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A Compatible Quadrilateral Finite Element for Plate Bending 
with Three-Nodal Degrees of Freedoms Each Node 

 
 S. Abo Diab 
 
 
This paper describes the formulation of a four node quadrilateral finite element for the use in the analysis of thin 
plate structures and the stiffened folded structures. The element has three degrees of freedom at each node, these 
are the displacement perpendicular to the plane of the plate and the two in-plane rotations. The element ensures 
conformity and inter-element continuity. Expressions for the displacement and rotations along the edges of the 
element are first formulated. Depending on these expressions, the approximation functions of the two in-plane 
rotations are derived. The state of the strain for the plate element is defined by the two rotations and it is not 
necessary to have an explicit formula of the displacement function in order to derive the element stiffness matrix. 
The derived element is fully compatible, when combined with plane strain element previously derived in the mid 
80th and the classical beam elements for the analysis of stiffened folded plate structures. 
 
 
1 Introduction 
 
A finite element approximation in the structural mechanics is usually evaluated upon criteria of a variational 
energy balance. The first energy balance used are the principle of minimum potential energy derived from the 
principle of virtual displacements or the principle of minimum complementary energy derived from the principle 
of virtual forces  or their incremental forms. The finite element application based on such criteria requires 
conformity and inter-element continuity of the approximation functions for the displacements or the stresses 
between adjacent elements. The extended forms of these principles using the Lagrange multipliers method was 
applied in the early 70th of the last century, for a survey see e.g. (Washizu, 1982), (Pilkey and Wunderlich,  
1994). The extended variational principle enables the continuity requirements to be relaxed. They allow also the 
displacement and the stresses to be selected independently. As a consequence, the desired minimum criterion is 
replaced by a stationary one. In (Atluri et al., 1983) is obviously declared that the origin of the hybrid mixed 
methods is related to earliest works of Pian in the early 60th. It also contains the state of development of the 
hybrid mixed methods until 1983. The pioneer work of (Pian, 1973) demonstrates the application of the hybrid 
mixed model. The basic idea of his formulation consists in selecting an independent frame functions for the 
displacement along the element boundaries which fulfill the continuity requirement between adjacent elements. 
For the stresses, approximation functions that fulfill a priori the equilibrium equations are chosen. This concept 
is inspired numerous researchers and still be used up to date in developing finite element for plate bending in 
order to overcome the so called c1–continuity requirement of the displacement functions. The strategy of Pian is 
also adopted in some of  research works represented by (Müller, 2006) in order to develop hybrid mixed plane 
stress and plate bending elements  for solving the problems of linear and nonlinear statics and kinetics of folded 
plate structures. For solving the problems of the stiffened folded plate Structures the classical beam element with 
the cubic interpolation functions, a compatible plane stress element formulated using the same cubic functions  
(Müller and Abo Diab, 1987), (Müller et al., 1987), and a non-compatible thin plate bending element was used. 
Years later these works are presented internationally by (Müller et al., 1991, 1994). The compatibility issue of 
the thin plate bending element when joined to the other two mentioned elements at a folded plate edge was and 
still unsolved. 
The plate bending problem is one of the most studied problems in the history of scientific research. It is 
classified under two main types, namely the thin Kirchhoff plate and the Mindlin thick plate. Recently an “in 
between” plate theory, the so called twist-Kirchhoff theory is generalized for arbitrary quadrilaterals and 
assessed for convergence by (Santos et. al, 2011). 
A survey about the new development in the framework of the Mindlin plate can be found in (Senjanovic et al.  
2014). There, the author reported that a comprehensive survey about both analytical and numerical solutions 
associated with thick (Mindlin) plate theories were worked out in (Liew and Kitipornchai, 1995). The governing 
equations of this theory for vibration analysis are also explained in details. Another survey about the recent 
developments of Mindlin-Reissner plate elements is presented by (Cen and Shang, 2015). In a finite element 
application based on the Mindlin plate theory the deflection and the two rotations are independently selected. For 
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this selection, only extended variational principles are suitable as a variational basis of a finite element 
approximation.  
The equations, governing this problem can be found in the most text books of structural analysis (Timoshenko 
and Woinowsky-Krieger, 1987), (Reddy, 1984), (Ventsel and Krauthammer, 2001), (Zienkiewicz and Taylor, 
2000), (Cook et al., 2001). The problem of developing finite elements with conforming shape functions is also 
discussed in details in addition to the previously listed books in many other text books about FEM (Akin, 2005); 
(Liu and Quek, 2005), (Felippa, 2017); (Rao, 2005). This paper does not aim to give a survey about finite 
elements for plate bending or to discuss the continuity requirements and conformity required by the application 
of the finite element method. It aims to introduce an idea to deal with finite element formulation for plate 
bending in a similar way as in applying a plane stress problem in what concerns the constructing of the 
approximation basis functions. So, the considered approximation basis functions are the in-plane rotations (like 
the Mindlin plate) rather than the displacement perpendicular to the plane of the plate. An explicit formula for 
the displacement inside the finite element is not necessary for deriving the stiffness matrix. The displacement is 
formulated along a finite element edge dependent on the degrees of freedoms of the nodes of that edge. As a 
result we get the classical Hermetian polynomials as an approximation functions (as derived by Pian), from 
which we can now derive the expression for the rotation along the edge. Now, depending on the expressions of 
the rotations at every two opposite edges of the element, the approximation basis functions for the rotation in the 
entire finite element are formulated. In such approximation procedure we can ensure compatibility requirements 
between the proposed plate bending element and the plane stress element as well as the beam elements, so that in 
a real building structure, where columns are firmly attached to the floor slabs, the columns will rotate about their 
axes by the same amount as the floor slabs.  But this procedure has some disadvantage, in what concerns the 
evaluation of the external work of the element loading and the evaluation of the kinetic energy in which the 
explicit expression for the transverse displacement is necessary for developing the element load vector and the 
mass matrix. Some work must be further done to overcome such obstacles. Although, the nodal deflections and 
rotations of the element are computed, the deflection inside the finite element must be calculated by integrating 
the functions of rotations under preserving compatibility conditions. An approximate way for considering the 
external work and the kinetic energy consists in expanding the deflection at an arbitrary point inside the finite 
element as a multi variable Taylor series in the vicinity of the geometric center of the element. In the following 
the proposed procedure will be outlined in details. The state variables of the thin plate problem will be declared 
when mentioned, the equations governing the plate problem will be short outlined. 
 
 
2 Formulation of the Governing Equations 
 
Whenever is not pointed out, Latin indices range over the Cartesian co-ordinates, Greek indices range over the 
natural co-ordinates and indices between round brackets identify the nodal points. For example m ranges over 

)( 2,1=ixi , where (m) denotes the number of the nodal points. 
In the following, it is assumed that the assumptions of the Kirchhoff plate theory apply. The unknowns of the 
problem are the kinematic variables namely the deflection normal to the plane ),( 210

3 xxux , the rotation about 1x -

axes ),( 21
1 xxxϕ and the rotation about 2x -axes ),( 21

2 xxxϕ as well as the strain tensor with the 

components { }22211211 xxxxxxxxji εεεεε = . The other stress components vanish corresponding to the 
Kirchhoff assumptions. The two rotations will now be considered as primary unknowns and the deflection as 
secondary unknown. 
The static variables are the stress tensor { }22211211 xxxxxxxxji σσσσσ =  as primary static unknowns. The 

additional shear stresses { }3231
, xxxx σσ , and the normal stress 

33xxσ are secondary static unknowns. That 
means, they could be calculated depending on the primary unknowns using equilibrium conditions and assuming 
a stress distribution over the plate thickness. 
The stress tensor jiσ  is usually replaced by the moment tensor { }22211211 xxxxxxxxji mmmmm =    and the 

shear stresses { }3231
, xxxx σσ  by the shear forces 

21
, xx qq . The moments and shear forces are measured per 

unit length. 
Now, the equations governing the Kirchhoff plate will be recast depending on the primary unknowns. 
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The kinematic relation between the displacement at an arbitrary point of the plate thickness and the cross-
sectional rotation assuming small displacement and neglecting the stretching are given by: 
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Then, the strain displacement relations read 
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The stress strain relations assuming linear elastic and isotropic material are given as follows: 
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Replacing the stress components by the bending and twisting moments and making use of Eq. (2) yield: 
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Where E, υ and h are the Young’s modulus, Poisson’s ratio and thickness, respectively.  )1(12/ 23 υ−= EhD  is 
the flexural rigidity. 
The conditions of equilibrium at the differential plate element in the static analysis read: 
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Separate considering the primary unknowns, show the similarity of the above presented problem to the plane 
stress problem. Since there is a system of ten algebraic and partial differential equations represented by two set 
of Eqns. ( 2), (3) and the first two relations of Eqn. (5) for determining the ten primary unknowns iϕ  , jiε and 

jiσ . The additional static unknowns, the shear forces are linked to this system of equations through the third 
relation of Eqn. (5). This relation is a first order differential equation with two unknowns, in which the key for 
solving the Kirchhoff plate is hidden.  
Substituting the shear forces from the first and second relation of  Eqns. (5) in the third one give the higher order 
differential equation: 
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xx

xx qmmmm           (6) 
The first differential equation governed the problem under consideration is obtainable by substituting Eqn. (4) 
into Eqn. (6) with the following result: 

 Dq x
xxxxxxxxxxxxxxxx /

3

2111222111121222 ,,,, =++−− ϕϕϕϕ           (7) 
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This equation is a third order differential equation with two unknowns. 
The second differential equation results in from the Kirchhoff assumptions:  
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With these assumptions, the in-plane displacements represented by Eqn. (1) are directly coupled with the 
transverse deflection. Furthermore, the assumption of vanishing the transverse shear strains 31xxε , 32xxε is 
justified. This can be proved easily by substituting Eqn. (1) and (8) in the corresponding strain displacement 
relations. Eliminating the slopes of Eqn. (1) and (8) leads to the well-known differential equation of the 
Kirchhoff plate expressed only in terms of the deflections. 
Eqns. (7) and (8) can also be considered as a Kirchhoff formulation of the problem provided that the two 
rotations are derivable from the same function (deflection). In other words the compatibility conditions 
associated with Eqn. (8) must apply.  
The formulation in this way has the disadvantage that the additional kinematic unknown, the deflection 0

3xu  
becomes an integral form of Eqn. (8). 
Taking the derivative of the first relation of Eqn. (8) corresponding to 1x  and the second one corresponding to 

2x  and summation gives the first order differential equation: 
 01221 ,, =+ xxxx ϕϕ                (9) 

The last equation represents the divergence of the vector field 
2

2

1

1
x

x
x

x ee 

ϕϕϕ += . This means that the 
Kirchhoff assumptions keep the vector sum of the rotations constant regardless of the vertical loading. The 
coupling between vertical loading and rotations follows through the derivatives in Eqn. (7).  
It is interesting to observe that subtraction of the two mentioned equations instead of summation gives: 
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The same relation is obtainable by formulation of the compatibility condition in terms of iϕ  : 
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This means, in a Kirchhoff plate the slopes couldn’t be selected independently since Eqn. (9) or (10) must be 
observed. Therefore, the so called drilling degrees of freedoms )(0

, 213 iu xxx  at element nodes are added in the 

literature in many finite element applications in order to construct compatible elements. This additional degrees 
of freedom cause the violation of the compatibility conditions with the mentioned plane stress element and the 
classical beam elements when joined at a folded plate edge and transformation difficulties at the corners.  This 
path is not followed here, and the suggested element has only 3 DOFs at each node in favour of satisfying the 
compatibility at a folded plate edge. 
The conditions of equilibrium at the differential plate element in the dynamic analysis neglecting the 
contribution of rotation inertia moments read: 
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The above discussion for the static case is also valid for the dynamic case. The differential equation (Eqn. 7) 
contain the additional term 0

3xuρ .   
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32111222111121222
0

,,,, )( x
xxxxxxxxxxxxxxxxx quD =+++−− ρϕϕϕϕ        (13) 

The well-known Kirchhoff differential equation  

 
3

33
00 x
xx quuD =+DD ρ             (14) 

can be obtained by inserting Eqn. (8) into Eqn. (13). 
Now, a brief description of the suggested finite element for plate bending follows.  
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3 Variational Approximation Basis 
 
The current finite Element approximation is based on Hamilton’s Principle. The 2D expression for the special 
case of the thin plate considered can be written in the absence of the prescribed boundary displacements in the 
following form: 
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where 

1t  and 2t are two fixed time points of the vibration process, d is the first variation, lkjiE is the tensor of the 
force-curvature dependency given in matrix form in Eqn. (4), A is the element area and dA its differential. iu is 

the velocity vector in which both displacement and rotation components are included, jiρ is the corresponding 

mass density matrix,  )(iF is the concentrated load applied at the point (i). 
ijχ  is the curvature tensor, which reads expressed in terms of the primary unknowns iϕ : 
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In Eqn. (15), the internal work associated with the bending and twisting moments is only considered.  
 
 
4 Rotation Approximation Basis and Coordinate Systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 1: Thin plate element, with different coordinate systems 
 
The plate finite element with the nodal points (i), (j), (k), (l) has three degrees of freedom each node.  These are 
the displacement normal to the plate surface in 3x -direction and the two rotations about  1x and 2x -axes. The 
total number of degrees of freedom each element is then represented by the element nodal displacement vector 
with 12 degrees of freedom 
 

)(nnu  = { 0
)(3 ixu , )(1 ixϕ , )(2 ixϕ ,

0
)(3 jxu , )(1 jxϕ , )(2 jxϕ ,

0
)(3 kxu , )(1 kxϕ , )(2 kxϕ , 3

0
( )x l

u , 1( )x l
φ , 2 ( )x l

φ }             (17) 

Let the quadrilateral element be defined by its four nodal coordinates related to the global Cartesian coordinate 

system ),( 2~1~ xx  as follows 
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By mapping the quadrilateral element in a bi-unit square with the natural coordinate system ),( 21 θθ  , the natural 
coordinates of the four element nodes are: 
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 Beside global Cartesian coordinate system ),( 2~1~ xx , parallel local coordinate system located at geometric center 

of the element ),( 21
∗∗

xx  and the natural coordinate system ),( 21 θθ , a suitable Cartesian coordinate system 

),( 21 xx  located at geometric center of the element is defined from the directions of the covariant base vectors 
and the perpendicular contra-variant base vectors computed in geometric center of the element. For more details 

see (Abo Diab, (2001, 2003)). Now the following differential geometry properties of the element are defined 
  (Meißner, (1986), Klingbeil, (1989)):  
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*The position vector of an arbitrary point of the element:      
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=               (21) 
*Covariant basis vectors 
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ααα ,, ==              (22) 
*Derivatives of the covariant basis vectors 
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*Metric coefficients 
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*Contra-variant metric coefficients 
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αβ gg              (25) 
*Contra-variant basis vectors 
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αβα ggg  .=               (26) 
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* Christoffel symbols 
 γ

βα
γ
αβ i

i gg .,=Γ              (27) 
 
 
5 Formulation of the Finite Element Equations in the Natural Coordinate System 
 
 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
       Figure 2. Bi-unit square, natural coordinate system, degrees of freedoms 
 
It is convenient to construct the displacement approximation basis in the natural coordinate system. The element 
nodal displacement vector related to the natural coordinate system is as follow 
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The displacements along the element boundary are approximated in terms of the classical Hermitian 
polynomials. From those displacements, the rotations are derived.  
Arranging the approximation functions for the rotations along the four element boundaries gives the following 
relation 
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and  
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The notation 1, denotes the derivative with respect to 1θ and the notation 2, denotes the derivative with respect to 
2θ .   

The rotation  ),( 21
1 θθϕ    inside the finite element will be interpolated depending on the rotation of every two 

opposite element boundaries )( 2)()(
1 θϕ kj , )( 2)()(

1 θϕ i as follows  
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Similarly, the rotation  ),( 21
2 θθϕ  inside the finite element will be interpolated depending on the rotation of the 

other two opposite element boundaries )( 1)()(
2 θϕ ji , )( 1)()(

2 θϕ k as follows  
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Observing Eqn. (29) and Substituting into Eqns. (32) and (33) gives finally the following expression for the 
rotations 
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where 
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The approximation basis functions (35) are sufficient for developing the element stiffness matrix. The shape 
functions constructed in this way satisfy the c1–continuity requirement between adjacent plate elements and the 
compatibility requirement with the classical beam and the mentioned plane stress element when mixed at a 
folded plate edge. But they show what called stiffened corner rotation. The corners become stiff and a fine mesh 
size is required in order to avoid this over stiffness. Another way consists in introducing the drilling degrees of 
freedom.   
  
 
6 Evaluating the Element Matrices in the Natural Coordinate System 
 
Transforming the energy expression Eqn.(15) into the natural coordinate system leads to  
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where 
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 ijkl

lkji EggggE dγβααβγd =             (38) 
Applying the expressions of the rotations (Eqn. (34)) in the first term of Eqn.(36) yields the element stiffness 
matrix related to the natural coordinate system 
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mN λ
αβ is a 4x12 matrix derived from the primary unknowns αϕ  corresponding to the following natural form of 

Eqn. (16). 
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The Christoffel symbols are defined in Eqn. (27). 
Note that the integration of the element stiffness matrix can be performed depending on αϕ only and there is no 
need to know the explicit expression of the deflection. 
 
 
7 Considering the External Work and the Kinetic Energy 
 
The explicit expression for the transverse displacement is necessary for developing the element load vector and 
the mass matrix. The following expansion of the deflection at any point ),( 21 θθ is the simplest approximation of 
the deflection depending on the element rotations  
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In Eqn. (41), )0,0(0
3θu  is the deflection at the geometric center of the element where  0,0 21 == θθ  
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When 21,θθ are small enough, the previous expression represents the linear terms of the multi variable Taylor 
expansion of the deflection of the point ),( 21 θθ in the vicinity of the geometric center. 
It is also possible to go higher in the approximation by involving the higher order terms of the Taylor expansion. 
For example, considering the second term of the Taylor series gives  
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Assuming an average value for the deflection of the geometric center depending on deflections of the four nodal 
points,  
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then we can evaluate the element load vector and the mass matrix in the usual way. 
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where )(m
iN λ  is a 3x12 matrix obtained by arranging the deflection constructed corresponding to Eqn.(41) or 

Eq. (42) by making use of  Eqns. (34), (43) and the two rotations presented in Eqn. (34).  
jiρ is the corresponding mass density matrix in which the displacements and rotations effects are included  
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In Eqn. (43), A is the element area and )(),(),(),()()( ; lkjippA =   is the subarea of the element included between the 
two element edges, which meet in (p), and the coordinate lines passing the geometric center.  
The selection of the deflection in the explained form is kinematically justified. Eqn. (41) can be used to construct 
the shape functions for the secondary unknown dependent on the primary unknowns for linear cases and Eqn. 
(42) for nonlinear cases. By increasing the mesh refinement this selection represents a mathematic justified 
approximation for the deflection. Furthermore, in contrast to a Mindlin finite element application the deflection 
and the rotations are directly linked together. 
The term of the equivalent nodal forces associated with the external work of the distributed load represented by 
the third term of Eqn. (36) is defined as follows: 
 
 dAqNNf p
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)( pN  are the shape functions that define the load function q  depended on its nodal values )( pq . 
Applying the results of integrations from Eqn. (39), (43), (44) in the potential form Eqn. (35) leads to the 
following relation:  
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All the element matrices are evaluated using the numerical integration. 
Transformation to the local coordinate and after that to the global coordinate system leads to similar expressions. 
Finally, performing the variation leads to the following standard FEM-relation (in the absence of damping 
effects). 
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Note that the explicit formula of the deflection expressed in Eqns. (41), (42) is only used as secondary unknown 
in order to predict the distribution of the load and mass over the element nodes. It doesn’t affect in any way the 
constructing of the stiffness matrix.  
 
8 Numerical Examples 
 
8.1  Square and Quadrilateral Clamped Plate 
 
 
 
 
 
 

 

 
 

 
 
 
 
 

 
       Figure 3: Clamped aa× - thin plate, geometry, loads and material properties 
 
The introduced shape functions of the plate element are verified numerically by solving a unit clamped square 
plate subjected to a central concentrated unit load and comparing the results with that provided by (Kikuchi, 
1972). The elastic modulus E, the plate thickness h and Poisson’s ratio v are chosen so that the flexural plate 
rigidity D is equal to unity. The results for the deflection and bending moment at the center of the plate as well as 
the edge moment at the plate edge are listed in Tab.1. The results are very close and the present solution is 
closer to the analytical solution for a coarse mesh. Therefore, the present FE-solution can be considered as a 
useful one. 

Table 1: Clamped aa× - square plate subjected to central concentrated load 
 

Mesh size 0
3xu  Center 

11xxm Center 
22xxm−  Edge 

Mesh2x2 0.00616371 0.02951631 -0.07395867 
Mesh4x4 0.00640053 0.02151799 -0.05735057 
Mesh6x6 0.00605365 0.02216200 -0.05404186 
Mesh8x8 0.00589296 0.02244994 -0.05286639 

Mesh10x10 0.00580687 0.02260017 -0.05232305 
Mesh20x20 0.00567175 0.02282372 -0.05158771 
Mesh 10x10 

(Kikuchi 1972) 
0.005731 - - 0.051 1 

a=1. m 

a =1.m  

E=1365 kN/m
 2
  

h=0.2 m 
0.3=ν  F=1kN 
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The clamped plate is computed again when subjected to uniformly distributed unit load. The results for different 
finite element mesh are depicted in Table 2. The results for the deflection and bending moment at the center of 
the plate as well as the edge moment at the plate edge are compared with that provided by (Taylor and 
Govindjee, 2002). Bearing in mind that the solution given in (Taylor and Govindjee, 2002) is an analytical one 
and obtained by solving a 2000 x 2000 system of equations, the present FE-solution can be considered also as a 
useful one. 

Table 2: Clamped aa× - square plate subjected to uniformly distributed load 
 

Mesh size 0
3xu  Center 11xxm Center 

22 xxm−  Edge 
Mesh2x2 0.001540927022 

 
0.0480769231 

 
-0.0369822485 

 
Mesh4x4 0.001459662935 

 
0.0286914182 

 
-0.0484724170 

 
Mesh6x6 0.001358931589 

 
0.0254405941 

 
-0.0501217006 

 
Mesh8x8 0.001319405506 

 
0.0243294592 

 
-0.0506661992 

 
Mesh10x10 0.001300319229 

 
0.0238148708 

 
-0.0509051989 

 
Mesh20x20 0.001274195602 

 
0.0231318628 

 
-0.0512245695 

 
Analytical, Taylor 

and Govindjee, 
(2002) 

0.001265319087 0.02290508352 -0.05131141375 

 
 

The free vibration analyses of the fully clamped square plate were carried out by using the present element. The 

mass density is chosen  3/5 cmg=ρ  such that the factor 4/ ahD ρ  is kept equal to unity.  The plate is meshed 
by 20 x 20 finite elements. The first 40 non-dimensional natural frequencies are listed below in Tab.3.  
For a comparison purpose, a numerical solution obtained using a superposition method and a finite difference 
method in (Mochida, 2007), is also listed. In addition, other solution cataloged by (Leamy, 2016) is also given . 
Tab. 3 shows a good agreement between the three different solutions as well as a solution produced in (El-Gamel 
et al., 2016). 
 

Table 3: Comparison of the non-dimensional natural frequencies Dha /2 ρω   using three different 
methods for a fully clamped square plate  

 
Order non-dimensional 

natural frequencies 
Leamy, (2016) 

 
superposition 

method, Mochida 
(2007) 

1. 35.857974 35.09193 35.99 
2. 73.052083 72.88823 73.39 
3. 73.052083  73.39 
4. 107.058534 107.4690 108.2 
5. 130.973867  131.6 
6. 131.647400 131.6154 132.2 
7. 162.801520 164.3789 165.0 
8. 162.801520  165.0 
9. 209.722899 210.3520 210.5 
10. 209.722899  210.5 
11. 215.556136 219.3245 220.0 
12 238.741077   
13 239.891161 242.1844 242.2 
14. 289.217111   
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15. 289.217111 295.6943  
16. 308.004651 308.9221  
17. 308.316316   
18. 336.174611   
19. 336.174611 340.2308  
20. 359.632614   
21. 382.751019 370.6585  
22. 384.201061 392.7866  
23. 426.768970 427.2750  
24. 426.768970   
25. 450.563150   
26. 450.563150   
27. 452.961870 458.2581  
28. 453.734628 466.6105  
29, 498.256655   
30. 498.256655 510.1766  
31. 537.796562   
32. 561.245113   
33. 562.962864 561.4708  
34. 565.775504   
35. 565.972449 565.3911  
36. 591.106364 583.1376  
37. 591.106364   
38. 633.154575   
39. 634.348847   
40. 645.499077   

 
The influence of mesh distortion on the results is studied also with the aid of a clamped square plate subjected to 
Eigen value analysis. The plate is first meshed by 4×4 regular elements, and secondly by the highly distorted 4×4 
quadrilateral elements shown in Fig. 4. Tab. 4 shows the result of the difference in the non-dimensional natural 
frequencies for the regular mesh compared to the distorted mesh. The current result is comparable with that 
produced by various known finite elements such as (Jirousek and Guex, 1986), (Sze and Chow, 1991), 
(MacNeal, 1982), (Batoz and Ben Tahhar, 1982). 
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a) Regular mesh                                            b) Distorted mesh 
 
 

Figure 4: Clamped square plate meshed by 4×4 elements for studying the influence of mesh distortion. 
 
 

 
 



 161 

Table 4: Difference in the non-dimensional natural frequencies for distorted mesh over the clamped 
square plate (Fig. 4b) compared to the regular mesh (Fig. 4a) 

 
mesh 

1f  2f  3f  4f  5f  6f  
distorted 34.498092  72.050984  73.815761  104.155672  137.258046  139.606801  
regular 34.038765 71.326579 71.326579 98.040161 151.646901 159.811277 

 
 
An arbitrary quadrilateral clamped plate (Figure 5) is also studied. The plate is meshed by different number of 
quadrilateral elements. The results of the first six non-dimensional natural frequencies 

Dha /)/( 22 ρπω using the proposed element for three different mesh sizes are listed below in Table 5.  
The present solution can be compared favorably with that provided by (Dozio and Carrera, 2011) for thickness-
to-length ratios (h/a=0.005, 0.01, 0.05). 
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Figure 5: Clamped aa× - thin plate, geometry, and material properties 

 
Table 5: Comparison of the non-dimensional natural frequencies of clamped quadrilateral plate with the 
results provided in (Dozio and Carrera, 2011). 

 
mesh 

1f  2f  3f  4f  5f  6f  
2x2 8.234961 11.329410 12.932349    
4x4 6.516769 12.481392 14.055341 18.910696 24.920696 27.287980 
6x6 6.648953 12.623712 14.021059 19.526633 21.653798 25.592772 

Dozio 
and 

Carrera,  
(2011) 

6.8294    13.115 14.319    20.777   22.296   25.627   

 
 
 
8.2 Trapezoidal and Quadrilateral Cantilever Plate 
 
Two cantilevered trapezoidal Plates with thickness h=0.2, unit plate-rigidity, Poisson ratio 3.0=υ  and mass 
density 3/5 mMg=ρ as shown in Fig. 6 are subjected to eigenvalue analysis. The results for the normalized 

2x   
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70=α
  

75=β
  

1x   

)1(   )2(   

)4(   

2kN/m 1365=E  
t=0.2 m 

0.3=ν  
3Mg/m 5=ρ  

a   

c   b   
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angular frequency 4ah/D/ ρω  for different element mesh size are listed in Table 6a and Table 6b.  In both 
tables the results are obtained using element stiffness and mass matrices integrated  numerically using a 3 × 3-
point Gaussian rule. As may be seen, a very fast convergence is obtained. The first three digits do not change 
practically after the second mesh refinement. The solutions for the same plate models are reported in Korenev 
and Rabinovic (1980). They are close to the computed values and, also, obtained numerically using the Ritz-
Method.  

 
                                                  a)                                            b) 

Figure 6: Cantilevered trapezoidal plate 
 

Table 6a : Normalized angular frequency of cantilevered trapezoidal plate of Figure 6a 
 

Normalized angular frequency ( 4// ahD ρω ) 
mesh 9=α  18=α  27=α  36=α  
2×2 3.603188 3.774116 4.007905 4.420487 
4×4 3.620411 3.801609 4.055401 4.518090 
6×6 3.624900 3.809235 4.068422 4.543615 

Korenev and 
Rabinovic, 

(1980) 

3.706 3.910 4.243 4.822 

 
 

Table 6b: Normalized angular frequency of cantilevered trapezoidal plate of Figure 6b 
 

Normalized angular frequency ( 4// ahD ρω ) 
mesh 6=α  12=α  18=α  24=α  
2×2 3.674759 3.979360 4.462078 5.442542 
4×4 3.694202 4.013026 4.525619 5.588472 
6×6 3.699450 4.022966 4.545451 5.639143 

Korenev and 
Rabinovic 

(1980) 

3.718 4.153 4.750 5.995 

 
The last example is the general quadrilateral cantilever plate studied by (Dozio and Carrera, 2011) with side 
lengths a, b, c and internal angles 60=α , 90=β  and the geometrical properties given in Figure 7. The plate 
is subjected to Eigen value analysis for a different mesh size. The four vertices of the plate are defined by the 
following global Cartesian coordinates:  
 

a
 

a  

1~x  

2~x
 

α  α
 

a
 

a
 

α
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The first six frequency parameters of the cantilever quadrilateral plate Dha /)/( 22 ρπω  for different 
mesh size are listed in Tab. 7. For the one element structure the element stiffness and mass matrices are 
integrated exactly, for other mesh size, the integration is performed numerically using a 3 × 3-point Gaussian 
rule. The first line in the first cell is obtained by exact integration whereas the second line in the first cell is 
obtained using the numerical integration. For a comparison purpose, a numerical solution obtained using a 
variable kinematic Ritz method applied to free vibration analysis of arbitrary quadrilateral thin and thick 
isotropic plates in (Dozio and Carrera, 2011) is also listed. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: quadrilateral cantilever thin plate, geometry and material properties 

 
Table 7: Comparison of the non-dimensional natural frequencies of cantilever quadrilateral plate with 
the results provided in (Dozio and Carrera, 2011). 
 

mesh 
1f  2f  3f  4f  5f  6f  

one 
element 

0.490913 
0.491869 

0.985323 
0.993002 

2.622993 
2.940869 

4.074582 
4.277306 

5.058621 
6.117261 

10.508649 
34.553542 

2x2 0.501838 1.596873 2.699458 4.134242 5.080273 6.210563 
4x4 0.507972 1.641754 2.825560 4.369777 6.380308 7.684967 
6x6 0.509355 1.655225 2.817862 4.385947 6.483664 7.676921 

Dozio and 
Carrera  
(2011) 

0.4857    1.3716    1.4692    2.2111 3.1421 3.3287 3.6373 4.5291 

 
 
9 Conclusion 
 
A compatible thin plate finite element with three degrees of freedoms at each node is presented. The element 
approximation basis makes use of the slopes rather than the deflection. The constructed approximation basis for 
the rotations is compatible and sufficient for developing the element stiffness matrix. For deriving the element 
load vector and the mass matrix the deflection at an arbitrary point inside the finite element is approximated as a 
multi variable Taylor expansion of the deflection in the vicinity of the geometric center of the element. The 
element developed is especially suitable for the use in analyzing stiffened folded structures since it ensures 
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1x   
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)4(   
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2kN/m 1365=E  
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3Mg/m 5=ρ  

a   

c   b   



 164 

compatibility requirements between the plate bending element, the plane stress element as well as the attached 
beam elements. 
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