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Dynamic Behaviour of EHD-contacts using a regularised, mass conserving
Cavitation Algorithm

S. Nitzschke, E. Woschke, C. Daniel

The paper deals with the holistic simulation of systems supported in journal bearings, which is demonstrated using
the example of a conrod’s big end bearing. For that purpose, primarily the interactions of multibody-, structure-
and hydrodynamics have to be described. Based on the time integration of the global equations of motions, the
non-linear bearing forces in the fluid film and the elastic deformation of the bearings surfaces have to be modelled
adequately concerning their mutual influence. The implementation of the elastic structure is carried out by means
of a hierarchised, IRS–based1modal reduction in order to represent its eigenbehaviour as realistic as possible and
to fulfil the requirement of low computational costs by reducing the number of degree of freedoms. Additionally, the
journal bearing is considered by an online solution of the Reynolds equation, whereat the cavitation is handled by
a transient acting, mass-conserving algorithm. This is based on the classical Elrod algorithm, but was extended by
a regularisation, which enables a faster and more stable solution. Due to the general approach, both mechanical
and tribological output quantities are accessible. This provides the possibility to draw a comparison with simpler
approaches and to emphasize the benefit of the described procedure.

1 Introduction

The transient simulation of systems supported in journal bearings and exposed to high dynamic loads requires the
description of the interaction between different field problems to determine the vibrations of the structure.

Firstly, the global behaviour due to the external loads has to be modelled including the elastic deformations. Taking
large non-linear rigid body motions with superimposed small elastic deformations into account, an elastic MBS2

approach based on the SID-formulation3 is state of the art. To assure an adequate description of the transient
behaviour, the hydrodynamic properties have to be considered.

In transient rotor-dynamics often a look-up table approach, which involves a stepwise linearisation of the bearing
forces w.r.t. the displacements, is used in order to keep the numerical effort at a low level. Here it is not possible to
represent the transient elastic deformations, which result from high dynamic forces. In contrast, a direct solution of
the Reynolds equation is necessary yielding the actual hydrodynamic pressure in the fluid film. Whereas compres-
sive loads are unproblematic for fluids, tensile loads lead to cavitational effects in the form of fluid vaporisation
and emission of dissolved air. To consider these phenomena in the numerical scheme of EHL4 analyses, several
approaches exist. A pragmatical way is to postulate all negative pressure values to become zero, which is known as
Half-Sommerfeld or Gümbel condition. The resulting drawback is the violation of the mass conservation, which
was used to derive the Reynolds equation. Furthermore, differences concerning the minimal film thickness, the
maximum pressure and especially the damping property can be expected.

Sophisticated approaches, which fulfil the mass conservation are given by Elrod’s algorithm (Elrod and Adams
(1974); Elrod (1981); Kumar and Booker(1991); Shi and Paranjpe(2002); Ausas et al.(2009)), the bi-phase
model (Feng and Hahn(1986); Zeidan and Vance(1989); Tao et al.(2000); Glienicke et al.(2000)) as well as
the ALE-approach5 (Hu and Liu(1993); Martinet and Chabrand(2000); Boman and Ponthot(2004); Schweizer
(2008)).

1Improved Reduction System
2Multibody System
3Standard Input Data
4Elasto-Hydrodynamic Lubrication
5Augmented-Lagrangian-Eulerian approach
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The first one is widely-used also in EHL applications (Boedo et al.(1995); Shi and Paranjpe(2002); Rho and
Kim (2003); Hajjam and Bonneau(2007)), whereat often the rotating structure is oversimplified to a mass point.
Nevertheless – due to the necessarily fine discretisation of the cavitation boundary and the elastic structure on the
bearing surface – high computational efforts arise. Aiming for stationary results, good solutions are achievable,
whereas under dynamic conditions (depending on position, velocity, deformation and the numerical discretisation)
cyclic repetitions of non-convergent iteration states during the solution of the Reynolds equation occur preventing
a convergent pressure distribution in the fluid film.

As a consequence the time integration would fail, unless the solution strategy is able to assure a valid pressure dis-
tribution under all kinematic conditions. For that purpose a regularised variant of Elrod’s algorithm was developed,
which solves the problem by the introduction of a fuzzy cavitation state (Nitzschke et al.(2016)).

Using the example of a crank-drive and the support of the conrod’s big end bearing, the differences between the
Gümbel and the modified Elrod algorithm are discussed in the context of the numerical results and the necessary
cpu-time. Beside the hydrodynamic properties, the increased level of detail concerning the film-fraction is also
relevant for the interaction with further field problems, e.g. thermodynamics of the bearing and its surrounding.

2 Theoretical Principles

The main part of the presented approach is the implementation of the non-linear stiffness and damping properties
of the bearing into the overall transient simulation. Starting with the numerical solution of the Reynolds equation
using a regularised Elrod algorithm, the bearing reaction forces and torques are derived. Afterwards, the elastic
behaviour of the bearing elements is taken into account via FEM6. Additionally, the global movement of the
deformable components is modelled by an E-MBS7 approach, which involves a model-reduction due to simulation
time issues.

2.1 Hydrodynamics

2.1.1 Regularised Cavitation Approach

The pressure distribution in the fluid film of journal bearings due to the movement of shell and pin is described by
the Reynolds PDE8, which can be derived from Navier-Stokes equations and conservation of mass regarding the
geometrical relations in the fluid gap. Elrod and Adams transformed this equation leading to the density relation
θ = %/%c as universal unknown, which depends on the compression modulusβ
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As a result, the conservation of mass is ensured even in cavitating regions – i.e. in regions with divergent film
height. This involves the implementation of a switch-functiong(θ), which suppresses the Poiseuille-flow in these
regions. The disadvantage of the resulting formulation is the calculation of the pressure from the film-fraction.
Due to the magnitude of the compression modulus(β ≈ 109Pa), restrictive error tolerances for the film-fraction
are needed to assure sufficient accuracy of pressure and thereby bearing forces as well as torques.

Utilising the fact that in the cavitation region a mixture of fluid and air occurs, Kumar and Booker introduced the ap-
plication of the following approaches for density% and viscosityη of the mixture depending on the film-fractionϑ

% = ϑ %liq + (1 − ϑ) %gas≈ ϑ %liq and η = ϑ ηliq + (1 − ϑ) ηgas≈ ϑ ηliq (2)

6Finite Element Method
7Elastic Multibody System
8Partial Differential Equation
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leading to a modified form of Eq. (1)
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This form is now depending on the pressurep as well as the film-fractionϑ, which show a complementary relation.
To obtain a solution, firstly the following relations are introduced in order to get a dimensionless formulation
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Furthermore, the definition of a common variableΠ is useful

Π(x, y)
!
=

{
ϑ(x, y)−1 (x, y) ∈ Ωϑ

P (x, y) (x, y) ∈ Ωp

, (5)

which has to be interpreted depending on its actual value: In the pressure regionΩp it correlates with the dimen-
sionless pressureP , whereas in the cavitation regionΩϑ it contains the film-fraction. Defining a switch-function
in analogy to Eq. (1)

g(Π)
!
=

{
0 ∀ Π < 0

1 ∀ Π ≥ 0
, (6)

the equivalents to Eq. (5) and Eq. (6) read by reversal conclusions

ϑ(x, y) = (1−g) (Π(x, y)+1) + g and (7)

P (x, y) = g Π(x, y) , (8)

which can be inserted in Eq. (3)
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(9)

In order to solve Eq. (9) numerically, the bearing surface is dicretised using a FVM9 approach. Therefore, in the
pressure region central differences replace the differential quotient, whereas in the cavitation region due to the
transport character of Couette-flow backward differences are applied. Finally, this leads to the non-linear system
of equations

A(g)p = r(g) , (10)

with a sparse, unsymmetric matrixA and a vectorp, which contains the unknown values ofΠ. The partition of
the regionsΩp andΩϑ is initially unknown. Hence, Eq. (10) has to be solved by a fix-point iteration of the form

p(i+1) = A(g(i))−1 r(g(i)) . (11)

A convergent state of iteration is found, if the values of the switch-function remain constant. Under transient
loads the described algorithm tends to poor convergence, whereat cyclic repetitions in the solution of Eq. (11)
occur. This behaviour complicates the application within rotor- or structuredynamic models. Obviously, in these
cases the cavitational boundary is represented insufficiently, as its discretisation is coupled to the numerical grid.
Therefore, a finer mesh is able to improve the situation, but the computational costs increase and the general
problem remains: A given finite volume is either associated to the pressureor to the cavitation region. A re-
definition of the Heaviside-like switch-function Eq. (6), e.g. by

g(Π) =
1
π

arctan

(
Π

1 − Π∗

)

+
1
2

, (12)

9Finite Volume Method
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Figure 1: Influence of regularisation parameterΠ∗ on the smoothed switch-function Eq. (12).

allows a finite volume to be part of both regions. The stepwise respectivly discrete non-linearity of Eq. (10) is
thereby regularised. Additionally, by the smooth transition a Newton-Raphson algorithm is applicable to solve the
non-linear system of equations. For that purpose, Eq. (10) is to be seen as a function ofp

f(p) 7→ r(p) −A(p) = 0 , (13)

whereof using a Taylor series interrupted after the first term yields

p(i+1) = p(i) − J(p(i))−1 f(p(i)) (14)
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The partial derivatives ofr andA can be expressed analytically and in addition only the derivative of Eq. (12) is
required
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∂Π
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. (16)

2.1.2 Validation of Hydrodynamics

The described approach was benchmarked inNitzschke et al.(2016) against simulation results published in the
literatureVijayaraghavan and Keith(1989) under static conditions. Furthermore, a convergence study was per-
formed concerning the meshsize and the influence of the regularisation parameterΠ∗. It was found, that from
approximately 1000 unknowns and in the region ofΠ∗ = 0.9 . . . 0.95 the influences on the pressure distribution
and the bearing force as well as its direction can be neglected.

Concerning dynamic loads, another example stated inAusas et al.(2009) was used. Therein, a transient calculation
of a single journal bearing under a load as it occurs in a main bearing of a crank-drive is examined. The equations
of motion are restricted to a planar motion of the pin, which was modelled as a point mass. The shell features

Figure 2: Scheme of half bearing surface with boundary conditions as stated inAusas et al.(2009).
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Figure 3: Orbit of the pin under transient conditions during one working cycle: comparison of the regularised
algorithm against the classic algorithm of referenceAusas et al.(2009) with variation of the reference
meshsize.

an axially centred circumferential groove ensuring the oil supply. Hence, only one bearing half is modelled, cf.
Fig. 2.

As the reference solution and the corresponding source code is publicly available, the present approach can be
opposed to the reference. The calculated orbits of the pin are displayed in Fig.3 for one working cycle. In
general, using an equal meshsize of 200x20, a good correlation between both approaches can be stated, whereat
the reference tends to show the smaller orbit. It is interesting that, a refinement of thereference meshleads to
convergence against the 200x20 solution of the approach presented here. In reverse it can be concluded, that the
latter shows a better solution quality even on a coarse mesh. This is caused by the property of Eq. (9) respectively
Eq. (14) to allow grid point to be part of pressure as well as the cavitation region: The boundary between both is
not longer restricted to run on the grid lines, but in contrast is able to cross a finite volume, cf. Fig.4.

Figure 4: Representation of the boundary between pressure and cavitation region with the classic algorithm of
reference (left) and the regularised algorithm (right) (Nitzschke et al.(2016)). The pressure region is
indicated by light and the cavitation region by dark gray.
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Table 1: Comparison of cpu-time under otherwise identical conditions concerning the results shown in Fig.3.

regularised algorithm classic algorithm
meshsize cpu-time [s] meshsize cpu-time[s]

200 × 20 254 200 × 20 480
400 × 40 5790
800 × 80 ≈ 70000

Supplementary, due to the application of the Newton-Raphson algorithm the cpu-time is reduced by a factor of two
under otherwise identical conditions. If the achieved accuracy is taken into account, the finest reference mesh has
to be used for the comparison leading to a remarkable benefit of the regularised algorithm, cf. Tab.1.

2.2 Elastic Deformations and Modal Reduction

Within the hydrodynamic contact in a crank shaft, the deformations in a conrod bearing show the same magnitude
as the clearance. Hence, the elastic deformation of the bearing contour due to the mechanical loads and the
appropriate surface velocity have to be taken into account. A proper method to provide the elastic behaviour
during simulation is the FEM.

2.3 Structural Dynamics

2.3.1 FEM-approach of non-moving Structures

Starting from the Hamiltonian principle, according to discretisation and formulation of suitable shape functions of
the variational function, a linear system of equations can be derived

Mü+Du̇+Ku = f , (17)

in whichM represents the mass-,D the damping- andK the stiffness matrix. The vectorf represents the external
forces andu the displacements of nodal degrees of freedom. To minimise the numerical effort in the context
of time integration algorithms, a reduction of the degree of freedoms is mandatory. This can be achieved by a
reduction based on the master-slave concept or by a modal reduction.

2.3.2 Master-Slave Reduction

Firstly, the degrees of freedom of the overall structure are subdivided in master- and slave-degrees of freedom and
sorted according to the following scheme

[
MMM MMS

MSM MSS

] [
üM

üS

]

+

[
DMM DMS

DSM DSS

] [
u̇M

u̇S

]

+

[
KMM KMS

KSM KSS

] [
uM

uS

]

=

[
fM
fS

]

, (18)

whereat the master-group is still present after the reduction and the slave-group will be expressed as a function of
the master degrees of freedom using a suitable transformation matrixQred

[
uM

uS

]

= QreduM . (19)

Different variants with specific advantages and disadvantages exist: The simplest form of reduction dates back to
Guyan(1965) and neglects all dynamic effects of the slave structure, which is widely known as static condensation

[
uM

uS

]

=

[
I

−K−1
SS K

T
MS

]

uM = QGuM . (20)
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The application of the transformation matrix to all system matrices and the subsequent symmetrisation

SG = QT
G SQG with S = M, D, K (21)

leads to the differential equation of the reduced system

MG üM +DG u̇M +KGuM = fG . (22)

However, as the excitation frequency rises, increasing deviations occur compared to the dynamic behaviour of the
unreduced structure. An improvement can be made by consideration of the dynamic behaviour of the slave degrees
of freedom. A popular method of improvement without the usage of additional modal degrees of freedom (as
done in the Craig-Bampton- (Craig(2000)) or the SEREP-reduction (O’Callahan(1989b)) ) is the IRS-method by
O’Callahan(1989a). Therein, the Guyan approach is extended with pseudostatic inertial forces, which leads after
some conversions to the following transformation matrix

[
uM

uS

]

= QIRSuM = (QG +PMQGM
−1
G KG)uM with P=

[
0 0
0 K−1

SS

]

. (23)

The procedure can be extended iteratively (O’Callahan(1989b)), whereby the eigenfrequencies of the reduced
system are converging to that of the unreduced system

QIRS,i+1 = QG +PMQIRS,iM
−1
IRS,iKIRS,i . (24)

However, the drawback of this iteration is an increasing condition of the system matrices. Hence, it has to be
terminated after reaching a sufficient accuracy or exceeding a critical condition number.

2.3.3 Modal Reduction

Alternatively, the reduction can be based on the eigenvectors. The homogeneous solution of the boundary value
problem consists of thenk eigenfrequenciesωk and the corresponding eigenvectorsûk

[
Kred− (ωk)2Mred

]
ûk = 0 . (25)

This results in a transition from the physical coordinatesu to the modal coordinatesq = [q1 . . . qk]

Mred ü+Dred u̇+Kredu = fred ⇒ (26)

Mmod q̈+Dmod q̇+Kmodq = fmod (27)

using the transformation

u = Qmodq = Û q with Û = [û1 . . . ûk] . (28)

This transformation is initially exact and it can be shown that each deformation state can be represented as the
superposition of different eigenvectors.

The reduction is achieved by eliminating those eigenvectorsûj of the modal matrixÛ which – due to the fre-
quency spectrum of the external loads – result in modal amplitudesqj with insignificant magnitude (Dietz (1999)).
These are predominantly high-frequency components of the deformation, which in addition usually show a strong
damping.

2.4 Elastic Multi Body Dynamics

For the application example of the crank drive, the individual components are subject to large rigid body move-
ments, on which small elastic deformations are superimposed. With this background, the use of a FEM description,
which would inevitably have to be geometrically non-linear, is numerically very complex. For this reason, elastic
multi-body algorithms are preferred which have been specifically developed with this focus using the floating-
frame-of-reference approach.
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Figure 5: Representation of the position vectorr in initial- and deformed configuration and its segmentation in
rigid body partc as well as the elastic deformationu according toWoschke(2013).

As a starting point for their description, the integral over the difference of the variations of the internal and the
kinetic energy can be used, which must be in equilibrium with the virtual work of the external loads, consisting of
volume- and single-forces

0 ≡
∫ t2

t1

(δEkin − δEin + δW ) dt (29)

=
∫ t2

t1
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)
)

dt .

Using the fundamental lemma and the fact that the variation vanishes at the timest1 andt2 yields
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V

δrT r̈ ρ dV
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+
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σ(u) dV
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−
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δrT sv dV +
∑
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δrT

i fi
)
]
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external loads

. (30)

The equation of motion now contains volume integrals with non-linear dependence on location and time. If, at the
same time, the elastic deformationu is replaced by the modal coordinatesq by utilising the described reduction
methods, the following relationships according to Fig.5 are obtained

r = QIK K(rA + c+ u) = QIK K

(
rA + c+ Ûq

)
,

r̈ = QIK K

(

r̈A +
(
c+ Ûq

)T

× ẇ + Ûq̈+ 2w × Ûq̇+w ×
(
w × (c+ Ûq)

))

,

δr = QIK K

(
δrA + δw × rA +

(
c+ Ûq

)
× δw + Ûδq

)
. (31)

Thereby, all terms are expressed as a function of the angular velocityw as well as the modal coordinatesq and
their derivativeṡq, which leads to a formulation of Eq. (30) in the form of

MMBS(q)a + hω(w,q, q̇) + hel(q, q̇) = ho(q) mit a =




r̈A

ẇ
q̈



 . (32)

The modal reduction is an integral part of the implementation of elastic bodies into MBS applications. Due to the
orthogonality properties, they allow a decoupling of the equation of motions inton linearly independent differential
equations. At the same time, a master-slave reduction can be pre-set to the modal reduction, in order to limit the
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Figure 6: Model of the crankdrive with elastic crankshaft and elastic conrod on cylinder 1 (C1) shortly after
TDC10of C1. The dots indicate the markers resulting from the master degree of freedoms. In addition,
the lubrication film pressures are visualised on the main bearings and on the conrod’s big end bearings.
The arrows on the pistons represent the forces due to the gas pressure in the cylinders.

eigenvectors to the information essential for the deformation description. This results in the following substitution

u = QIRSuM = QIRSÛq , (33)

which can be applied in Eq. (31) instead of the straight modal reduction.

3 Model

The combination of the described approaches with regard to hydrodynamics and elastic multi-body simulation is
demonstrated by means of a conrod big end bearing of a crankdrive, cf. Fig.6.

Conrod For this purpose, the conrod is first discretised by finite elements and then reduced to 1503 degrees of
freedom using the described IRS-based master-slave approach. The master nodes are arranged on the one hand
uniformly over the shank of the conrod and, on the other hand, are concentrated in the bearing shell in order to be

10Top Dead Centre
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able to accurately represent the deformation in the fluid gap. The distribution of the nodes is coupled to the mesh
required for the hydrodynamics, in order to avoid interpolation of the deformations and the associated velocities.
Subsequently, a modal reduction is used, in order to achieve decoupling of the equations of motion. The eigenforms
to be considered depend primarily on the excitation frequency spectrum. But in addition, special eigenforms have
to be taken into account to inclose the local deformations in the bearing shell. These deformations are described
by eigenforms whose natural frequency is clearly above each frequency contained in the load spectrum. In this
case, the influence of the deformation on the pressure build-up in the journal bearing and thus in the loads is
decisive, whereat a renouncement of the corresponding eigenforms results in exaggerated hydrodynamic pressures.
The decisive point of the modal reduction is thus given by the selection of the eigenforms used to describe the
deformation.

Neglecting the effect of all inertia forces and influences from damping compared to those from stiffness, the
equation of motion of a modal reduced elastic body Eq. (26) can be formulated by

Mmod q̈+Dmod q̇� Kmodq  Kmodq = fmod . (34)

This assumption applies formally only to slowly moving elastic bodies, taking into account a low attenuation as
well as a low rate of change concerning the external loads. However, the results obtained are also applicable to
dynamically loaded systems in the context of journal bearing simulation because the local deformations primarily
result from the acting external loads and the deformation rate remains moderate.

Assuming that the forces acting on the structure are known, the modal deformationsqi can be determined. If they
are weighted with regard to their share in the overall deformation state using the modal participation factor

MPFi =
|qi|∑

i

|qi|
∙ 100% , (35)

an explicit selection of significant eigenforms can be achieved. Also a set of load collectives – e.g. obtained from
dynamic simulations – can be considered by superposition of significant eigenforms of each load step.

For the knowledge of the external loads of the deformed model, formally a complete simulation with a high number
of modal state variables is necessary. However, it could be shown that the general trend of hydrodynamic loads
using a simulation with a rigid bearing shell is similar to an elastic one. Hence, the hydrodynamic loads of a rigid
calculation – wich are obtainable with a lower numerical effort – can be used as input data for the selection of the
participating eigenvectors.

The minimal percentage contribution to the deformation, which must be taken into account, is not comprehensively
algorithmic, but is always associated with the actual load case. Further details concerning the choice of eigenforms
are shown inWoschke(2013), Woschke et al.(2007) andWallrapp(1999). For the conrod considered here, 74
suitable eigenforms from the first 200 eigenforms were selected and taken into account for the calculation.

Depending on the algorithm used for the master-slave reduction, deviations of the eigenfrequencies between re-
duced and unreduced structure result. These are summarised in Tab.2 using the example of the lowest and highest
natural frequency selected for the deformation. The reduction methods consistently predicate a stiffer behavior
than is represented by the unreduced structure, whereat the differences increase as the order of the eigenfrequen-
cies increases. The deviations are greatest in the Guyan reduction due to the disregarded dynamic properties of
the slave structure. The IRS reduction converges with increasing number of iterations monotonously against the
values of the unreduced model. The highest eigenfrequency to be considered defines the numerical stiffness of the
resulting differential equation system and thus represents an important indicator for time integration with respect
to the maximum step size.

Table 2: Influence on the conrod’s eigenfrequencies due to the master-slave-reduction method

method 1st EF [Hz] . . . 188th EF [kHz] rel. deviation to unreduced [%]

unreduced 2058 . . . 120.9 -
Guyan 2063 . . . 262.1 117
IRS ( 5 iterations) 2063 . . . 134.7 11
IRS (10 iterations) 2063 . . . 123.0 2
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Crank shaft The local deformations at the bearing area in radial direction are negligibly small on the crankshaft
due to the solidly designed pins on the main and conrod bearings. However, in the course of the ignition sequence
of the individual cylinders, a time delay concerning the introduction of the gas forces occurs leading to a global
deformation. Subsequently, the crankshaft is also reduced by the described methods. The selection of the master
nodes was made with a restriction on the degrees of freedom required for the force application into the bearing
points. For this purpose, the bearing pin surfaces were assumed to be non-deformable and rigidly connected to a
master node, which is central with respect to the pin – nine nodes remain after reduction. According to the highest
frequency contained in the excitation, the consideration of the 13 first eigenforms is sufficient here.

4 Results

In this section, the results concerning the big end bearing of the conrod are discussed depending on different
modelling approaches of MBS and hydrodynamics, cf. Tab.3.

Table 3: Modelling approaches

variant label description MBS description hydrodynamics

a) CRel + HDreg/reg conrod as well as crankshaft elastic conrod bearing and main bearings
with regularised cavitation algorithm

b) CRel + HDreg/spring conrod as well as crankshaft elastic conrod bearing with regularised cav-
itation algorithm, main bearings with
isotropic spring-damper elements

c) CRel + HDgue/spring conrod as well as crankshaft elastic conrod bearing with Gümbel cavita-
tion algorithm, main bearings with
isotropic spring-damper elements

d) CRrig + HDreg/spring conrod rigid, crankshaft elastic conrod bearing with regularised cav-
itation algorithm, main bearings with
isotropic spring-damper elements

e) CRrig + HDgue/spring conrod rigid, crankshaft elastic conrod bearing with Gümbel cavita-
tion algorithm, main bearings with
isotropic spring-damperelements

Due to the transient load, the elastic deformation and the associated surface velocity are varying during the work-
ing cycle and influence the hydrodynamic film thickness and its derivative w.r.t. time, further details can be found
in Daniel (2013). As a consequence of the online approach for solving the Reynolds equation, the pressure dis-
tribution and the resulting bearing reactions can be analysed. Additionally, due to the mass-conserving cavitation
algorithm, the transient development of the film-fractionϑ is accessible. The mentioned quantities are displayed
exemplarily at the TDC in Fig.7: The radial deformation of the bearing surface is dominated by a global ovalisa-
tion due to inertia forces, which is superimposed by local deformations in the region of maximum hydrodynamic
pressure. The gap function consist of the radial deformation plus the gap due to the rigid body kinematics. As a
consequence, the maximum pressure arises in the region with minimal gap. The pressure build-up is also influ-
enced by the transient film-fraction – only in regions with sufficient fluid filling pressure values above the cavitation
pressure can occur. Furthermore, in the visualisation of the film-fraction the oil-supply is noticeable.

The evaluation of these quantities for every time step of a complete working cycle is not practicable at this point,
therefore integral quantities like the orbit of the crankpin w.r.t. the conrod’s big end as well as the maximum
pressure and the minimal film thickness are discussed in correlation to the modelling approaches, cf. Tab.3.

The orbit is displayed normalised relative to the bearing clearance. Firstly, in Fig.8 the different parts of the orbit
are assigned to the four strokes of cylinder 1. In particular, during compression and power stroke sharp peaks occur
in the orbit, which result from the changing gas force due to the pressure in the combustion chamber. Basically,
Fig. 9 shows the evident difference between the elastic and the rigid modelling of the conrod. Due to the elastic

deformation values of the normalised total displacementvtotal =
√

v2
x + v2

y > 1 occur.

Both, the elastic as well as the rigid results show a significant deviation in the utilisation of the clearance concerning
the modelling of the cavitation algorithm. The regularised Elrod algorithm tends to larger displacements caused
by the delayed pressure build-up as a result of the film-fraction’s transient development. In contrast, the Gümbel
approach leads, apparently due to the violation of mass conservation, to larger reserves before solid contact occurs.
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Figure 7: Input and result field-quantities of Reynolds equation at TDC: gap function (top left), radial deformation
of bearing surface (top right), pressure (bottom left), film-fraction (bottom right).

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

Figure 8: Orbit of crank pin w.r.t. the conrod’s big end: correlation to the four strokes of the working cycle.
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Figure 9: Orbit of crank pin w.r.t. the conrod’s big end using different modelling approaches: elastic conrod (left),
rigid conrod (right). Additionally, the nominal clearance is displayed as a bold line, which visualises the
undeformed contour.
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Figure 10: Tribological quantities during a working cycle: minimal film thickness (left) and maximum pressure
(right).

With regard to the influence of the main bearings and the remaining conrod bearings on the crankpin orbit, only
slightly differences occur, which hardly legitimate the extended effort.

Concluding, the minimal film thickness and the maximum hydrodynamic pressure are investigated as tribological
indicators of the bearing’s operating grade, cf. Fig.10 left. Contrarily to the crankpin orbit, which is meaningful
only at the bearing mid, here the film thickness is evaluated in the whole bearing, whereby potential wear on the
bearing’s edges due to tilting of the bearing surfaces can be identified. But coinciding with the results obtained on
the crankpin orbit, the influence of tilting is negligeble in the present case.

The maximum pressure in the fluid film shows in wide ranges of the working cycle only minor differences between
the modelling approaches, cf. Fig.10right. Merely on TDC a decrease can be observed with increasing modelling
grade. This behaviour is caused by the increasing compliance due to elasticity of the conrod, which results in an
enlargement of the load zone. This trend is amplified by the cavitation as the partly filled fluid gap leads to a softer
bearing reaction resulting in lower pressure values.

Referring to the tribological quantities, the modelling of the remaining bearings is also of minor importance.
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5 Summary and Outlook

The paper at hand shows exemplarily the implementation of dynamic loaded components or systems supported in
journal bearings into a holistic MBS-based simulation. Therein, the level of detail concerning the hydrodynamics
is extended by introducing a regularised Elrod–algorithm, which is compared to existing simplified approaches.
Firstly, a significant deviation from these assumptions can be shown, which e.g. results in smaller minimal film
thickness preventing an overestimation of carrying reserves. Furthermore, a significant advantage in cpu-time of
the new approach appeared compared to the classic Elrod–algorithm. It can also be concluded, that the modelling
depth of adjacent bearings has only a small impact on the bearing on the investigated conrod.

The presented approach can be transferred in a similar manner to other tribological contacts (axial or floating
ring bearings) and cavitation models (bi-phase-model). Regarding the floating ring bearing appropriate results
are published inNitzschke(2016). In addition to the improved model quality, a basis for the integration of the
thermal field problem is given through the mass-preserving cavitation algorithm, because the transient gap filling
is required as an input of the energy equation, as mentioned inWoschke(2013).
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