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A Markov Chain Approach to Damage Evolution in Die-Cast
ZAMAK

T. F. Korzeniowski, K. Weinberg

ZAMAK components typically have a high load-bearing capacity but show large variations in their limit
loads and in the number of life cycles they can sustain. In this paper a new stochastic approach to account
for accumulated damage is presented where weakening effects, such as impurities, pores and cracks, are
considered as distributed defects and a Markov process is used to model the defect evolution. The basic
ideas of this stochastic model are presented and sample calculations on die-cast ZAMAK components il-
lustrate the field of application and the versatility of this approach.

1 Introduction

The failure of engineering constructions is strongly connected with reliability and life expectation of
structural materials. As a consequence of loading, defects like pores, flaws and cracks evolve in the
material, with their growth and finally coalescence being the basic failure mechanism in fracture, cf.
Tvergaard (1990); Thomason (1990); Radaj and Vormwald (2007). Typically, the size of the defects is
small compared to the size of the body and their distribution can only be determined by tomography
scanning. The mechanisms of defect growth are diverse and hard to capture by material modeling;
numerous attempts have been made and several deterministic models are developed, cf. Lemaitre and
Chaboche (1998); Rösler et al. (2006); Kuna (2013) and references therein. Here we resort to a stochastic
modeling and use a Markov process to describe the evolution of defects till failure. Markov processes
have been applied to many different branches of science, e.g. in mathematical finance, actuarial science,
queueing theory and mathematical biology (Bharucha-Reid, 1997). There are also attempts made to use
them for the prediction of fracture mechanical problems, such as risk estimates (Cronvall and Männistö,
2009), crack propagation models (Gansted et al., 1994; Xi and Bazant, 1997), or fatigue crack propagation
(Spencer Jr. and Tang, 1988; Lee and Park, 1998). We will employ this methodology here to study the
failure of die-cast ZAMAK components.

ZAMAK (Zinc, Aluminum, Magnesium and Copper, german: Kupfer) alloys are frequently used in
industry, their ability to be cast in small and fine components with high precision are attractive for many
applications. The addition of aluminum (≈ 4%) to zinc makes the alloy better manageable and improves
the mechanical properties. Copper (≈ 1%) is used for dissolution of aluminum in zinc and to increase
the hardness. However, with increased copper content the ductility reduces and the material embrittles.
To control inter-crystalline corrosion a small amount of magnesium is admixed. The lion’s share of
industrial application takes the ZAMAK alloy ZP 0410 which is composed of 3.8-4.2% Al, 0.7-1.1% Cu
and 0.035-0.06% Mg (EN1774).

A common manufacturing process for ZAMAK is die-casting, which is characterized by forcing the molten
alloy under high pressure into a mold cavity. The low melting temperature, together with relatively low
costs, allow a highly productive process which is particularly well suited to the manufacturing of thin-
walled components. These small parts show a high load-bearing capacity and are typically employed for
heavy-duty components like hinges, pins, bearings and connections. Such window hardware is produced
by the company Siegenia-Aubi KG which offers a wide range of components from hardware for windows
and French windows to building technology for automation and intruder protection, many of them made
of ZAMAK, see Fig. 1. Therefore the material’s properties are of great interest and, based on a longer co-
operation of our group with Siegenia-Aubi KG, the company supports this research by providing material
specimen, experience and experimental data (Dinger, 2011).
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Figure 1: Typical ZAMAK components for window hinges.

A typical die-casting process can be summarized in three main steps: preparation, casting and follow up.
Before casting the alloy needs to be molten and the mold has to be prepared, e.g. with a lubricant. After
opening of the machine, the melt is rapidly pressed into the mold and then pressurized for solidification.
After solidification the casting needs to be reworked, e.g. scrap needs to be removed. The high pressure
casting results in a fine micromorphology of the alloy. However, one downside of this casting process is
a high air entrapment in the cast which leads to a high population of pores, see Fig. 2. From experience
three phenomena are known in die-cast ZAMAK which result in a decay of its high strength and reliability
(Dinger, 2011):

• reduction of strength in the course of time
• creep deformation
• dimensional change up to 1% as result of aging

All three phenomena are thermally activated processes and due to the low melting temperature, zinc
alloys age even at room temperature.

Figure 2: CT-scan of a part of
a window bearing with pores of
different size.

From the industrial point of view volume changes can be marginal-
ized by tempering and thus they will not be considered here. Also,
we do not plan to explicitly study creep deformations. Under iso-
thermal conditions creep is a long term process of plastic deformation
which has its origin in morphological changes but is usually described
phenomenologically. We will instead focus on aging in the sense of a
decay of mechanical strength, induced by the pores and defects of the
die-casted component. Such aging phenomena have been reported in
Kallien and Leis (2011a), where different ZAMAK alloys have been
studied and e.g., a dependence of the long term resistance from the
components’ wall thickness has been shown. However, to the authors
knowledge there are no investigations on the interplay of micromor-
phology and mechanical properties of ZAMAK.

Here we circumvent the rare knowledge on ZAMAK by describing the
evolution of defects, pores and cracks — which we will all summarize
as voids subsequently — as a stochastic process. Note that in this
work no geometry of the void is assumed. The remaining of this paper
is organized as follows: In Section 2 we briefly introduce the basics of a Markov process. Section 3
provides a short overview of material fatigue and introduces a damage parameter. In Section 4 numerical
examples are presented, we start with a parametric study to show the basic behavior of the model and
go on with a life-estimation for a ZAMAK window hinge. In section 5 the paper is concluded.

2 The Markov Process

In order to describe the evolution of the void distribution by a Markov chain we begin with the basic
definition of a Markov process (Kulkarni, 2016).

A stochastic process (Xt, t ∈ N) on an at most countable state space Z = {z1, z2, . . . } is called a discrete

136



Markov process or Markov chain, (Markov, 1906), if the following holds for every z ∈ Z:

P (Xt+1 = zt+1|Xt = zt, Xt−1 = zt−1, . . . , X0 = z0) = P (Xt+1 = zt+1|Xt = zt) . (1)

Equation (1) states that one can make predictions for the future of the process based solely on its
current state. The transition probabilities depends only on the state Xt and not on the past states
X0, X1, . . . , Xt−1, a property which is often referred to as the Markov property. The process is described
by a transition matrix P with the transition probabilities pi,j = P (Xt+1 = zj |Xt = zi) to move from
state i to state j

P =











p1,1 p1,2 . . . p1,j . . .
p2,1 p2,2 . . . p2,j . . .
...

...
. . .

...
. . .

pi,1 pi,2 . . . pi,j . . .
...

...
. . .

...
. . .











. (2)

This matrix, together with the starting distribution, determines the stochastic behavior of the Markov
chain. The transition matrix can be used to compute the state of the chain at any desired time step via

zt = z0P
t (3)

where z0 is the initial state and zt, respectively, the state at current time t. Furthermore, we introduce
absorbing states if the probability to leave this state is zero, i.e. pi,i = 1 and pi,j = 0, i 6= j.

To model the microstructural evolution in ZAMAK we assume the defects to grow with a certain proba-
bility in every cycle of loading. The idea is to describe the transition of the defect distribution from a time
t to the next time t+1 by means of the Markov chain as illustrated in Fig. 3. We use a time-homogeneous
Markov chain on a finite state space

S = S ∪ A = {s1, s2, . . . , sM} ∪ {a1, a2, ..., aM} (4)

with S, the set of growing states, and A, the set of absorbing states. The states ought to be characterized
by a size describing parameter, e.g. a micro-crack length, spall plane or void volume. Specifically we use
here a characteristic void size (length).

The absorbing states of the Markov process may have different reasons. It is possible that some defects
cannot grow because of local obstacles and are therefore trapped in an absorbing state. Some other
defects or voids may coalesce and then one void may jump into an absorbing state. For example, we take
a look at a void which starts in the state m = s1 in the given transition graph in Fig. 3. Then there is
the chance p1 to grow a specified amount, which is state m = s2, a chance p̃1 to stay in current state
m = s1, or a chance of 1 − p1 − p̃1 to reach the absorbing state a1. Being in the state m = s2 it has
again the probability p2 to grow, p̃2 to stay in state m = s2 or it reaches with probability 1− p2− p̃2 the
absorbing state a2. This is again repeated until the void reaches an absorbing state, see Fig. 3 for an
illustration. The state sM is the maximum possible size a void can reach.

3 Metal Fatigue

Material fatigue describes progressive weakening of a material caused by repeatedly applied loads. From
the mechanical point of view the problem is to estimate the defect growth after N steps of cyclic loading.

3.1 Fatigue-life Prediction and Defect Distributions

If the component is heavily loaded and some plastic deformations occur it typically withstands only a
low number of cycles. If the overall stresses are low and the deformation is primarily elastic, the material
weakens by high-cycle fatigue, i.e. failure only occurs after more than 104 cycles. The nominal maximum
stress values are here much smaller than the strength of the material.

For engineering applications it is of high importance to know the limit of load cycles a component
can sustain before failure. The experimental way to describe fatigue is the Wöhler experiment which
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Figure 3: Markov-chain with transition rates to model growth. It is possible to built in movements on
the horizontal line where states get bypassed.

is normed, e.g. in DIN 50100. Several copies of the same component are subjected to a sinusoidal
stress. After failure of those copies the number of cycles are plotted against the applied stress, often on a
logarithmic scale. The arising curve is named Wöhler curve or S-N curve. The issue with such experiments
is that even for the same component and the same loading, the results will not be the same due to micro-
structural differences and geometric effects. One could do a higher number of experiments for the same
stress to describe the resulting number of cycles by a probability distribution. Typical distributions used
in describing fatigue are the log-normal, extreme value, Birnbaum-Saunders and the Weibull distribution
(Bhattacharyya and Fries, 1982; Weibull et al., 1949). Whereas the latter is ultimately connected to
failure, the first distributions may also describe probabilistic influences.

As the ultimate tensile stress limit is completely in the elastic range of the material, a classical dimen-
sioning or a finite element analysis of such situations does not lead to any prognosis. Therefore the actual
life expectation of high-cycle loaded structures is often only roughly estimated by using, e.g., Paris’ law
for fatigue crack growth (Rösler et al., 2006; Radaj and Vormwald, 2007). Other approaches to fatigue-
life prediction assume micro-crack growth and use a cohesive loading envelope, (Serebrinsky and Ortiz,
2005; De Moura and Gonçalves, 2014). However, the consideration of each stochastic feature, multiaxial
loading or non-linear material behavior requires a certain amount of tweaking and additional adjusting
which calls into question the predictive ability of the fatigue model.

Therefore, we propose here a stochastic approach where we summarize all weakening effects, such as
precipitating impurities, nucleation and growth of pores as well as micro-cracks under the term void. We
assume an initial distribution for the voids, which will be based on the distribution of pores determined
initially before testing. These distributions are often assumed log-normal, cf. (Brakel, 1975), as this is the
natural limit arising in the central limit theorem for products. Other positive, right-skewed distributions
could also be employed, cf. Reppel et al., and regarding the limited solution of computed tomography
(CT) scans, an exponential distribution starting with the first identifiable pore size can be a sufficient
approximation. The evolution of the population of voids is then modeled by a Markov chain which
provides an simple way to estimate the number of life cycles.

3.2 Model Parameter and Experimental Data

The key for the success of the model is experimental data. Some parameters need to be determined from
the initial microstructure, ideally by CT scans. An initial void size distribution can be deduced out of an
image analysis. Additionally, a maximum size of the void needs to be set as input parameter for every
Markov chain. It defines the final absorbing state aM and can also be determined from micrographs.
Please note that here and in the following we define the state of the defect by its normalized void size,
i.e.,

si(x, t) =
ri(x, t)
rref

, (5)
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50m

Figure 4: Position of the crack in cyclic loading of the tilt window experiment (left) and REM micrograph
of the failure surface with a crack initiated from a cavity in the middle (right); photographs from Dong
(2017).

with the reference size to be given by the specific problem. Here we set rref = 1μm. The states as well
as the typical void size r(x, t) depend on the local position x within the investigated domain, whereby x
defines the position of a material point, i.e., a unit volume of the component.

In order to obtain the experimental data, high cycle experiments simulating the sudden opening of a
window were performed. The applied load corresponds to the impact of window opening in tilt position
and was repeatedly applied till failure of the hinges, cf. Dong (2017). In Fig. 4 the typical failure is
shown and in the micrograph it can be seen that the failure was typically initiated from cavity induced
cracks. In this sense we define here a ’failure parameter’ for crack growth, i.e. a critical defect volume
fraction. To this end we presume the initial defect volume per unit volume D0(x) = D(t = 0, x) to be
small and determined by D0(x) =

∑2M
i=1 #si(0, x) ∙r(si), where #si(0, x) is the number of voids in state si

at the initial timepoint and position x and r(si) is the size described by state si. For engineering metals,
the specific initial defect volume is in the range of D0 = 10−4 . . . 10−2, Tvergaard (1990). This value
corresponds to the defect volume measured in the initial CT scans of our window hinges, D0 = 1.4%.

The growth of defects will ultimately lead to component failure. The material is expected to be intact as
long as the size of the defects in the observed location

D(x, t) =
2M∑

i=1

#si(x, t) ∙ r(si) (6)

is below a critical size

Dt ≤ Dcrit. (7)

In the course of their life the component experiences a number of loading cycles N . The variable of
interest is the number of cycles when the component fails, Nc.

To deduce Nc from the model, we need a parameter that determines when the regarded component shall
be considered as broken. If a pore analysis is available from CT scans of broken components, a ’failure
distribution’ at the point of interest can be concluded. It is then possible to compare the volume of the
failure distribution to the pore size distribution in the actual simulation. Other, more simple examples
for a failure parameter can be the mean of the given distribution, the median, the biggest pore size or,
as used in this paper, the total defect volume.

The unknowns, which still remain to be determined, are the transition probabilities pi that determine the
behavior of the Markov chain. These probabilities could be related to a material model, however, this
would jeopardize the simplicity of the stochastic approach. Instead we suggest to relate the probabilities
directly to the main loading parameters at the position of interest, i.e.,

pi = pi (si, Rm, σmax) i = 1, . . . ,M . (8)

where si is the i-th state (5), Rm is the material resistance and σmax is the maximum principal stress at
the position of interest. Other dependencies may, of course, be added.
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4 Numerical Examples

In this section the evolution of damage in a typical die-cast component will be tracked exemplarily.
To this end we will at first use a dimensionless toy problem to illustrate the properties of the chosen
stochastic method. Subsequently follows the application of the Markov chain approach for life-estimation
of a window hinge.

We begin by stating the state space (4). Because we describe the material’s defects by a size describing
parameter, the real interval [0, rmax], will be divided into an arbitrary number of M intervals [ri, ri+1], i =
0, ...,M − 1. For these intervals it holds

M−1⋃

i=0

(ri, ri+1] = (0, rmax] and (ri, ri+1]
⋂

(rj , rj+1] = ∅, i 6= j (9)

with r0 = 0 and rM = rmax. Given the same transition graph as displayed in Fig. 3, the corresponding
transition matrix has the form:

P =
























p̃1 p1 0 0 . . . 0 1− p1 − p̃1 0 0 . . . 0
0 p̃2 p2 0 . . . 0 0 1− p2 − p̃2 0 . . . 0
0 0 p̃3 p3 . . . 0 0 0 1− p3 − p̃3 . . . 0
...

...
...

. . .
. . . 0

...
...

. . .
. . . 0

0 0 0 0
. . . pM−1 0 0 0

. . . 0
0 0 0 0 . . . p̃M 0 0 0 . . . 1
0 0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 0 . . . 0 0 1 0 . . . 0
0 0 0 0 . . . 0 0 0 1 . . . 0
...

...
...

...
. . . . . .

...
...

...
. . .

...
0 0 0 0 . . . 0 0 0 0 . . . 1
























.

Please note that there is always the chance to change the transition graph of the Markov-process like
desired, e.g. to built in transitions we do not consider here.

4.1 Parametric Study

We start with a simple state space of M = 25 states with rmax = 10μm and chose a uniform and constant
transition probability pi = pj for every state i = 1 . . .M and j = 1 . . .M . Furthermore we set pi+ p̃i = 1
at first, so that there are no absorbing states. These leads to the same transition matrix as in Lee and
Park (1998) and Xi and Bazant (1997).

Results of the first calculations can be seen in Fig. 5. Each row stands for a different simulation where the
initial distribution was varied. 10000 random numbers were generated with a given initial distribution
and then classified into M = 25 states. These initial distributions are shown in the left column of Fig. 5.
In the middle column of Fig. 5 the corresponding states after 1000 steps of the Markov process are
displayed. Because the voids of all states are growing we see that the distribution moves to the right.
Also, we see that the shape changes towards a normal distribution. The described phenomena continues
in graphs of the right column of Fig. 5, where the states are shown after 5000 processes. The more steps
are used the more the initial distributions of the states changes to the shape of a normal distribution,
but a student distribution provides a better fit for the first four initial distributions, i.e., there will be a
mean void size with a certain deviation. This is a consequence of the structure of the transition matrix
with constant entities pi. In the last row a normal distribution fits better.

At next, we vary the transition probability which now has to depend on the current state. To this end we
assume a function g : S → [0, 1], g(si) = pi, which gives the transition probabilities for a given state. We
use an increasing third order polynomial g1, a decreasing g2 as well as a parabola g3 with minimum at 25
for this function. The functions read as follow g1(si) = 5.1852 ∙10−6s3i −1.1667 ∙10−4s2i +0.01, g2(si) =
−4.0000 ∙ 10−6s3i + 9 ∙ 10−5s2i + 0.0022 and g3(si) = 2 ∙ 10−4s2i − 0.0030si + 0.015. The functions as well
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Figure 5: Evolution of the size distribution in a Markov process with constant entities pi. Every row is
a new simulation with a different initial distribution. The initial distribution are in the following order:
log-normal, weibull, uniform, exponential and normal distribution. The following columns are after 1000
and 5000 applications.
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as the initial distributions are displayed in Fig. 6. We displayed the continuous versions of g for better
visibility, although we are only interested in the discrete values g(si). To better see the evolution of
the distribution, the number of states is now increased to 50. The functions are displayed in the right
picture of the first row. The initial distribution is displayed on the left side, and in the second row
the distribution in states is given after 1000 steps. In (c) the decreasing polynomial is used, in (d) the
increasing polynomial is used, and in (e) the parabola is used. Note that g(50) is zero as there exists no
state above. The initial distribution was a log-normal distribution with parameters μ = 0 and σ = 0.6.
In (c) the higher probabilities at the lower states lead to a big change in the left tail which becomes very
smooth. The long right tail of the initial distribution disappears in consequence of the low probabilities
at the high states. In contrast, in (d) the higher probabilities at the high states lead to a long right tail
while the left tail does not change significantly. The parabola in the last row combines both, the higher
probabilities at the low states in difference to those state in the middle leads to a short left tail. The
low probabilities in the middle states lead to a very low amount of voids in the right tail but the higher
probabilities at the higher states lead to a long right tail, which can hardly be seen in the picture.
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Figure 6: Studies for different jump functions: In (a) the initial distribution of states is displayed. The
three functions in (b) are the probabilities to jump into a the next higher state, pi = g(si). In the lower
row the results are displayed after 1000 steps for (c) a decreasing function g(si), (d) an increasing function
g(si), and (e) the parabola function g(si).

Such a dependence of the transition probability on the state may be physically motivated. For example,
in static fracture experiments with ductile specimen we usually observe a cup-cone-like fracture with
plastic straining and a very dimpled fracture surface with small and big voids. This corresponds to
initially distributed micro-voids which all grow with similar probability. In consequence, this leads to a
Student’s distribution (a distribution that differs from a Gaussian by having power law tails) like in Fig. 5,
cf. Ponson et al. (2013). In dynamic ductile fracture the effect of void growth is different, cf. Weinberg
et al. (2006). Here the final void distribution shows a smaller variety of void sizes, i.e., the smaller voids
seem to grow faster than the bigger ones. Therefore the evolution of the distribution function which
evolved in Fig. 6c is very much alike the one in Weinberg and Böhme (2008), where a specific constitutive
law was derived from the micromechanical mechanisms of void growth in a viscoplastic solid.

From material science it is well known that, on the one hand, pores grow only at a critical cavitation
size, cf. Weinberg and Böhme (2009), and, on the other hand, large pores grow at the expense of the
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Figure 7: Maximum principal stress values computed in a finite element analysis (left) and experimental
results of cyclic loading until failure for a set of 29 specimen which had been die cast in nest 1 of the mold
and another set of 25 specimen which had been cast in nest 7 (right); displayed are also the maximal
forces measured in a rupture test.

smaller ones. The first effect of a critical nucleation size can be captured by a low transition probability
for small states, Fig. 6d, whereas the second effect, which is known as Oswald ripening, can be modeled
by a decreasing ’jump function’.

4.2 A Markov Chain Approach for Life-Estimation

Here we will apply our Markov chain approach for the life-estimation of a ZAMAK window hinge. We
consider the die-cast component of the hinge as displayed on the right hand side of Fig. 4. The initial
porosity has been determined for several of these parts by CT scans, see Fig. 2. Additionally, several
experimental investigations on the endurance in cyclic dynamic loading have been performed with the
aim to find material or design dependent factors of influence, cf. Dong (2017). These experimental results
will serve us here as a data basis for our modeling.

Please note that we simulate here the growth of defects in the whole die-cast component, i.e., our approach
is macroscopic. Generally, it is also possible to use the Markov chain model within a finite element
analysis, i.e., like a constitutive law at every integration point. Then the transition probabilities depend
additionally on the position x. This, however, would require a deeper knowledge on the functional
dependence of the probabilities which is beyond the scope of this paper.

In order to determine the load dependence we refer to the experiments. They have been performed for
the situation of dynamic window opening, i.e., the initial load is close to zero and at impact the stress
reaches a maximum. Fig. 7(left) shows the maximum principal stress σmax obtained from a finite element
analysis of the tilt window position. A static analysis has been performed with loading assumption which
correspond to the maximal impact forces measured in abrupt opening experiments. The position of the
maximum stress, σmax = 165MPa, corresponds to the location of failure. In consequence we later define
a load dependent factor Θ to determine jump probabilities.

The set S will be the real interval [1, 15] divided into M = 100 states. The state space S is completed
with 100 absorbing states, i.e.,

S = S ∪ A = {s1, s2, . . . , s100} ∪ {a}i=1,100 (10)

with ri − ri−1 = 0.14 according to equation (9).

For the ZAMAK component we model the jump probabilities as a function of the form (8). Specifically
we make use of an increasing third order polynomial approach like in Fig. 6 so that the function is able
to generate higher jump rates in the higher states. In this sense we model the transition probability
pi = g(si). We set

g(s1) = Θ/4, g(sM−1) = Θ, g′(s1) = g′(sM−1) = 0

143



to determine the function g(si). Using

Θ =
σ2
max

R2
mM

= 2.101 ∙ 10−3

where we assume a material resistance of Rm = 360MPa, cf. Kallien and Leis (2011b), leads to the
following jump probabilities

pi = −9.34 ∙ 10−7s3i + 2.10 ∙ 10−5s2i + 5.25 ∙ 10−4. (11)

Remember that the final state has always a jump probability of zero. We also introduce absorbing states
which account, e.g., for obstacles in crack propagation or coalescence of voids. With

1− pi − p̃i = ai,

we set ai = 6 ∙ 10−6 for every state i. The prior formula also gives the resulting values of p̃i which are
the probabilities to stay in the current state.

The initial voids typically have a logarithmic distribution. In the die-cast hinge components we observe
initial void distributions which depend on the position during casting. Within the die-cast process, seven
components form a so-called nest of molds and are cast simultaneously. In particular, one position was
identified to lead to a number of large voids whereas the overall porosity is almost equal in all positions.
Therefore we consider two different initial log-normal distributions: for the simulations of nest 1 the
initial parameters were (μ, σ) = (−0.2133, 0.4) and for the simulations of nest 7 the parameters were
(0.1971, 0.4), see Fig. 8. As failure parameter a final overall porosity of 4% was chosen, so the simulation
runs as long as

D(x, t) =
2M∑

i=1

#si(x, t) ∙ r(si) ≤ 0.04 (12)
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Figure 8: The two initial distributions of voids for nest 1 (left) and nest 7 (right).

With both initial distributions we calculated the evolution of defects until the failure parameter is ex-
ceeded. Each Markov step corresponds to one load cycle. The distribution which exceeds the damage
parameter at first is the one of nest 7 (Fig. 8, right). The experimentally determined life expectation is
plotted for both sets of specimen in Fig. 7. Experimental results of cyclic loading for a set of 29 specimen
which had been die-cast in position Nest 1 of the mold and another set of 25 specimen which had been
cast in position Nest 2 are shown. All specimen fail in the same position of the part, as indicated in the
photograph of Fig. 4. The mean values of the experimentally determined number of life cycles are 21752
for nest 1 and 14231 for nest 7. In the right of Fig. 7 also the maximal forces measured in a rupture test
are plotted. Here we do not see any influence of the void distribution, only the overall porosity determines
the maximum load at failure.

In Fig. 9 the computational results of the window hinge example are shown. In the first row the function
g(si) is displayed which shows the probabilities to jump into a higher state (a). In (b) a state distribution
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is displayed which just exceeded the failure parameter. The absorbing states can also be seen here. In the
second row the distribution of lifetimes is shown for simulations of nest 1 (right) and nest 7 (left). Like
expected the simulations of nest 7 stop earlier because the initial distribution contains bigger voids. The
number of cycles in the simulations of nest 1 and 7 are 27138 and 20217, respectively. The tendency is
the same like in the experimental investigation but both numerical values are about 20% higher. A better
quantitative agreement of experiments and calculations would require a more sophisticated modeling of
the transition probabilities and is subject of ongoing research. Additionally, a stochastic noise could be
added to the initial distribution parameters in order to replicate the scattering of the results. Such a
noise would correspond to the large variation of results observed experimentally in both nests.
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Figure 9: Simulation of life cycles: On the left side in the upper row the jump function g(si) is displayed.
On the right side a distribution of voids is displayed where the simulation stopped as the failure parameter
is exceeded. In (c) the distribution of the lifetimes is displayed for the simulations of nest 1 (right) and
nest 7 (left).

We conclude that with a physical motivated and neat selection of the parameters we are able to obtain
results which are in accordance with the experiments. A predictive computation, however, requires a
profound modeling of the transition probabilities as a function of the material.

5 Conclusion

Summarizing, we state that ZAMAK is — from the material science point of view — well investigated.
Various publications provide information on the characteristics of the (ideal) material. Nevertheless there
is hardly any knowledge about its long term behavior, about its mechanical response under different
loading conditions, and about the reasons of the large variations in its limit loads. This information,
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however, is essential for predicting the mechanical behavior of die-cast ZAMAK components. Because
a deterministic material model will have to account for a variety of physical phenomena and influences
and will likely not be able to explain the scattering of failure parameter, we suggest here a stochastic
modeling.

In our model the weakening influence of defects in a die-cast component subjected to cyclic loading is
described by a Markov process. With this stochastic approach it is possible to estimate the evolution
of damage for a given initial distribution. In simple examples we show the general effects of the initial
state space, the number of process steps and the jump function on the final void distribution. A failure
parameter determines the critical number of cycles, i.e., it indicates the defect distribution which will
ultimately lead to component failure. The character of the Markov process is predominantly determined
by the states’ transition probabilities. The required stochastic parameter could be deduced from experi-
mental results, especially from CT scans of the virgin component and the corresponding distribution at
failure. Combined with an elastic finite element analysis, which provides the maximum elastic stress in
the component, a jump function for the transition probability in critical zone of a widow hinge component
can be found.

With the derived jump function we evaluated the defect growth in two sets of die-cast ZAMAK specimen.
Because the die-cast process works with a concurrent cast of 7 parts, the location of these parts in the
mold has an influence on the typical distribution of pores and voids. Experiments show that, although
the overall porosity is similar, their number of cycles till failure differs. This could be captured by our
Markov model with the computational result in agreement to the experimentally obtained data. Please
note, that the failure load of a rupture test under monotone loading does not show such scattering.

In the future, our research on Markov processes shall focus on developing a more elaborate model for the
transition probabilities. CT scan data will be used to generalize the construction of the jump function
based on the specific cast material, the loading amplitude and on information about the defect distribution
in the initial and in the failed state. This will enable us to predict the number of life cycles a component
can sustain and it will support service life analyses of die-cast ZAMAK components.
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