in
Fig. 1 and curve 2 – for the stepped rod in which the external crack is shorter (Fig.2))

material inhomogeneity in both radial and length directions. The influence of the locations of the two cracks in radial direction on
the fracture behaviour is investigated. It is found that the strain energy release rate increases with increasing of '1/'3 ratio. The
increase of '2/'3 ratio leads also to increase of the strain energy release rate. The analysis reveals that the strain energy release
rate decreases with increasing of material property ?. It is found also that the strain energy release rate obtained at increase of
external crack is higher than that obtained at increase of the internal crack. Concerning the effect of material inhomogeneity along
the length of the rod, it is found that the strain energy release rate decreases with increasing of material property @. The analysis
indicates also that the strain energy release rate is higher in the stepped rod in which the external crack is shorter.
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