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Determining a Function for the Damping Coefficient of a laminated Stack

C. Zahalka, K. Ellermann

The design of electrical machines is determined by electrical as well as mechanical requirements. Possible losses
due to eddy currents in the stator or the rotor are commonly reduced by using stacks of laminated sheet metal.
On the other hand, the design of the stator and the rotor has a significant influence on the mechanical properties:
Vibrations depend on the stiffness and the damping of the laminated stack. There are different methods to determine
the stiffness coefficient of a stack, but it is much more difficult to obtain suitable values for the damping as there
are more influencing factors.

This paper describes an experimental procedure, which determines the influence of different parameters on the
damping of a stack. The stack used during the experiments consists of 200 quadratic steel sheets with a side length
of 80 mm and a thickness of 0.5 mm. In accordance with the measurement data, a functional dependance based
on three variables is derived. The first one is the surface pressure between the steel sheets, the second one is the
frequency of the applied lateral force, and the third one is the displacement between the steel sheets.

It is the aim of this investigation to determine the influence of variations of these parameter values on the damping.
The forces are applied onto the stack with hydraulic cylinders. The mechanical deformation of the stacked metal
sheets is measured by a laser-speckle-based measurement system. This system detects the displacement of single
steel sheets. The displacement is measured on two steel sheets, but they are not side by side. The difference between
the two measurement points is equal to the displacement of the stack.

Through the synchronization of the time signal of the lateral force and the displacement of the stack, a hysteresis
loop can be calculated. This hysteresis depends on the lateral force and the displacement of the stack. The area of
the hysteresis corresponds to the dissipation energy between the two measurement points on the stack, 140 sheets
apart from each other. This area is calculated by numerical integration based on the trapezoidal rule. Through
the conservation of energy for this system, it is possible to calculate an effective damping coefficient for the stack.
Considering different influencing parameters, a function for the damping coefficient can be identified by the least
square method. This function can be used for the parameters in a numerical simulation of an electrical machine.

Nomenclature

A [m] Amplitude of the displacement of the dynamic cylinder
d [Ns

m ] Structural damping
fE [Hz] Excitation frequency
FD [N] Dynamic force
F̂D [N] Amplitude of the dynamic force
FStat [N] Static force
m [kg] Mass
p [ N

m2 ] Surface pressure
t [s] Time
x [m] Displacement
x̂ [m] Amplitude of the displacement
WDiss [Nm] Dissipation energy
η [−] Loss factor
ψ [rad] Phase shift
ω0 [ rads ] Angular eigen frequency
ωE [ rads ] Angular excitation frequency
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1 Introduction

Information about the material properties of the laminated stack is necessary to simulate the dynamics of a rotor
or a stator of an electrical machine. Due to the structure of the stack, the material properties vary in the different
directions: in radial direction, the metal of the sheets dominates the tensile stiffness. Different layers of the stack
act in parallel and the material with the highest value of Young’s modulus contributes most significantly to the
effective stiffness of the stack. In axial direction, the contact- and lamination-zone between the sheets becomes
much more important as layers act in series. In this direction, the material with the smallest value of Young’s
modulus influences the tensile stiffness much more. These zones are also considered to be highly important for
non-conservative effects: The transversal deformation of the stack due to a shearing motion between the metal
sheets contributes significantly to the overall damping of the structure. This is mainly due to the softer material in
the lamination zone.

The stiffness of a component can be determined experimentally or numerically – given the geometry and tabulated
material properties. Damping values are much harder to determine and are rarely available in literature. In this
paper, an experimental set-up is described in order to determine a function for the damping coefficient of a stack
caused by a shearing motion in transversal direction. There are many different parameters which have an influence
on the structural damping of a component. In this work, three variables are considered: The surface pressure
between the steel sheets, the frequency of the lateral force and the amplitude of the displacement of the stack. All
others, like the height of the stack or the size of the steel sheets, are being kept constant.

In practice, the displacement and the frequency vary with the operating states. The pressure on the other hand
is mostly caused by the design and by compressing the stack in the production process: In electrical machines,
the laminated sheets are – more or less loosely – stacked, then compressed and finally held in place by a welded
structure of tension elements and end plates. This design and production process make the pressure difficult to be
determined – leading possibly to significant variations in mechanical parameters of the machine.

There are different methods to determine the stiffness and the structural damping of a laminated stack. Luchschei-
der et al. (2012) describes a set-up to measure the stiffness of a lamination stack. Two plungers compress nine cir-
cular samples, cut out from a typical lamination sheet material. With two extensometers, clamped on the plungers,
and a load cell, a force-displacement diagram is created. With this diagram the stiffness in stacked direction of the
laminated stack can be derived.

Mogenier et al. (2010) predicted the modal parameters of an induction motor with an undamped finite-element
model. The minimation of the error between the predicted and the measured modal parameters with the Levenberg-
Marquardt algorithm. This leads to the equivalents constitutive properties of the laminated stack.

Clappier and Gaul (2015) and Clappier et al. (2015) determine the structural damping and the stiffness in axial
and in shear direction of a laminated stack. The measurement set-up for this evaluation consists of two laminated
stacks and three plates. The stack is axial pretensioned with a screw connection between the plates. The excitation
is effected with a shaker to one of the plates. To calculate the stiffness and the structural damping, the acceleration
of the plates and the force on the excitated plate are measured. The structural damping is calculated through the
determination of the dissipated energy. The same principle is used by Bograd et al. (2008). The difference between
these works is that Bograd determines the structural damping in shear direction from a thin layer element and not
from a laminated stack.

2 Experimental set-up

The complete test stand is placed on a foundation, which is isolated from the surrounding with an air suspension.
This is necessary to be independent from the environmental influences of the building. The measurement system
is not placed on this foundation, but the offset between the measurement system and the test bench can be removed
through an differential measurement of the displacement. The test bench consists of two hydraulic cylinders and
the clamping device for the stack (see Fig. 1). The vertical cylinder (4) applies the surface pressure on the laminated
stack. To avoid an inclined position of the pressure plate, there are four linear guides in axial directions around
the laminated stack. These guides are not shown in Fig. 1. The second cylinder (1) on the right side applies the
oscillating lateral force on the stack.
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Figure 1: Experimental set-up 1. Dynamic hydraulic cylinder 2. Load cell 3. Flexure 4. Static hydraulic cylinder
5. Ball joint 6. Upper lamination stack 7. Intermediate plate 8. Lower lamination stack 9. Pressure plate

There are two stacks, one is above the intermediate plate and the other one is below. Each of the stacks consists of
200 steel sheets with a side length of 80 mm and a thickness of 0.5 mm. Between the static hydraulic cylinder and
the pressure plate are a load cell and a ball joint. The load cell measures the force for the surface pressure in the
laminated stack and the ball joint corrects the inaccuracies of the concentricity between the pressure plate and the
cylinder. A load cell and a flexure are situated between the dynamic cylinder and the intermediate plate. The load
cell records the damping force and the flexure is used for the correction of the vertical position of the intermediate
plate. This is necessary, because the vertical position of the intermediate plate depends on the surface pressure in
the laminated stack. The static hydraulic cylinder is force controlled based on the load cell and the second one is
stroke controlled based on the magnetostrictive measurement method of the cylinder. Both systems are controlled
with one dual-channel controlling system.

The basic construction of the measurement system for the displacement of the steel sheets was described in Halder
et al. (2014) based on the laser-speckle principle. For the application in the test bench, the measurement system
has been adapted. The measurement construction is positioned so that the axes of the two high speed cameras
are orthogonal to the front site of the laminated stack, shown on the left picture of Fig. 2. This cameras record
the Regions of Interest (RoI) and the software calculates the displacement of each RoI. The displacement of the
laminated stack is the difference between the two RoI in horizontal direction. The maximum sampling rate of
the system is 150 Hz by recording two measure points at each RoI. In combination with the maximum excitation
frequency of 12.5 Hz, there are at least twelve measurement points during one vibration period. In order to get
different measurement points in the hysteresis loop, the sampling frequency is not an integral multiple of the
excitation frequency.

The position of the two RoI is shown on the right side of Fig. 2 and marked with a red rectangle. The distance
between the RoI is limited by the image of the camera in relation to the thickness of the sheets. For the setup under
consideration the RoI are separated by 140 sheets of steel. The speckle pattern is produced through a laser light
beam which is redirected with an mirror to a beam expander. This expanded beam is divided into two beams with
an splitter cube and must be projected exactly on the two RoI. The detailed description of this measurement system
is in Halder et al. (2014).
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Figure 2: Principle of the measurement system

3 Calculation of the damping coefficient

Through the structural damping in the laminated stack, the force-displacement graph is a hysteresis loop. The area
inside this hysteresis corresponds to the dissipated energy WDiss. The energy can be calculated from the damping
force FD acting over a diplacement x

WDiss =

∫
FD dx. (1)

In the considered case, WDiss determined from the horizontal displacement of FD as indicated in the right hand
side of Fig. 2.

Another definition for the dissipation energy is the approach of Kelvin-Voigt, which is described in Dresig and
Fidlin (2014). This approach uses the damping coefficient d and replaces the integration over x by an integration
over time t

WDiss =

∫ T

0

d ẋ2 dt = dω2
E

∫ T

0

x̂2 sin2(ωE t) dt. (2)

Here, the excitation is assumed to be a sinusoidal function with frequency ωE and amplitude x̂. Furthermore, the
response is assumed to have reached steady state with constant amplitude and angular frequency. As a result of
these assumptions, the damping coefficient d determined from Eq. (2) leads to

d =
WDiss

ωE π x̂2
. (3)

In addition to the structural damping, the loss factor η can be calculated. This factor is defined by the dissipation
energy divided by the maximum energy of the system. In Fig. 3, the maximum energy is shown in the dark gray
triangle and the dissipation energy is the gray area of the hysteresis loop.

On the other hand, the maximum energy can be calculated from the amplitude of the dynamic force and the
displacement. Thereby, the loss factor becomes

η =
WDiss

1/2 FD x̂
. (4)

The damping coefficient can also be evaluated from the equation of motion of a forced oscillator:

ẍ+
d

m
ẋ+ ω2

E x =
FD
m

eiωEt. (5)

164



x

FD

̂ ̂F xD,

Maximum energy

Dissipation energy

Figure 3: Maximum and dissipation energy

This essentially reduces the vibrating stack to a one-degree of freedom oscillator. The massm is the effective mass
of the stack. The fact, that parts of the experimental setup also move is accounted for in the force FD. For the
evaluation, only the steady state solution is relevant. A solution is given by the complex function

x = x̂ ei(ωE t−ψ), (6)

where ψ is the phase shift between excitation and response. Substituting Eq. (6) and its derivatives into the equation
of motion Eq. (5) leads to

ω2
0 − ω2

E + i
d

m
ωE =

FD
x̂m

eiψ. (7)

In Fig. 4, the left side of Eq. (7) is plotted in the complex plane.

Re

Im

Ψ
2 2ω  - ω0 E

Figure 4: Complex plane

From trigonometric functions applied to the rectangular triangle in the complex plane, the structural damping
becomes

d =
FD sinψ

x̂ ωE
. (8)

With this equation, it is possible to calculate the damping coefficient from the phase shift ψ between the vibration
excitement and the vibration response. This function is used for the evaluation of the calculation of the area from
the hysteresis loop.

4 Experimental evaluation

The aim of this experiment is to derive a function for the damping coefficient depending on the excitation frequency,
the displacement and the surface pressure between the steel sheets. A total of 120 measurement series were
considered: five different pressure values, four different amplitudes and six different frequencies. The pressure
was varied from 0.8 − 2.4 N/mm

2 in steps of 0.4 N/mm
2, the amplitude from 0.1 − 0.55 mm in steps of

0.15 mm. Frequencies included were 1, 2.5, 5, 7.5, 10, 12.5 Hz. Each of these 120 series was repeated ten times.
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In order to exclude systematic measurement errors, the chronological order of the measurement was randomized.
All of these measurements were considered in this study, but for the illustration of the method, we subsequently
focus on the measurement series with a pressure of 1.2 N/mm

2 as given in Table 1.

Table 1: Measurement series with p = 1.2N/mm
2

Series fE [Hz] A [mm] Series fE [Hz] A [mm]
25 1 0.1 37 7.5 0.1
26 1 0.25 38 7.5 0.25
27 1 0.4 39 7.5 0.4
28 1 0.55 40 7.5 0.55
29 2.5 0.1 41 10 0.1
30 2.5 0.25 42 10 0.25
31 2.5 0.4 43 10 0.4
32 2.5 0.55 44 10 0.55
33 5 0.1 45 12.5 0.1
34 5 0.25 46 12.5 0.25
35 5 0.4 47 12.5 0.4
36 5 0.55 48 12.5 0.55

Fig. 5 shows the dynamic force and the displacement of the laminated stack versus time. The first three seconds
of the signal include the approach of the hydraulic cylinder and the transient response. After this time, the steady
state solution is reached. For the determination of the damping coefficient, the steady state solution is significant,
see Section 3. Furthermore, only the measurement points after five seconds will be considered. After the tran-
sient response, the amplitude of the displacement and the dynamic force is nearly constant. The reason for small
fluctuations lies in the stroke control of the hydraulic cylinder.

The comparison of the plotted measurement data and the parameter of the measurement series (see Table 1) shows
a difference in the amplitude of the displacement. This difference is caused by the elastic deflection of the flexure
(see Fig. 1). The hydraulic cylinder is stroke controlled, which is measured inside the piston. So, on one side there
is the displacement of the piston and, on the other side, the displacement of the laminated stack. Consequently, the
difference between these two displacements is the elastic deformation of the flexure.

Figure 5: Measurement signal from the measurement number 417 (series 38)

The signal of the dynamic force and the displacement includes a phase-shift. This results from the structural
damping in the laminated stack. To get a graph (see Fig. 6) with the dynamic force over the displacement, the
two signals must be equal. In order to remove fluctuations from the measurements, several points are grouped
into one by averaging. With this operation, there is a minor error from the calculation of the area. The area is
calculated with a numerical integration, based on the trapezoidal rule. A linear connection between the points is
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satisfactory exact, because the error from the measurement is higher than the error through the linearization. Such
linear connections are shown in the right graph of Fig. 6.

Figure 6: Hysteresis loop left: measurement data; right: linearized data

Fig. 7 shows the boxplots of the measurement series with a surface pressure of 1.2N/mm
2. All measurements

which are in one marked rectangle have the same excitation frequency and from left to right an increasing amplitude
(see Table 1). The damping coefficient decreases with an ascending amplitude and by an ascending frequency.
Both of these connections have a similar behavior and can be approximated through an exponential function with a
negativ exponent. Another detail is shown in Fig. 7: Lower amplitudes and frequencies lead to a larger difference
between the first and the third quartile. The reason for this lies in the absolut measurement and calculation error
which is in all cases roughly the same, but through the smaller measurement values the relative error is much
bigger.

Figure 7: Boxplot of the measurement series with a surface pressure of 1.2 N/mm
2

Corresponding to the five different pressure values, five different functions for the damping coefficient are deter-
mined. These functions depend on the frequency and the displacement of the laminated stack and are assumed to
take the form

d(f,A) =
C1

f
+
C2

A
+
C3

f A
. (9)

Parameters C1, C2 and C3 are calculated from a least squares approximation separately for each pressure value:
For each variation of the parameters (C1, C2, C3) the sum of all squared differences between each measurement
point and the function value is calculated. The best approximation of the function is found when the sum reaches
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a minimum. In order to control the quality of the solution, the coefficient of determination (R2) is calculated. It is
defined in Birkes and Dodge (1993) as

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

. (10)

The range of R2 is from 0 to 1, whereby 1 correspondents to the best approximation of the data values.

As an example, the function for a constant surface pressure of 1.2 N/mm
2 is found to be

d(f,A) =
386.64

f
+

3 · 10−3

A
+

5.15 · 10−3

f A

[
Ns

m

]
. (11)

Figure 8: Damping coefficient for a surface pressure of 1.2 N/mm
2 and an excitation frequency of 7.5 Hz

Fig. 8 illustrates Eq. (11) using a frequency of 7.5 Hz and the results of the corresponding measurements. Inserting
the value of the frequency into eq. (11) gives

d(A) =
3.69 · 10−3

A
+ 51.552

[
Ns

m

]
. (12)

Again, as an example, the function for the damping coefficient at a surface pressure of 1.2 N/mm
2 in Fig. 9 is

shown. The measurement points are marked with red crosses in this figure. The two-sided 95 % confidence interval
is built from all 120 measurement series. The calculation of the confidence interval is described in Mittag (2015).
The complete function is inside most of the confidence intervals.

Comparing the results from the different pressure values, only the parameterC1 is found to differ significantly. The
correlation between the parameter values and the associated pressures is nearly linear. With a linear regression, the
complete function for the damping coefficient can be derived and this function is

d(f,A, p) =
0.3072 · 10−3 p+ 18

f
+

3 · 10−3

A
+

5.15 · 10−3

f A

[
Ns

m

]
. (13)
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Figure 9: Damping coefficient for a surface pressure of 1.2N/mm
2

5 Conclusion

This paper describes a method to identify a parametric model for a damping coefficient of a stack of sheet metal.
This function depends on the surface pressure, the excitation frequency and the displacement of the stack. A
test stand was developed and 120 measurement series were recorded. From this measurement data, the damping
coefficient was determined by means of the dissipated energy. In order to control the obtained coefficients, a
second approach was used. All the calculated damping coefficients were fitted into a global function. The best
approximating function was derived by the least square method. At last, the function was compared with the
confidence interval of the measurement data.

The function reveals a significant dependance of the damping on the different parameters for the considered test
case. The results may be used for multibody simulation analyses of a stack, which is loaded by an oscillated force
with a constant excitation frequency.
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