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Abstract: Dual-phase steel shows a pronounced structure-property correlation, caused by its internal structure consisting of a
soft ferrite matrix and embedded hard martensite regions. Due to its high strength combined with high ductility, dual-phase
steel is particularly suitable for energy-absorbing and strength-relevant sheet metal applications, but its use as heavy plate is
also desirable. Due to the complex microstructure, microstructure-based simulation is essential for a realistic simulation of the
mechanical properties of dual-phase steel. This paper describes two important points for the microstructure-based simulation of
dual-phase steel. First a method for the straightforward experimental estimation of the RVE size based on hardness measurements
prior to tomography preparation is presented and evaluated. Secondly, a method for the efficient meshing of these microstructures,
based on material definition at the integration points of a finite element model, is developed.
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1 Introduction

Steel is one of the most widely used structural materials; for example, in 2017 its production amount exceeded the production
amount of all plastics by a factor of more than five (PlasticsEurope (2017)). According to this large production amount, there
is also a large variety of different steel classes, which differ in their exact internal structure and their properties. One of these
classes is dual-phase steel, characterized by a two-phase microstructure of hard martensite regions embedded in a soft ferrite
matrix. Due to its microstructure, the mechanical properties of dual-phase steel are defined by high strength and high ductility at
the same time (Tasan et al. (2015)). Due to this performance profile, it is classically used in energy-absorbing, strength-relevant
sheet metal components (Brands et al. (2016); Tarigopula et al. (2008)). At the same time, however, efforts to use dual-phase
steel also in heavy plate products, for example in pipelines, are increasing (Ishikawa et al. (2015); Ji et al. (2014); Li et al. (2011)).
The strong structure-property correlation of dual-phase steel makes microstructure-based simulations an important method for
improving its mechanical properties and for adapting them to a specific application. The most important microstructural pa-
rameters influencing the properties of dual-phase steel are the quantity, shape and distribution of the martensite regions in the
ferrite (Das and Chattopadhyay (2009); Davies (1978); Kang et al. (2007); Kim and Lee (2000); Tasan et al. (2015)). For this
reason, simulations are used within the framework of the finite element method (FEM, (Zienkiewicz and Taylor (1977))) that
explicitly include both phases of the dual-phase steel in the analysis. Simulations based on the real structure of the dual-phase
steel have the advantage that they include the entire phase structure in the analysis. Therefore, no structural properties relevant
for the macroscopic material properties are unintentionally neglected. By modelling the ferrite and martensite as discrete areas
of the mesh, all microstructural details can be taken into account. Therefore simulations based on the real structure usually show
a good agreement with the corresponding experiments (Dong et al. (2010); Katani et al. (2013); Marvi-Mashhadi et al. (2012);
Paul (2013); Ramazani et al. (2014, 2013)).

For a microstructure based simulation, a 3D reconstruction of the material is required that is large enough to be representative
for the material in terms of shape, distribution and connectivity. In the field of materials science, 3D reconstructions based
on real structure of various, usually multi-phase materials are used to investigate the 3D microstructure. Tomography enables
the microstructural characterization of a defined sample volume in contrast to two-dimensional surface characterization. Thus,
important information about the formation and evolution of the phases can be obtained, which allows conclusions to be drawn
about the properties of the material (Ohser and Mücklich (2000)). There are different methods that allow 3D reconstruction of
a metallic material. Established methods that can be used to image large volumes include X-ray microcomputed tomography
(μCT) (Desplentere et al. (2005); Yan et al. (2014); Zhou et al. (2018)) or serial sectioning tomography (Alkemper and Voorhees
(2001); Keehan et al. (2008); Lasagni et al. (2007); Li et al. (1998); Mücklich et al. (2018); Roland et al. (2015)). At μCT the
sample is irradiated with X-rays from many different directions and thus a three-dimensional image of the inner microstructure
of the sample is computed (Buzug (2008)). In serial sectioning tomography a large number of two-dimensional microscopic
images of the sample is recorded by removing a thin layer of the sample between the individual images. The two-dimensional
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images are then digitally combined to reconstruct the three-dimensional structure of the examined sample volume. A light optical
serial sectioning tomography uses a light optical microscope to capture the image and the material is removed by mechanical
polishing (Alkemper and Voorhees (2001); Li et al. (1998); Mücklich et al. (2018)). In case small cutting distances are required,
a serial sectioning tomography can be performed using a focused ion beam (FIB) in a scanning electron microscope (SEM)
(Burnett et al. (2016); Keehan et al. (2008); Lasagni et al. (2007); Li et al. (1998); Zhong et al. (2019)). However, not all 3D
reconstruction methods are suitable for all metals, especially low alloyed, low carbon steels as investigated here. In case of steel,
most transformation products are mostly iron, therefore showing a low atomic density contrast. A methodology that uses the
material density contrast for the image acquisition, as the CT, can not be used. In addition, the resolution of CT depends on the
observed volume. Very high resolutions can be achieved with small volumes. However, the resolution decreases with increasing
volume of the sample (Fischer et al. (2011); Bauza et al. (2018)). Common FIB/SEM devices produce tomographies with a volume
too small for the steels under consideration here (Brands et al. (2016); Mücklich et al. (2018)), but this issue can be overcome
in specialized devices by adding a laser (Echlin and Pollock (2008)) or using other ion sources such as xenon (Burnett et al.
(2016)) instead of gallium to increase the volume. In addition to the classical SEM images also other signals (e.g. EDS or EBSD)
can be used for tomographies (Brands et al. (2016)). Another approach combines the advantages of classical serial sectioning
tomography with images in SEM or EBSD (Uchic et al. (2016)). In comparison, the method of serial sectioning in combination
with light microscopic images is widely used for steels. By contrasting the microstructures by etching, the different structure
components can be separated (Britz et al. (2016)). For this reason, light optical serial sectioning tomography is still one of the most
widely used methods for the production of large size steel tomography. Tomographies of two-phase steels with an edge length
of 100-150 Âţm have already shown that the phases separated on 2D images have a high connectivity in 3D (Mücklich et al. (2015)).

The estimation of the size of the representative volume element (RVE) poses a particular challenge for simulations based on
microstructures. The RVE describes the area of the microstructure that is just large enough to contain all relevant information
about the microstructure (Hill (1963); Kanit et al. (2003); Tasan et al. (2014b)). A section of the microstructure with the size
of the RVE thus shows the same microstructural properties at any point of the material. These properties additionally do not
change for larger structural sections. Simulations on microstructure sections smaller than the RVE cannot reproduce the real
macroscopic properties due to the scattering of the microstructure geometry depending on the location of the sampling. On one
hand, simulations on microstructure sections larger than the RVE, on the other hand, require significantly more computing time
and higher memory loads than necessary for simulation on a RVE due to the unnecessarily large geometry. The estimation of
the RVE size is therefore a crucial point in the process of microstructure-based simulation. Nevertheless, the estimation of the
RVE size is often carried out not at all (Katani et al. (2013); Paul (2013)) or only by time-consuming methods (Brands et al.
(2016)). For these methods, a 3D tomography is carried out and it is compared to other tomographies of the same material or
to the geometric parameters of a bigger micrograph of the sample. In this way, it can be determined, if the section is as big as
or bigger than the RVE. If this is not the case, a new, bigger tomography has to be prepared. Therefore, methods to estimate the
RVE’s size before tomography preparation are desirable to save cost and time.

Tomographies with the size of a RVE often consist of tens of millions of voxels. This enormous size, coupled with the complex
shape of the microstructure, poses difficulties for the simulation (Brands et al. (2016); Calcagnotto et al. (2010)). Due to the
large number of elements, the computing time and the required amount of main memory considerably increases. In addition,
unstructured geometry conforming meshing to reduce the number of elements of the FE mesh compared to the voxels of the
tomography is very complex and only to a limited extent effective. In order to avoid these problems, simulations are often carried
out only on the basis of two-dimensional structures in order to reduce the number of elements of the FE mesh and, in addition,
the effort required to obtain the microstructure (Kadkhodapour et al. (2011); Paul (2013); Tasan et al. (2014b,a)). However, it
has been shown that such two-dimensional simulations are not capable of correctly mapping the real material behavior (Diehl
et al. (2016); Ramazani et al. (2013); Tasan et al. (2014a); Zeghadi et al. (2007)). As a result, three-dimensional simulations are
indispensable despite the problems described. For this reason, straightforward methods of data reduction are needed to reduce
the required computing time and memory load while preserving the microstructure information.

In the article two essential things for the correct microstructure-based simulation of dual-phase steel are presented. Due to the
importance of the RVE, a straightforward experimental method for estimating the size of the RVE before the preparation of a
tomography is described. It is based on the evaluation of different hardness indentations of the material. For an estimation of
the RVE size based on the 3D microstructure, the first guess of the RVE size determines the size of the required tomography.
Especially for an unexperienced experimentalist this procedure is trial-and-error and may require to take several time-consuming
tomographies. Choosing the region of interest to large or to small will lead to additional time and costs with this method. This
gives the main advantage of the proposed method based on hardness measurements, as it is easy and cheap to investigate even
larger numbers of different hardness imprints for the estimation of the size of the RVE. The numerical simulation on the one
hand and the determination of the relevant geometric parameters of the three-dimensional structure on the other hand serve as
validation. The second topic of the work is the efficient numerical modeling based on the microstructure and its 3D tomographic
representation. A data reduction approach based on material definition at the integration points of the finite element model is
presented. The paper is structured as follows: In Sect. 2, the dual-phase steel under consideration in the study is presented and
the experimental basics of the work, the tomography preparation and the process of performing the hardness measurements, are
explained. Sect. 3 deals with the numerical implementation. In addition to the general FE implementation of the simulation, the
developed data reduction method is described here. In Sect. 4 and Sect. 5, the results of the RVE size estimation and the data
reduction are subsequently presented and evaluated. Sect. 6 summarizes the presented work and classifies it into the context of
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modern microstructure-based simulations.

2 Material and experimental Methods

2.1 Dual-Phase steel

In this study a sample of a thermo-mechanically rolled dual-phase steel plate with a carbon content of approximately 0.06wt%
and a carbon equivalent of approximately 0.38wt% was used. The microstructure consists of a ferritic matrix and a martensitic
second phase. In Fig. 1 a light optical image using 500× resolution after modified Beraha etching according to (Britz et al. (2016))
and an electron microscopic image of one second phase object after electrolytic etching are shown. The second phase exhibits
in an equiaxed shape, slightly stretched in rolling direction. The second phase objects in the electron microscopic image show a
martensitic structure.

Figure 1: Light optical image of the Beraha etched sample with an electron microscopy image in the top right corner. In the
light optical image, only the second phase is clearly contrasted (dark). In the SEM the substructure of the second phase
becomes clear and also the grain boundaries of the ferrite are recognizable.

2.2 3D-Tomography

The setup presented by MÃĳcklich et al. was used to produce a light microscopy serial sectioning tomography of the two-phase
steel (Mücklich et al. (2015)). The tomography was performed on a modified setup based on a Leica TXP target preparation ma-
chine for the material removal and a digital light optical microscope (LOM) VHX 2000 for imaging. This allows a semi-automatic
execution of the working steps in one setup. For the production of the tomography data the sample was first fixed to the sample
holder of the TXP machine with the embedding material DEMOTec15+. Then the following steps polishing, etching and image
acquisition were repeated several hundred times in order to obtain a representative volume. The material removal was performed
using a neoprene cloth and the polish suspension MasterPrep with diamond particles in an average diameter of 0.05 μm was used
within the TXP machine. The material removal per cut was adjusted by the contact pressure of 30 N, the rotation speed of the
polishing disk of 400 RPM and the polishing time of 3 min using 2 ml polishing suspension. A modified Beraha etching according
to Britz et al. was used to contrast the microstructure (Britz et al. (2016)). With this etching it is possible to contrast the second
phase regions stronger than the grain boundaries of the ferritic matrix, so that an optical separation of the second phase regions
from the matrix was achieved (Britz et al. (2016)).

Thus, the different phases in microscope images can be segmented by threshold and the images can be converted into binary
images by means of image processing programs, Fig. 2. A 3D tomographic reconstruction of the microstructure is obtained by
reconstructing the z-position of the binarized images. For the reconstruction of the volume there were 426 images with 424× 928
pixels and a pixel size of 409 nm × 409 nm available after the pictures were taken. These pictures were first z-positioned with the
program Thermo Scientific Amira ® and then aligned. The alignment of the images was done using fixed markings on the sample,
which were placed on the sample before the tomography process. These markings were also used to determine the original
z-position after the material removal per cut. The binary images were generated by threshold segmentation in Amira. For this
standard filters like shading correction and denoising were used. Artifacts and errors as well as all objects that were only visible
in one image were deleted using binary operations. To provide isotropic voxels for the reconstruction, the binary image stack was
interpolated to a z distance of 409 nm. Fig. 3 shows the 3D reconstruction of the sample.
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Figure 2: Exemplary representation of light optical images with selected second phase areas (left) and binary image after threshold
segmentation (right) that is used for the reconstruction of the microstructure.

Figure 3: Visualization of the 3D reconstruction of the image stack.

2.3 3D parameter-based RVE size estimation

As an assumption, the 3D microstructure contains all necessary information about different structural components. Many parts
of this 3D structure can be identified by determining parameters from 2D sections using stereological relationships (Ohser and
Mücklich (2000)). However, parameters such as the connectivity of the phases can only be determined in 3D and a 2D analysis
is not adequate, especially for such fissured phases. For this reason an evaluation of the RVE of the tomography was additionally
determined by its 3D parameters. In order to find the RVE size cubic volume elements in different sizes were cropped and their
characteristic 3D geometric parameters were measured using the program Mavi. For that purpose the parameters volume density,
surface density, Euler density and particle density were examined for their spreading of the mean value. The quantities and
their explanation are shown in Tab. 1. The first three quantities are implemented in Mavi and can be calculated from the fully
reconstructed tomographies. For the particle density each individual second phase object in the set was counted and the number
was divided by the whole volume. The Euler number from the Euler density is a measure of the connectivity of an object of a
phase in a multi-phase material that consists of different objects. The calculation examines whether an object has a concave or
convex curved surface or whether the surface is a saddle surface (Russ and Dehoff (2000)).
For the RVE estimation cubes with ten different edge lengths between 15 μm and 150 μm were selected. For each size four cubes
are cropped from one large experimental data set and their 3D parameters were measured. The center point of the cubes remains
at the same position for all sizes. For the estimation of the RVE, the mean value and the standard deviation of all 3D parameters
were determined for the four cubes.

2.4 Indent-based RVE size estimation

In general, hardness describes the resistance of a material to the penetration by another object (Bargel et al. (2009)). In the
present paper the hardness test according to Vickers (Bargel et al. (2009); Deutsches Institut für Normung (2006)) was used to
estimate the RVE size. In the Vickers hardness measurement, an equilateral square diamond pyramid with an opening angle of
136◦ is pressed into the sample with a defined force F. After the unloading the diagonals d1 and d2 of the remaining imprint are
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Table 1: Name and meaning of the volume-based parameters used for evaluation.

parameter explanation

volume density Ratio of the total volume of all second phase objects to the total
volume of the tomography.

surface density Ratio of the total surface of all second phase objects to the total
surface of the tomography.

Euler density
Ratio of Euler number of the objects observed (difference between
object number N and connectivity (object connections C)) to the
total volume of the tomography

particle density Ratio of the number of second phase objects to the total volume of
the tomography.

measured and the hardness HV is determined to

HV = 2F sin

(
136◦

2

) (
2

d1 + d2

)2

, (1)

where F is given in kilopond, d1 and d2 in millimeters. When specifying the hardness value, the test force is given by default,
e. g. 160 HV0.5 for a hardness value of 160, which was determined with a force of 0.5 kp. In theory, with varying test load used
the imprint diameter changes while the hardness value remains constant (Strnad and Jakab-Farkas (2014)). Therefore, in the case
of a completely homogeneous material, both very small and very large hardness imprints should result in the same hardness value
with varying test loads.

Based on this assumption, a method for estimating the RVE size was developed in this study in order to overcome the disadvantages
of the time-consuming methods described in Sect. 1. The functional principle is shown in Fig. 4. Each hardness imprint has a
certain zone of influence, which is deformed by the imprint. A very small hardness imprint has correspondingly a very small zone
of influence. Thus it is possible that the zone of influence lies entirely in a purely ferritic area or in a predominantly martensitic
area of the microstructure. Due to this, very small hardness imprints show a high scattering in an inhomogeneous material. Above
a certain indentation size, the zone of influence is just large enough to cover the size of an RVE. Starting from this indentation
size, the spread of the hardness values decreases considerably, as a representative volume of the structure is examined at any
time. In particular, the scattering for even larger imprints no longer decreases further, since a larger zone of influence contains no
new microstructure information. Based on this hypothesis, a total of 121 hardness measurements were performed on the cross
section1 of the steel with loads ranging from 0.05 kp to 30 kp, see Tab. 2.

Table 2: Number of indents per load level

load [ kp ] 0.05 0.1 0.2 0.5 1 3 5 10 20 30
number [ − ] 36 25 16 9 16 9 4 4 1 1

The distance between two hardness imprints is chosen as at least three times the imprint diameter according to the norm for
Vickers hardness measurements (Deutsches Institut für Normung (2006)).

D2

D1

D3

Figure 4: Schematic representation of three hardness imprints and their zones of influence. The size of the influence zone D is
well below the RVE size on the left, in the middle in the area of the RVE size and well above it on the right.

3 Numerical Methods

Before the results of the methods for the estimation of the RVE size are discussed, an overview over the numerical methods used
in the presented work are given in the following section. At first, the general implementation of the material behaviour in the
context of FEM is explained. Then, the method developed for data reduction,i.e. material definition at the integration point, is
presented.

1Section spanned by the transverse direction and the normal direction.
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3.1 General numerical implementation

The material is described by an elastoplastic material model. In addition, the examination is focused on the small strain range.
Hooke’s law is used for the elastic part of the model. Consequently, the relation between the engineering stress σ and the
engineering strain ε reads

σ = 2μ (ε − εp) + λtr
(
ε − εp

)
I , (2)

with the plastic part of the engineering strain εp and the Lamé parameters μ and λ. The plastic part model is described by a
standard J2 von Mises plasticity model (Mises (1913)) and isotropic, linear hardening. This results in a yield condition

g = ‖σD‖ −

√
2
3
(σy − K α) , (3)

with the deviatoric part σD of the engineering stress tensor, the initial yield strength σy , the hardening modulus K and the flow
parameter α. As small strains are considered, an additive decomposition of the strain tensor into its elastic and plastic part

ε = εe + εp (4)

is applied. The evolution of the plastic strain follows an associated flow rule

Ûεp = γ
∂g

∂σ
, (5)

with the plastic multiplier γ.

The abovementioned material behaviour is implemented as an FEM model with the help of the open source C++ program library
deal.II (Arndt et al. (2016); Bangerth et al. (2007)). Starting point is the balance of momentum for a body Ω with boundary Γ in
its weak form in the stationary case

∫

Ω

grad (δu) : σ(u) V. =

∫

Γ

δu ∙ t a. , (6)

with the gradient operator grad (∙), the test function δu and the Neumann boundary condition t. The solution is then iteratively
calculated with Newton’s method. In this context, a high variability of the implemented code with respect to possible extension is
achieved by calculating the required derivation of the balance of momentum not analytically, but by means of a numerical tangent
(Goldschmidt (2015); Scherff (2019); Scherff et al. (2016)). Plasticity is treated by the Radial Return Method (Bednarcyk et al.
(2008); Simo and Taylor (1985); Simo and Hughes (2000); Wilkins (1963)). Finite differences are applied for the calculation of
the derivative of the yield condition with respect to the plastic increment for the sake of variability.

Although the analysis is limited to small macroscopic strains, large strains can theoretically occur within the microstructure.
Therefore, in a previous study (Scherff (2019)), a Neo-Hooke model for finite deformation was used to investigate whether this
has an impact. As expected, within the microscopic stress field relative deviations between the small strain model and the large
strain model of up to 10% were observed. Nevertheless it could be shown that the small strain model leads to negligibly small
deviations well below 1% for the macroscopic stress-strain relationship under uniaxial tension. Therefore, the small strain model
is applicable in the use case under consideration.

The parameters used for the single ferrite and martensite phase were determined with the help of nanoindentation tests, see Scherff
(2019). They are given in Tab. 3. As shown in Scherff (2019), the simulation model described above is capable to reproduce the
real behavior of the investigated dual-phase steel under uniaxial load with high accuracy.

Table 3: Material parameters used in this study for the ferrite and martensite phase.

ferrite martensite

μ [GPa] 89.5 91.7
λ [GPa] 173.7 141.0
K [GPa] 1.70 2.96
σy [MPa] 401 1081

3.2 Data reduction

As the microstructures under consideration in tomography consist of a very large number of voxels, many millions of degrees
of freedom are generated in classical hexahedral meshing by assigning a single voxel to a single hexahedral element. As a
result, the computing time required to solve the system and the memory required for storage increases immensely. Since such

180



F. Scherff et al. Tech. Mech., Vol. 40, Is. 2, (2020), 175–190

voxel structure FEM FCM MatIp

Figure 5: Meshing of a two-component voxel structure by classical FEM, FCM and MatIp (q2fe1). Element nodes are represented
by violet dots, integration points by red crosses, element edges by black lines and sub-element edges of the FCM by
dashed black lines.

calculations can usually no longer be carried out in an acceptable time on usual workstations, in addition to estimating the RVE
size, data reduction is of great importance in the presented work. The aim is to reduce the required number of elements for
meshing the microstructure, and thus computing time and working memory load, as far as possible, while maintaining all relevant
structural information at the same time. Material definition at the integration point (MatIp) was used for this purpose. The idea
of MatIp is based on Gauss Point Oversampling (Zohdi and Wriggers (2004)) and especially on the Finite Cell Method (FCM,
(Düster et al. (2008); Parvizian et al. (2007))). The basic idea of FCM is to mesh the geometry under consideration in a strongly
coarser way, so that several voxels are assigned to one element. The mesh then includes the geometry under consideration as
well as parts of its surrounding. In order to integrate the system equation over these elements, sub-elements are introduced,
which make it possible to carry out the integration over elements with homogeneous material. Inspired by this procedure, MatIp
was implemented within the framework of this paper. Also in this case several voxels of the structure are combined to one
element, whereby one voxel is assigned to exactly one integration point. Instead of standard Gaussian integration points, a grid
of equidistant integration points, corresponding to the homogenous voxel size of the tomography, is applied. Accordingly, when
calculating stress and treating plasticity, separate material parameters are used at each integration point, depending on whether it
is a ferrite or martensite integration point. In contrast to FCM, it is not necessary to use sub-elements to integrate elements with
mixed material. While complex geometries with homogeneous material are coarsened in the FCM including their surrounding,
leading to a tensile strength of zero in parts of the mesh, good results are achieved with MatIp even with classical integration
in comparison to the calculation in full resolution due to the relatively small differences in tensile strength between ferrite and
martensite. Here, the order of the integration polynomials and the order of the shape functions can vary depending on the chosen
method. For identification purposes, the number of integration points and the order of the shape functions are specified. For
example q2fe1-MatIp means material definition at the integration point with linear shape function and two integration points per
spatial direction in the element. In this case, one element corresponds to eight voxels of tomography. In order not to influence
the volume fraction of martensite by unequal integration weights, equidistant integration points with constant weights were
implemented. In Fig. 5 the difference between normal meshing, FCM and MatIp is schematically shown for a two-dimensional
geometry. The shown MatIp meshing represents the entire microstructure in the FE mesh, while at the same time achieving a
straightforward reduction in the number of elements and degrees of freedom. Further details of MatIp are discussed in Scherff
(2019).
It is import to mention, that generally the FCM shows considerably good results with respect to convergence of the solution and
accuracy of the results on the microscopic level (Düster et al. (2008); Parvizian et al. (2007)), even for complicated geometries and
use cases. These advantages are, however, at the expense of complex and elaborate implementation. At this point the presented
method shows its efficiency, with a straightforward and time saving implementation, for the investigated class of applications.

4 Results and Discussion - RVE Size

4.1 Experimental Results

The hardness measurements carried out result in the distribution shown in Fig. 6. As expected, the low hardness classes HV0.05
and HV0.1 with correspondingly small hardness imprints show a very high spread of the hardness values. From HV0.2 on,
the spread drops significantly. For higher hardness classes, the spread remains at the same level. More precisely, the standard
deviation of the hardness values of initially 20% decreases to under 3% starting with the HV0.2 imprint and the spread between
maximum and minimum hardness decreases from 70% to under 9% of the mean value. Both values are within the range of
measurement accuracy. Consequently, the RVE size is within the range of a HV0.2 imprint’s zone of influence. The further
reduction of the spread from HV5 upwards is mainly due to a reduced number of imprints due to the high size of the imprints,
also see Tab. 2. A HV0.2 indentation corresponds to an imprint diameter of about dimprint = 50 μm at the present mean hardness.
However, the size of the zone of influence is not clearly defined, which prevents a clear statement on RVE size at this point.
However, the minimum distance between two hardness imprints according to the norm (Deutsches Institut für Normung (2006))
offers a clue. To ensure that the influence zones of two indentations do not overlap, this distance is three times the indentation
diameter, dnorm = 3 dimprint. The size of the influence zone therefore lies between a minimum edge length of one single imprint
diameter and a maximum edge length of three times the imprint diameter, i.e. between 50 μm and 150 μm. This assumption is
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Figure 6: Maximum, minimum and mean value with standard deviation of the hardness values for different test loads.

evaluated below and the exact value is determined.

4.2 Evaluation of the RVE size estimation

To numerically evaluate the experimental RVE estimation, a tomography was prepared of a dual-phase steel, as shown in Sect. 2.2.
Its size in each spatial direction is above the specified maximum RVE size of 150 μm edge length. The tomography is divided into
smaller blocks of the same size and tensile tests are simulated on the individual blocks. The procedure is carried out for blocks
with an edge length approximately in the range of the single, double and triple imprint diameter. The size classes thus cover the
previously estimated RVE size range. Their extent is shown in Fig. 7 in relation to a two-dimensional section of the tomography.
The edge lengths are 52 μm, 105 μm and 157 μm instead of 50 μm, 100 μm and 150 μm for reasons of efficient meshing2. Based
on the simulations, the average stress value at 5% total strain Rt5.0 is determined for each block. The spread of Rt5.0 within a size
class is then considered as a function of the block size. Fig. 8 shows a similar trend for Rt5.0 as Fig. 6 shows for the hardness.
The spread of the hardness decreases much faster at the beginning, but the overall hardness also scatters more strongly than Rt5.0.
The spread decreases from about 50 MPa for 52 μm edge length to less than 10 MPa for 157 μm edge length, which is in the range
of real macroscopic tensile tests. Fig. 8 thus proves the assumption that the RVE size corresponds approximately to three times

2Due to the underlying data structure, meshes with edge lengths of (x 2y ) elements, with x as low as possible, can be better parallelized

Figure 7: Two-dimensional representation of the three considered block sizes in comparison to the tomography.
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Figure 8: Maximum (blue), minimum (red) and mean value with standard deviation (green) of Rt5.0 for the different block sizes.
The standard deviation of macroscopic tensile tests on the investigated steel is given in black.

the diameter of the hardness imprint for which the spread becomes sufficiently low. The investigated steel therefore has an RVE
edge length of about 150 μm.

Fig. 8 shows another characteristic of the microstructure besides the validation of the RVE size estimation. The ensemble mean
of the three size classes remains at approximately the same level. As a result, the structure studied is ergodic. In the context
considered here, ergodicity means the equality of the ensemble mean of a property over a sufficiently large number of unrepre-
sentatively small sections with the mean over a representative large volume (Ostoja-Starzewski (2007)). This leads to relevant
advantages for the simulation and also for future tomographies. On the one hand, the required memory decreases significantly
with sequential simulation of several small structures instead of one large structure, on the other hand, the experimental effort
also decreases. Due to the ergodicity, it is not necessarily required to tomograph a coherent block in RVE size. A volume that
contains a sufficient number of smaller blocks may be sufficient. However, this statement cannot easily be generalized to other
microstructures. In particular for strongly heterogeneous microstructures or microstructures with very high connectivity of the
second phase, it can be assumed that this statement does not apply or does only apply to a limited extent.

The RVE was additionally estimated using the 3D structural parameters as described in Sect. 2.3. The results are presented in
Fig. 9. For small edge lengths a large spread of the 3D parameters can be seen. From approx. 80 μm edge length the spread
remains at the same level for all four 3D parameters. This implies that the size of the RVE, with respect to the geometry, is in
the range of 80 μm. The Euler density, which is a parameter for characterizing the connectivity, shows a constant profile from a
slightly lower edge length of 60 μm on. However, to be sure that the volume is representative, all parameters should be considered
at the same time. Thus the found result of the RVE-size based on 3D parameters corresponds to the RVE-size based on mechanical
properties determined above, especially considering the generally higher relative spread of the geometry parameters.

5 Results and Discussion - Data Reduction

5.1 Impact of data reduction

In this section, the results of the implemented data reduction method are presented, both in terms of the reduction of computing
time and memory usage as well as its accuracy. The load case here is always uniaxial tension in the transverse direction of the
steel. The uniaxial tension test is considered here, as it is the universal standard test used in industry in this context, in contrast
to other tests like shear, torsion or compression tests. To compare the variants of MatIp, finite elements with two, four, eight
and sixteen integration points or voxels per spatial direction are considered. The number of integration points or voxels per
spatial direction per element is referred to in the following as the reduction order. All simulations are performed with linear
shape functions. The reduction orders 4 and 8 are additionally calculated with quadratic and cubic shape functions. To evaluate
the reduction effect, a tensile test is simulated on one exemplary structural section. The section has an edge length of 52 μm or
128 vx and contains a total of 2, 097, 152 vx. During the simulation, the computing time and the memory utilization are recorded
to compare the values. The goal in each case is to reduce the computing time and the memory utilization as much as possible
without changing the result through the reduction. A full-resolution simulation with classical conforming hexahedral meshing
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Figure 9: Maximum, minimum and mean value with standard deviation of the volume density (top left), surface density (top
right), particle density (bottom left) and Euler density (bottom right) for different block sizes.

and linear shape functions serves as a reference.

Tab. 4 shows the computing time tsim, the maximum memory usage lm, the total number of degrees of freedom ndof and the
number of voxels per element nve of the different simulations. In the following, the term element order is used as an abbreviation
for the order of the element’s shape function. If the element order remains the same, the number of elements of the mesh
and the number of degrees of freedom decrease with increasing order of reduction, resulting in a reduction of the computing
time. At element order 1, the computing time decreases by a factor of 9 for the reduction order 2, for the reduction order 4
even by a factor of 34. For the reduction order 8 the computing time decreases only insignificantly, for the order 16 not at all
anymore. The reason for this is that the quality of the approximation of the displacement field by the integration function drops
considerably due to the high number of different integration points for higher reduction orders. This increases the computing
time by a higher effort of time for the solution of the equation system. Memory usage shows a similar trend. Here, the memory
load for the reduction orders 2 and 4 decreases by a factor of 7 and 12, respectively. For higher orders, the memory load even
begins to increase slightly again. There are two reasons for this. On the one hand, the amount of data stored at the integration
point remains constant, because the total number of integration points is not influenced by MatIp. Therefore, a plateau in the
memory load is to be expected with increasing reduction order. On the other hand, the type of the underlying parallelization of
the model in deal.II results in an increased memory load with high reduction orders. Each processor stores not only the data of
the elements belonging to its domain, but also the data of all elements directly adjacent to it. With the large number of elements
in full resolution or lower reduction orders, this doubling does not have much impact. In high reduction orders, however, there
are only a few elements with a high number of integration points. Thus this element doubling has a strong influence and the
memory load rises again starting from reduction order 8. A further trend that is evident, as expected, is that memory utilization
and computing time increase with increasing element order at constant reduction order. Fig. 10 shows the stress strain diagrams
for the simulations with different reduction orders compared to the simulation in full resolution. For a better comparison, Fig. 11
additionally shows the corresponding Rt5.0 values. MatIp leads, especially with a high reduction order of 8 or 16, to a certain
virtual hardening of the material. The martensite integration points influence the element stiffness more strongly than desired.
This effect is partly compensated by the additional degrees of freedom with higher order of approach, as can be seen from the
course of Rt5.0 for the different variants of MatIp with reduction order 4 and 8. A preferred variant of MatIp can be determined
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Figure 10: Stress strain diagrams for simulation in full resolution and various MatIp reduction orders.
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Table 4: Comparison of computing time, memory load, number of degrees of freedom and number of voxels per element for
MatIp with the simulation in full resolution. In the term qXfeY, X gives the reduction order and Y the order of the
element’s shape function.

tsim [min] lm [GB] ndof [−] nve [−]

full resolution 286.7 34.3 6,440,067 1

q2fe1 32.3 4.9 823,875 8

q4fe1 8.4 2.8 107,811 64
q4fe2 74.4 6.9 823,875 64
q4fe3 648.8 28.2 2,738,019 64

q8fe1 5.9 3.4 14,739 512
q8fe2 27.6 3.9 107,811 512
q8fe3 127.0 6.6 352,947 512

q16fe1 5.9 5.5 2,187 4, 096
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Figure 12: Stress strain diagram for a simulation with linear and quadratic shape functions (left) and the relative difference
between the 3D von Mises equivalent stress fields at the end of the simulation (right). For the sake of visualization,
the relative difference is limited to a range of ±5%.

by combined consideration of the mechanical behavior and the computing time. When considering the difference in the stress
level, only the reduction orders 2 and 4 show a sufficiently small deviation. When on the other hand the calculation time is
considered, the variants with a higher element order show themselves to be insufficient. This reduces the analysis to q2fe1 and
q4fe1 as reduction methods. The variant q2fe1 has a stress value closer to the simulation in full resolution, but requires about
four times the computing time of q4fe1. Since q4fe1 also generates only a small deviation of about 3%, this variant is considered
the most reasonable solution for most use-cases, as this stress difference is in the range of the spread of normal uniaxial tension
tests. However, depending on the application and the desired level of accuracy, q2fe1 can also be used effectively.

The present investigation is limited to the macroscopic level. Even if the deviations due to MatIp are small on the macroscopic
level as shown here, local deviations may occur. These can be of importance in the initiation of cracks, for example if the model
is extended to damage. For an analysis of the local deviations, see Scherff (2019) for details.

5.2 Verification

In the following, the developed data reduction method will be verified. This happens in two steps. Firstly, a simulation in full
resolution with quadratic shape functions shows that the used reference is valid. Secondly, MatIp is compared with a simulation
with a geometry conforming mesh.

In the discussions in Sect. 5.1 the result of the simulation in full resolution served as reference value. Each voxel was thus
assigned to a linear hexahedral element of the mesh. However, since linear elements tend to locking effects, a further simulation
was carried out. In this simulation, the structure was meshed with hexahedral finite elements with quadratic shape functions in
the sense of p-refinement. The aim of this is the verification of the originally used reference simulation3. The results of this
simulation are presented in Fig. 12 in comparison to the simulation with linear shape functions. When considering the stress strain
diagrams, the two simulations show no relevant difference, for example the difference in Rt5.0 is 0.7%. Only at higher elongations

3As the simulation with quadratic shape functions produces a memory load of more than 300 GB, a high performance computing server was utilized instead
of the workstation used in the rest of the work.
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Figure 13: Stress strain diagram for a simulation with MatIp-deal.II and with Abaqus.

the curves begin to drift very slightly apart. If, however, the field of stress is considered in detail instead, this statement must
be limited. Here, too, the difference between linear and quadratic shape functions is negligibly small for the majority of the
structure. Around 95% of the structure shows a difference below 5%, more than 70% even a difference below 1%. However, a
small area, especially the boundary layer between ferrite and martensite, shows relevant differences. These differences range for
a few elements up to almost 55%. Overall, these outliers have no influence on the final result in the macroscopic stress strain
diagram. In the context considered in this paper, with the stress strain diagram as target and with an elastic-plastic material model,
the simulation with linear shape functions is therefore a valid reference. Limitations must, however, be placed on that conclusion
to the extent that the differences observed in the microstructure may be of significance in future investigations. Especially when
considering damage effects, they can serve as crack initiators. But since the principal distribution of the stress maxima in linear
and quadratic calculations is still identical and only their height differs, the influence cannot yet be estimated.

As mentioned in Sect. 1, the geometry conforming meshing of microstructures is also an option. For this purpose, a section
with 96 vx edge length of the considered microstructure was meshed with tetrahedral elements using the program Simpleware
ScanIP ®, a software package for three-dimensional image processing and segmentation of tomographies. In the sense of
an efficient simulation, the 884, 736 vx of the tomography could be meshed with about 320, 000 tetrahedral elements through
structure smoothing. Since the simulation program based on deal.II used in this paper is only designed for hexahedral elements,
the geometry conforming mesh was investigated in a simulation with Simulia Abaqus FEA ®. The result is then compared
with a simulation with MatIp. Thus, in addition to comparing the types of meshing, this study also compares the developed
FE code with an established commercial FE program. The other parameters of the simulation, like material model, material
parameters and boundary conditions, were chosen in Abaqus analogous to the self-developed code implemented in deal.II. The
resulting stress-strain diagrams of the two simulations are shown in Fig. 13. The two stress strain diagrams show a very large
accordance. The only difference is a small deviation at the start of yield, otherwise both curves are approximately identically. In
addition, both simulations required approximately the same computing time per CPU core. This shows a significant secondary
advantage of the implemented FE code with MatIp compared to the commercial program Abaqus. The parallelized open source
implementation allows the use of any number of processor cores4. The license model of Abaqus also allows an arbitrarily high
level of parallelization, but in real-world use it is generally limited due to the number of licenses owned. Overall, the result of the
implemented simulation routine and meshing method can thus be verified and its advantage over commercial FEM software can
be shown.

6 Conclusion

Two important points for the efficient and realistic microstructure-based simulation of dual-phase steel were implemented in the
paper. On the one hand, a straightforward experimental method for estimating the size of the RVE was established, and, on the
other hand, MatIp was developed as a method for efficient meshing of microstructures.

A large number of hardness measurements with different test loads and thus different imprint diameters were carried out. With

4For the utilized program library deal.II linear scaling of parallelization is shown for calculations with more than 16, 000 CPU cores (Bangerth et al. (2012))
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the hypothesis that the spread of these hardness values strongly decreases for indentation diameters whose influence zone lies
in the range of the RVE size, the RVE size of the dual-phase steel under consideration with regard to the mechanical properties
could be estimated to about 150 μm for the investigated dual-phase steel. Based on this, a 3D tomography was prepared and
sections of different sizes were examined. Numerical simulations on these sections were able to prove the estimated RVE
size. Similarly, the investigation of the geometric parameters of the microstructure revealed an RVE size with respect to the
geometric parameters in the same size range. Hence, by comparing the proposed method with two other established methods
for determining the RVE size, we could confirm our assumptions, at least for the class of material under consideration in this study.

Since microstructures usually consist of millions of voxels, a method for data reduction in hexahedral meshing was developed.
By defining the material at the integration point instead of for each element as a whole, the simulation time could be reduced
by a factor of 30 and the memory load by a factor of 12 compared to the full resolution simulation. To verify the simulation,
a comparison simulation with p-refinement and a simulation of a geometry conforming mesh of the structure were performed.
Both showed a high agreement to the simulation with MatIp.

The RVE size estimation now makes it possible to determine the appropriate size of a tomography before it is produced, thus
simplifying the manufacturing process. A microstructure determined in this way can then be meshed by MatIp and used for the
realistic and very efficient simulation of dual-phase steel on the basis of its microstructure. Further investigations on the suitability
of the implemented simulation process and MatIp in consideration of damage effects will have to be carried out in the future.
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