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On the Incorporation of Friction Into a Simultaneously Coupled Time
Domain Model of a Rigid Rotor Supported by Air Foil Bearings

Sebastian von Osmanski, Jon S. Larsen, Ilmar F. Santos

Despite decades of research, the dynamics of air foil bearings (AFBs) are not yet fully captured by any model,
suggesting that the fundamental mechanisms of the AFB and their relative merits are not yet fully understood.
The recent years have seen promising results from nonlinear time domain models, allowing the dynamic pressure–
compliance interaction and the unsteady terms of the compressible Reynolds equation to be considered.

By including the simple elastic foundation model (SEFM) in a fully coupled simultaneous time integration, the
dynamics of a rotor supported by industrial AFBs have previously been modelled by the authors, leading to good
agreement with experimental results. In this paper, the authors investigate the substitution of the SEFM for a new
foil structure model which is based on directly measurable quantities and includes frictional energy dissipation in
the foil structure. An important finding is that the incorporation of a friction model into the global model cannot
be reconciled with a simultaneous time solution without the inclusion of the foil inertia. The resulting AFB model
allows the effects of friction on AFB performance to be directly examined and leads to the questioning of friction’s
role and its significance to the operation of AFBs.

Nomenclature

AFB Air Foil Bearing
CG Center of Gravity
DAE Differential/Algebraic Equation
DOF Degree of Freedom
FE Finite Element
ODE Ordinary Differential Equation
SEFM Simple Elastic Foundation Model
(Ü) Time derivative,d2/dτ2

(Û) Time derivative,d/dτ
∇∙ Divergence
∇ Gradient,∇ = {∂/∂θ, ∂/∂ z̃}
A, B Bearings
C Radial clearance
Eb Young’s modulus of bump foil material
Et Young’s modulus of top foil material
I Mass moment of inertia
L, L̃ Bearing length,̃L = L/R
Np Number of bearing pads
R Journal radius
Rb Bump radius of curvature
S Compressibility number,S= 6μω/pa (R/C)2

Sb Bump foil pitch
W, W̃ Static load components,̃W = 1/(paR2)W
p̃m Nondimensional mean axial pressure
e, ε Journal eccentricity components,ε = e/C
fN Normal force function
fμ Friction force
fμ f Friction coefficient smoothing function

h, h̃ Film height,h̃ = h/C
hb Bump foil height
hc, h̃c Film height (compliant),̃hc = hc/C
hr , h̃r Film height (rigid),h̃r = hr/C
hs, h̃s Slope height,̃hs = hs/C
k Stiffness
kj ,dj Truss stiffness and damping,

j ∈ {1, 1b, 2, 3, 3b, 4}
l0 Bump half length
l1, l2 Distance from CG to bearings
l3, l4 Distance from CG to discs
m Mass
p, p̃ Film pressure,̃p = p/pa
pa Ambient pressure
t Physical time
tb Thickness of bump foil
tt Thickness of top foil
vr Relative sliding velocity
x, y, z, z̃ Cartesian coordinates,z̃ = z/R
xj Generalised degree of freedom
xj Relative displacement
α Bearing position,α = A, B
γ Friction function smoothing parameter
μ Dynamic viscosity
μ f Coefficient of friction
νb Poisson’s ratio of bump foil material
νt Poisson’s ratio of top foil material
ω Angular speed of journal
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ψ Film state variable (nondimensional),ψ = p̃h̃
ρb Density of bump foil material
ρt Density of top foil material
τ Dimensionless time,τ = ωt
θ Circumferential angle
θ ′ Curvelinear coordinate,θ ′ = θR
θ0 Bump half angle
θ j Truss transmission angle,θd or θdb
θl First pad leading edge angle
θs Inlet slope extend
θt First pad trailing edge angle
θ̃ Dimensionless circumferential coordinate,θ̃ =

θ ′/R= θ
ζ Damping ratio
ũ Foil structure state space vector,

ũ = {x̃T Û̃xT }T

f, f̃ Bearing force vector,
f = {fTA, fTB}

T , f̃ = 1/(paR2)f
fub, f̃ub Unbalance force,̃fub = 1/(paR2)fub
s Advection vector,s = {S, 0}T

w, w̃ Load vector,̃w = 1/(paR2)w

ψ Film state vector
p̃ Pressure vector
ε Eccentricity vector,{εAx, εAy, εBx, εBy}T

fμ Vector of friction forces
f p Vector of pressure forces
g() Nonlinear vector function
r Residual vector
x Foil displacement vector
y Global state vector
z1, z2 Rotor state vectors,z1 = ε, z2 = z1

0 Zero matrix
A f ,Ã f Foil structure system matrix
D f , D̃ f Foil structure damping matrix
Gr , G̃r Rotor gyroscopic matrix,

G̃r = ω2C/(paR2)Gr

I Identity matrix
K f , K̃ f Foil structure stiffness matrix
M f , M̃ f Foil structure mass matrix
Mr , M̃r Rotor mass matrix,̃Mr = ω2C/(paR2)Mr

Γ Fluidity matrix
(̃ ) Nondimensional quantity

1 Introduction

Practical application of gas lubrication appeared in the mid-1950s driven by its attractiveness to several emerging
technologies and facilitated by improved experimental equipment together with the development of computerised
numerical methods (Powell, 1970). The first gas bearings with compliant inner surfaces appeared in the mid-1960s
and the air foil bearing (AFB) was introduced industrially by Garrret AiResearch in 1969 (Agrawal, 1997). The
AFB offers several advantages compared to conventional rigid gas bearings, and it is a key component in NASA’s
efforts towards creating a completely oil-free turbine engine (NASA, 2001). NASA is interested in the AFB
technology’s weight-saving potentials in rotorcrafts and its high-temperature capabilities, but AFBs also present
an environmentally friendly alternative in many applications of oil-lubricated high-speed rotating machinery.

The compliant nature of AFBs does, however, complicate the modelling of its dynamic characteristics and is ca-
pable of introducing undesirable nonlinear features. As the performance of AFB supported rotor–bearing systems
is often limited by nonlinear phenomena, such as sub-synchronous vibrations driven by unbalance, reliable means
for predicting the response are an essential prerequisite for further spread of the technology.

The majority of the literature on AFB modelling rests on the original contributions by Heshmat et al. (1983b,a),
who introduced the simple elastic foundation model (SEFM). The original SEFM, as well as the refined version
by Peng and Carpino (1993), was applied in a perturbation method framework introduced by Lund (1968) and
hence relied on a linearisation of the reaction forces to effectively replace the bearing and fluid film with a spring–
dashpot system. Such analyses are inherently restricted to an assumed small-amplitude periodic motion (Bonello
and Pham, 2009), and recent work (Larsen et al., 2016) additionally suggests an inadequacy in the applied Taylor
series expansion of the pressure field. Another commonality shared throughout much of the literature is equivalent
viscous models for the energy dissipation in the compliant structure. This approximation is pivotal since sliding
friction in the foil structure is widely assumed to constitute a major source of damping (Agrawal, 1997; San Andrs
and Kim, 2007; Howard and San Andrs, 2011; Le Lez et al., 2009) and hence to be essential in the workings of the
AFB.

Nonlinear time domain integration circumvents the limitations of the perturbation techniques and provides a basis
for the incorporation of foil structure models without the assumption of viscous dissipation. Applying different foil
structure models, but based on a decoupling of the fluid, rotor and foil structure equations, time domain models
have been presented by for example Lee et al. (2009); Le Lez et al. (2009); Hoffmann et al. (2015). This approach
introduces a demand for very small time steps and temporal convergence studies, which has been overcome using
simultaneous formulations (Bonello and Pham, 2014b,a; Larsen and Santos, 2015; Larsen et al., 2015b). Several
promising results have been presented from these simultaneous models, but they are, however, still relying on the
SEFM and hence on the assumption of viscous dissipation.
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Figure 1: Schematics and nomenclature of a rigid rotor supported by AFBs: (a) shaft, bearings and rotor discs for
unbalance masses; and (b) detailed view of the bearing geometry.

In recent work by the authors (von Osmanski et al., 2017), a fully coupled simultaneously formulated AFB model
including friction has been presented. The current work provides additional discussions on the necessity of foil
mass inclusion and an assessment of three effects related to friction: (a) displacement of the static equilibrium; (b)
introduction of a dynamic foil stiffness; and (c) dissipation of energy through sliding friction.

2 The Rotor–Bearing System

The presented model and the derived considerations are based on a test rig previously presented and described
by the authors (Larsen et al., 2015a,b; Larsen and Santos, 2015; Larsen et al., 2016; von Osmanski et al., 2017).
The rig comprises a near-symmetrical hollow rotor supported by two identical second generation Siemens AFBs
as sketched in Fig. 1a. The illustrated permanent magnets are part of the electrical drive capable of rotating the
shaft to approximately30 kRPM and the discs at each of the shaft’s extremities allow unbalance mass to be added.
As observed from the AFB geometry (Fig. 1b), the foil structure is segmented into three pads fixed to the bearing
housing at their leading edges. The dimensions and mechanical properties as used throughout this paper are listed
in Table 1.

3 Mathematical Model of the Rotor and the Fluid Film

As the dynamics of the support structure is not considered, modelling of the rotor–bearing system requires three
domains to be assessed: the rotor, the fluid film and the compliant structure of the AFBs. This paper concerns
mainly the latter of these, hence only a brief exposition of the applied rotor and fluid film models will be made.

The operational range of the rig is limited by the electrical drive to30 kRPM, while the lowest free–free natural
frequency of the assembled shaft is found to be approximately1050Hz, hence a rigid shaft model is deemed
adequate. This gives a four degrees of freedom (DOFs) model which is considered a system of first order ordinary
differential equations (ODEs) as

{
Ûz1

Ûz2

}

=

[
0 I

0 M̃−1
r G̃r

] {
z1

z2

}

+

{
0

M̃−1
r (w̃ − f̃ + f̃ub)

}

, (1)

where the state vectors hold the rotor displacements and velocities at the bearing positions as

z1 = ε = {εAx, εAy, εBx, εBy}
T and z2 = Ûz1 = Ûε. (2)

The system matrix contains the dimensionless mass and gyroscopic matrices of the rotor,M̃r andG̃r , while w̃, f̃
andf̃ub represent the static load, integrated fluid film reaction forces and unbalance forces, respectively.

The fluid film formed between the shaft and compliant inner surface of the AFBs is assumed to be governed by the
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Table 1: Geometry, material properties and operating conditions of the Siemens AFB test rig.

Shaft assembly
BearingA to CG,l1 201.1 mm Mass,m= mx = my 21.1166 kg
BearingB to CG,l2 197.9 mm Polar moment of inertia,Izz 30.079 × 10−3 kg m2

UnbalanceA to CG,l3 287.2 mm Transverse moment of inertia,Ixx = Iyy 525.166 × 10−3 kg m2

UnbalanceB to CG,l4 304.0 mm

Bearing configuration
Bearing radius,R 33.50 mm First pad leading edge,θl 30◦

Bearing length,L 53.00 mm First pad trailing edge,θt 145◦

Radial clearance,C 40 μm Slope extend,θs 30◦

Number of pads,Np 3 Slope height,hs 50 μm

Fluid properties
Viscosity,μ 1.95 × 10−5 Pa s Ambient pressure,pa 1 × 105 Pa

Bump foil properties
Bump foil thickness,tb 0.13 mm Bump foil pitch,Sb 7.00 mm
Bump foil half length,l0 3.43 mm Bump foil height,hb 1.15 mm
Young’s modulusEb 207 GPa Poisson’s ratio,νb 0.3
Radius of curvature,Rb 5.7 mm Coefficient of friction,μ f 0.05
Density,ρb 8280 kg/m3 Bump half angle,θ0 37◦

Top foil properties
Top foil thickness,tt 0.254 mm Poisson’s ratio,νt 0.3
Young’s modulusEt 2.07 × 1011 Pa Density,ρt 8280 kg/m3

isothermal, compressible, transient Reynolds equation:

∇ ∙
(
p̃h̃3∇p̃

)
= ∇ ∙

(
p̃h̃

)
s + 2S

d
dτ

(
p̃h̃

)
, (3)

whereS= 6μω/pa (R/C)2 is the compressibility number,s = {S, 0}T is the advection vector and the film height
h̃ is divided into a rigid and a compliant contribution as first suggested by Heshmat et al. (1983b):

h̃ = h̃r (εx, εy, θ̃) + h̃c . (4)

The rigid contributioñhr depends on the initial undeformed bearing geometry as illustrated in Fig. 1b and is given
by e.g. von Osmanski et al. (2017), while the compliant contributionh̃c is treated in the following sections.

Following a partial substitution ofψ for p̃h̃ as introduced in Bonello and Pham (2014a,b), the fluid film partial
differential equation Eq. (3) is spatially discretised using a finite element (FE) scheme. This gives a system of
nonlinear ODEs in the film state variable time derivative vectorÛψα for each bearingα = A, B

Γα Ûψα = rα
(
Ûψα,ψα

)
, (5)

where the fluidity matrixΓα is constant for a given angular velocity, while the residual vectorrα depends on both
the pressures, the film heights and the film heights’ temporal derivatives.

4 Modelling of the Foil Structure

In the first time domain model presented by Larsen et al. (2015b); Larsen and Santos (2015) as well as in the
presented models by Bonello and Pham (2014a,b), the compliant height contributionh̃c in Eq. (4) is supplied
using the SEFM. This is numerically efficient, but implies that (a) the foil structure’s energy dissipation is modelled
as being viscous using an equivalent rotor-speed based loss factor; (b) the stiffness is linear and independent of
both deformation and frequency; and (c) neighbouring points in the foil are assumed to deform independently.
Other authors, such as Hoffmann et al. (2015); San Andrs and Kim (2009), have applied the SEFM merely to the
underlying bump foil structure while incorporating more comprehensive models for the top foil. In this case, the
top foil’s bending stiffness couples the deflections of neighbouring points, but any bump–bump interaction effects
are still neglected. An objective of the present work has hence been to discard the SEFM entirely in favour of a
more general foil structure model. This model should facilitate the inclusion of friction, allow for a simultaneous
solution of the equation system and be sufficiently efficient to permit time integration.
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4.1 Friction Models

Sliding friction in the foil structure is widely assumed to be an important mechanism in AFBs (Agrawal, 1997;
San Andrs and Kim, 2007; Howard and San Andrs, 2011; Le Lez et al., 2009); consequently, a friction model is
included in the present work. Time integration of friction phenomena is difficult due to the nonlinear behaviour of
the friction force near zero velocity and/or zero normal force. The potentially applicable friction models available
in the literature can be roughly divided into three categories: stick-slip bookkeeping with alternating boundary
conditions (Tariku and Rogers, 2001; Lee et al., 2009; Le Lez et al., 2007), nonlinear springs with moving reference
points (Larsen et al., 2014) and continuous dynamic friction approximations (Oden and Martins, 1985; Makkar
et al., 2005; Le Lez et al., 2008; Petrov and Ewins, 2003).

The stick-slip bookkeeping models introduce a differentiation between static and dynamic friction regimes in
which either a boundary condition or a dynamic friction force is applied. These models hence rely on a continuous
evaluation of the stick/slip states, and the abrupt changes inevitably caused by the change of state pose a challenge
to numerical stability due to non-smooth, or even discontinuous, reaction and friction forces.

A friction model relying on nonlinear springs with moving reference points has also been suggested (Larsen et al.,
2014) and shown to perform well in a quasi-static setting. The model handles the classical issue of determining the
friction force at zero velocity, but has proven difficult to apply in a time domain framework due to the requirement
of instantaneous detection of direction shifts.

The friction model applied in the current work belongs to the group of continuous dynamic friction approximations.
These are based on expressions for the friction forcefμ of the form

fμ = fN fμ f (vr ) , (6)

where fN is the normal force function andfμ f (vr ) is a smooth function of the sliding velocityvr approximating the
sign function. In the literature, various different functions can be found serving as sign approximations, including
the inverse tangent, fractions similar tovr/(γ+|vr |) and the hyperbolic tangent. The latter is used in the present as

fμ f (vr ) = μ f tanh (γvr ) , (7)

whereμ f is a dynamic coefficient of friction andγ is a smoothing parameter controlling the slope nearvr = 0 and
hence the level of approximation. As it can be seen, Eq. (7) provides no distinction between static and dynamic
friction, but this could be achieved using the extended version given by Makkar et al. (2005).

Note that while the particular choice of friction model and smoothing function is debatable, an important point is
that all of the assessed approaches share the common characteristic of velocity dependency. This is, to the best
knowledge of the authors, the case for all existing and suitable friction models.

4.2 Structural Models

The compliant structure of the Siemens AFB consists of a bump foil and a top foil. For the present purpose, a
simple one dimensional Bernoulli–Euler beam model is utilised for the top foil, as the main point of attention is
the supporting bump foil structure. This approach leaves out any axial film height variations, but this has been
shown to be a reasonable assumption (San Andrs and Kim, 2009).

For modelling of the bump foil, a straightforward plane FE approach requires several thousand DOFs per bump
(Larsen et al., 2014), and is hence precluded from time integration purposes. A model reduction technique could
possibly be applied, but here an efficient equivalent model by Le Lez et al. (2007) is used instead. In this model, the
bump foil is represented using bar elements forming a simple truss with member stiffness coefficientsk1, k2, k3,
k4, k1b, k3b and force transmission anglesθd, θdb. These coefficients are calculated from 33 analytical expressions
given by Le Lez et al. (2007) based on Castigliano’s second theorem, and their values for the present geometry are
given by von Osmanski et al. (2017).

In Table 2, the effective radial stiffness of the truss model for a nine-bump foil strip with dimensions from Table 1
is compared to results from a plane FE model based on a very accurate replication of the actual foil geometry.
To emphasise the significance of the boundary condition at the foil–housing contacts, results are included for
both rolling and pinned supports at this interface. The truss coefficients from Le Lez et al. (2007) are based
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on the case of rolling supports, meaning that the bumps are allowed to slide circumferentially with no frictional
resistance. Considering that the widely used expression by Walowit and Anno (1975) predicts a uniform stiffness
of 0.88GN/m3, the observed agreement between the truss and plane FE models is very good. If the foil–housing
contacts are pinned, i.e. restrained from circumferential sliding, the effective truss stiffness is increased more than
fivefold, while the plane FE model stiffness increases at least tenfold. A similar stiffening was observed by Feng
and Kaneko (2010) and should be kept in mind as the two cases correspond to the extreme cases of zero friction
and permanent sticking, respectively.

Table 2: Effective radial stiffness (for a uniform pressure) resulting from the truss model compared to a plane FE
model for the two cases of (frictionless) rolling and pinned housing contact nodes.

Effective normal stiffness for each bump[GN/m3]
Condition Model 1 2 3 4 5 6 7 8 9

Sliding
Truss model 3.4 3.2 3.3 3.2 3.2 3.3 3.1 3.7 1.7
Plane FE model 2.4 3.6 3.2 3.3 3.3 3.3 3.1 4.5 1.6

Pinned
Truss model 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 11.0
Plane FE model 42.5 43.6 43.7 43.8 43.8 43.8 43.7 43.340.5

The truss model is formulated as a static model, meaning that it is governed by a system of algebraic equations.
Coupling any (quasi-) static model directly to the differential equations governing the fluid film and the velocity
dependent friction model gives rise to certain issues. These become evident if considering the simple mechanical
system sketched in Fig. 2. It comprises a single point mass supported by four massless springs affected by a friction
force in a configuration similar to the bump foil truss model. Writing out the governing equations in first order
form, the following system can be obtained:






0
0
0
Ûx4

Üx4






=












2kc2
θ 0 −kc2

θ 0 0
0 k

(
3 − 2c2

θ

)
kcθsθ −k 0

−kc2
θ kcθsθ kc2

θ + k 0 0
0 0 0 0 1
0 k/m 0 −k/m 0

















x1

x2

x3

x4

Ûx4






−






0
0

fN (x1, x2, x3) fμ f ( Ûx3)
0
0






where
cθ = cos θd,
sθ = sin θd .

(8)

If friction is discarded, the upper three rows of Eq. (8) governing the massless truss are purely algebraic and hence
provide neither velocities nor accelerations. Together with the two differential equations governing the point mass,
this constitutes a system of semi-explicit differential/algebraic equations (DAEs). The DAEs represent a superset
of the ODEs and are, in general, more troublesome since no guarantees on solution uniqueness or existence can be
given as is the case for ODEs (see Poulsen et al. (2002); Petzold (1982)). Without friction, Eq. (8) is nevertheless
very easy to solve. It could be condensed and solved as two first order ODEs, or it could be solved as is using a
DAE solver.

Introducing friction, the solution of Eq. (8) becomes considerably more troublesome since the velocity required
to determine the orientation and size of the friction force is not available. Obviously, this could be reconstructed
using information from previous time steps using finite difference, but this would violate the requirement for a
simultaneous formulation and reintroduce the demand for temporal convergence studies. In the case of a strictly
positive normal force, the system could be considered as an implicit ODE (or DAE), but for any reasonable ap-
proximation to the sign function, this system is too stiff for practical purposes. In the actual AFB model, the case
of zero normal force, implying zero friction force for any sliding velocity, would furthermore have to be spanned
leaving the very structure of the equation system state dependent.

From a physical point of view, the fundamental issue is the lack of inertia to smooth out the displacements caused
by the rapidly changing friction forces in the vicinity of zero sliding velocity. As a remedy, it is therefore natural to
introduce the foil mass, even though this is per se insignificant to the overall rotordynamic response. Lumping the
bump foil mass onto the truss structure (giving a diagonal mass matrix) the equations are remoulded from algebraic
to differential with sliding velocities directly available. Coupling the obtained bump foil differential equations
to the (also dynamic) Bernoulli–Euler beam top foil model and the friction model, the overall foil structure is
assembled as visualised in Fig. 3. Notice that viscous dampers have also been introduced in the truss. These are
principally undesired as a main objective is to model frictional instead of viscous dissipation, but a slight structural
damping has proven numerically necessary due to the very high natural frequencies in the foil ranging up to around
500 kHz. The frequency range of interest for the rotordynamic response goes to around500Hz, and is hence well
separated from the first natural frequency of the foil structure at around2 kHz. This allows a proportional damping,
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Figure 2: Mechanical system illustrating the challenges of using a massless foil model. It comprises a point
mass (governed by a second order differential equation) supported by a massless truss (governed by four algebraic
equations) subject to a friction force.
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Figure 3: Illustration of the foil structure model for three bumps interacting with the journal through the generated
fluid film (grey area).kj, dj denote the truss element stiffness and damping, whileθ j are the transmission angles
and fμ represents the friction forces. Notice that the last bump uses different coefficients than the remaining ones.

providing a damping ratio ofζ = 0.001 at 500Hz, to be introduced to effectively dampen out the foil structure
dynamics while leaving the dynamics of interest virtually unaffected.

Collecting the DOFs of the foil structure for each bearingα = A, B into the foil state vector̃uα, the system of first
order nonlinear ODEs governing the structure in Fig. 3 can be written as

Û̃uα =

Ã f

︷                      ︸︸                      ︷
[

0 I

−M̃−1
f K̃ f −M̃−1

f D̃ f

]

ũα +

{
0

M̃−1
f

(
fμ

(
ũα, Û̃uα, p̃α

)
+ f p (p̃α)

)
}

, (9)

whereM̃ f , D̃ f andK̃ f are the mass, (proportional-) damping and stiffness matrices of the foil structure, respec-
tively. The vector functionfμ represents the friction forces at the contact nodes given from Eq. (6) and the vector
functionf p represents the work equivalent nodal loads on the top foil stemming from the fluid film pressurep̃α.
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Figure 4: Hysteresis curves at the summit of bump three in the second pad segment (θ = 180◦) for 0.5 s of
simulation from a rotor drop from the centre with (left) and without (right) friction. The dashed lines are fits to the
last 0.125 s and indicate the local effective foil stiffness.

5 Structure of the Assembled Equation System

The three sets of first order ODEs representing the rotor, fluid and foil structure domains given from Eq. (1), Eq. (5)
and Eq. (9) are now coupled. For this purpose, the global state vector

y =
{
ψT

A ψT
B ũTA ũTB zT1 zT2

}T
, (10)

is introduced, using which a single system of nonlinear first order ODEs can be written as






ÛψA

ÛψB
Û̃uA
Û̃uB

Ûz1

Ûz2






=


















0 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 0
... ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

...
...
... Ã f 0 ∙ ∙ ∙

...
...
... 0 Ã f

... 0
...
... ∙ ∙ ∙ ∙ ∙ ∙ 0 I

0 ∙ ∙ ∙ ∙ ∙ ∙ 0 M̃−1
r G̃r 0























ψA

ψB

ũA

ũB

z1

z2






+






g ÛψA(ψA, z1, z2, ũA)
g ÛψB(ψB, z1, z2, ũB)
g Û̃uA(ψA, z1, ũA, Û̃uA)
g Û̃uB(ψB, z1, ũB, Û̃uB)

0

M̃−1
r (w̃ − f̃ + f̃ub)






. (11)

The nonlinear functionsg Ûψα on the right hand side of the upper equations representing the fluid film are defined
from Eq. (5), while those in the midmost rows representing the foil structure,g Û̃uα, are given as the nonlinear part
of Eq. (9).

It should be noted that the numerical time integration of the coupled equation system given from Eq. (11) is a
nontrivial task. To make the presented foil model extension practically feasible, considerable prior optimisation
of the SEFM based time integration code has been necessary. Through these efforts, the SEFM based simulation
times has been reduced from days to minutes; but with the new foil structure, especially the friction model, the
relevant simulations nevertheless take in the order of 24 hours to complete.

6 Results & Discussion

To provide insight into the behaviour of the foil model and the influence of friction, a rotor drop from the bearing
centres with a high level of unbalance at20 kRPM is simulated for0.5 s with and without friction. In Fig. 4,
the mean axial pressurẽpm is plotted as a function of the top foil deformationhc at θ = 180◦. This point is in
the heaviest loaded region and coincident with the summit of bump three in the second pad. Settingγ to zero,
effectively deactivating the friction model, the foil behaves linearly and no friction-induced hysteresis is present.
Fitting a line to the last125ms reveals a local stiffness of3.2GN/m3, which is very close to the statically obtained
values from Table 2. Activating the friction model usingγ = 104, a hysteresis loop opens up and the fit now gives
a line passing diagonally through the hysteresis loop indicating an increase in effective stiffness to6.8GN/m3.

In Fig. 5, the vertical eccentricity ratio in bearingA is plotted during the first and last40ms of the rotor drop
simulation both with and without friction. In the transient part, the inclusion of friction lowers the displacement
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Figure 5: Vertical eccentricity ratioεAx with friction (γ = 104) and without (γ = 0) friction. The first40ms after
the rotor drop are shown to the left, while the final40ms, where steady state has set in, are shown to the right.
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Figure 6: Circumferential displacement, i.e. sliding, of the bump foil–housing contact nodes of the four leading
bumps in pad segment two. The left plot shows the first40ms after the rotor drop, while the right plot shows the
final 40ms of the simulation where steady state has been reached.

amplitudes, but almost identical steady states are eventually reached. This indicates that the equilibrium position
is determined by the structural stiffness alone. This is in the order of3–4GN/m3 and hence much lower than the
equivalent SEFM stiffness of9GN/m3 used by Larsen and Santos (2015). The value of9GN/m3 was based on
a number of ”engineering assumptions” and was intended by Larsen and Santos (2015) to represent the dynamic
foil stiffness, but as the applied model made no distinction between static and dynamic behaviour, this resulted in
equilibrium points lying much higher than those obtained from the present model. If the effective static stiffness
of the foil structure is in fact closer to9GN/m3, as suggested by the agreement to experimental results, the foil
structure must, at least partly, be sticking.

Fig. 6 shows the circumferential sliding displacement for the first four bump foil–housing contact nodes in the
second pad during the first and last40ms. The presence of friction is evident in both plots from the characteristic
flattened peaks and valleys related to the sign change of the friction forces. As both the mean displacements and
the dynamic displacement amplitudes increase along the pad (this is also true for the remaining five bumps), the
frictional energy dissipation will be largest for the bumps closest to the trailing edge.

The original motivation for introducing a friction model was twofold:(a) to circumvent the requirement for an
empirically determined and constant equivalent stiffness; and(b) to avoid the inclusion of an empirical mechanical
loss factor. It is evident from Fig. 4 that the friction model provides damping and that it increases the effective
dynamic stiffness. It has, however, also been shown that the friction induced dynamic stiffness does not affect the
equilibrium position. This means that the present AFB model results in steady state rotor eccentricities determined
solely by the structural foil stiffness, while its dynamic characteristics at this equilibrium are influenced by friction.
The effect is sketched in Fig. 7, where the left plot shows the radial deflection of a bump subjected to the load
profile shown to the right. When loading up, point ”A” is reached tracking the upper edge of the global hysteresis
loop, where the effective stiffness is that of the sliding structure plus a frictional contribution. Ramping down
the load, a line parallel to the right edge of the global loop is tracked to point ”B” while the direction of sliding
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Figure 7: Sketch of the frictional drift present for the dynamic friction model. The right plot depicts a hypothetical
load profile applied to a single bump and the left plot is the resulting displacement.

and hence the frictional force is reversed. Ideally, the effective stiffness is here close to that of a pinned bump, as
no sliding should occur while the friction force changes direction. Note that the friction force crosses zero and
changes direction as the dashed line indicating the sliding bump stiffness is crossed. Further decreasing the load
from ”B”, the global hysteresis loop is tracked until ”C” while the contact slides. Increasing the load to ”D”, the
same stiffness as between ”A” and ”B” is experienced, but as the load is lowered from ”D” towards ”E”, a frictional
force sign change is required without any sliding. This is not possible for the dynamic friction model, meaning
that the contact point will drift towards the frictionless equilibrium for each sign change made within the global
loop. These drifts are marked in red in the plot (the short horizontal arrows) and even though their magnitude is
dependent on the smoothing parameter, point ”F” will eventually be reached. At this point, the oscillations take
place around the same equilibrium as would have been reached without friction.

7 Conclusion

The paper has presented an alternative foil structure model for AFB simulation based on a truss representation of
the bump foil originally proposed by Le Lez et al. (2007). The top foil is added using a simple one dimensional
Bernoulli–Euler beam and a dynamic friction approximation is included to model frictional energy dissipation at
the top foil–bump foil and bump foil–bearing housing interfaces. The usually applied foil structure models are
static, i.e. represented by algebraic equations, but it is argued that the combination of a simultaneous solution in
time and a friction model requires the inclusion of the foil inertia. This is achieved by augmenting the bump foil
truss and top foil beam elements with lumped masses and subsequently to eliminate the entailed very high natural
frequencies using stiffness proportional damping.

The new foil structure model is coupled to a nonlinear time domain model of a rigid shaft supported by two AFBs
as a replacement for the SEFM. This allows the SEFM’s inherent assumptions of viscous dissipation, constant
stiffness and decoupled neighbouring points to be abandoned, and the empirically determined equivalent stiffness
and loss coefficients of the SEFM can be replaced by directly measurable quantities.

The numerical results from the coupled model demonstrates that energy is dissipated by the friction model and
that an increased effective dynamic stiffness is introduced. It is, however, evident that the dynamic stiffness caused
by friction does not affect the obtained steady state position in the current model. This is reasonable considering
the applied dynamic friction approximation, as this is not capable of representing true sticking and hence will
allow net sliding until the equilibrium position dictated by the structural stiffness is reached. This is interesting,
as the equivalent SEFM stiffness used by Larsen and Santos (2015) to obtain unbalance responses in very good
agreement to experimental results, was based on the dynamic foil structure stiffness. In the SEFM, no distinction is
made between the static structural stiffness and the friction induced dynamic stiffness, meaning that much higher
foil compliances and rotor eccentricities are obtained using the new model than was the case using the SEFM
(Larsen and Santos, 2015).

The agreement to experimental results achieved using the SEFM, with a constant equivalent stiffness much higher
than that of a sliding bump foil structure, suggests that sticking is in fact a prevalent state. This would imply
that the orbits predicted using the new foil structure model are too low-lying and, most importantly, that frictional
dissipation is not as significant as generally assumed.
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