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Reduced Order Modeling of Mistuned Bladed Disks under Rotation

S. Willeke, L. Panning-von Scheidt, J. Wallaschek

In this paper, a substructure-based reduced order model for mistuned bladed disks is extended to account for the
effect of rotational-dependent dynamic properties. To reduce the overall size of the structural model, successive
transformations to reduced modal subspaces of smaller dimension are performed by means of a fixed-interface
Component Mode Synthesis, a Wave-Based Substructuring, and a Secondary Modal Truncation. Since the three-
dimensionally shaped rotor blades tend to untwist under the influence of centrifugal forces, the modal reduction
bases may undergo significant changes for different speeds of rotation. To prevent the necessity of identifying in-
dividual modal subspaces for each operating point and a repetitious passing through the full reduction process, a
multi-model formulation is used to obtain a parameterized reduced order model in terms of rotational speed. The
accuracy of this approach is assessed by comparison with full finite element models for various steady operating
conditions. In terms of computational solution time, the proposed approach outperforms the finite element calcula-
tion by 90%. Finally, numerical results are presented addressing the mitigating influence of constant and variable
rotational speeds on the amplitude amplification of mistuned bladed disks.

1 Introduction

During operation, the rotating bladed disks in turbomachines are exposed to large static and dynamic stresses.
While static loads mainly arise from centrifugal forces and thermal strains, fluctuating gas pressures and rotor
imbalances lead to forced vibrations. In particular, the periodic motion of the rotor blading through the irregular
wake pattern downstream the stator vanes is known as a major source of forced excitation. Besides this synchronous
stimulus, unsteady flow phenomena like aeroelastic flutter may cause self-excited blade vibrations of asynchronous
type. The response of the structural components to these forcing mechanisms is in turn affected by the rotational
motion. For instance, the static stresses stemming from centrifugal forces change the frequency characteristic
of the rotating structure. In addition, small imperfections caused by the manufacturing process break the cyclic
symmetry of the bladed disk and lead to a local concentration of vibrational energy. This mistuning may cause
increased blade vibration amplitudes which in turn lead to an elevated risk of high-cycle fatigue. To efficiently
predict this amplitude amplification in the turbomachinery design process, Reduced Order Models (ROM) of the
full annulus are applied.
A numerical comparison between the mistuned vibrations of a transonic shrouded fan at 8,000 rpm and at rotor rest
is presented in Moyroud et al. (2002). It is concluded from simulations that the stiffening effect of the rotational
motion mitigates stiffness perturbations between the blades and reduces the overall sensitivity to mistuning. To
approximate the evolution of mistuning under the influence of rotation, a simplified prediction method is proposed
by Feiner (2002) and by Feiner and Griffin (2004). In combination with the Fundamental Mistuning Model (FMM),
it is used to predict the response of an integrally bladed compressor disk at 40,000 rpm. A similar method for the
approximation of the mistuned blade stiffness under rotation is described by Nipkau (2011) based on an SDOF-
approach. Its application in numerical studies of a high pressure compressor blisk indicates a reduced effect
of mistuning under rotation. Experimental measurements of a mistuned centrifugal impeller by Maywald et al.
(2009) show no significant influence of rotation on mistuning for a speed range from 10,000 rpm to 19,000 rpm.
A reduced multi-model approach that allows to consider mistuning under rotation is presented by Balmès (1996),
Sternchüss and Balmès (2008), and Sternchüss (2009).
The present paper focuses on the extension of a substructure-based reduced order approach described in Hohl
et al. (2009) by the multi-model formulation proposed in Balmès (1996), Sternchüss and Balmès (2008), and
Sternchüss (2009). To this end, the modal subspaces of each reduction step are enriched by additional modes at
various operating points in the analyzed range of rotational speeds. In addition, the effect of stiffness variation
by centrifugal forces on the associated natural frequencies is incorporated by a second-order polynomial in the
structural stiffness matrix (Sternchüss, 2009).
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In order to predict the forced response of a mistuned bladed disk at an angular frequency ω, the following equation
of motion at the rotational speed Ω is solved:[

−ω2M + iωCv (Ω) + iCs (Ω) + K (Ω)
]
û = f̂e . (1)

Since the present study is focused on modeling the interacting effects of centrifugal stiffness variations and struc-
tural mistuning, any gyroscopic effects in Eq. (1) are neglected. Proportional and structural damping Cv and Cs

are considered in terms of the mass matrix M and the stiffness matrix K,

Cv (Ω) = αM + βK (Ω) and Cs (Ω) = d0K (Ω) . (2)

The vectors û and f̂e denote the displacement and forcing amplitudes of each blade k respectively,

u = ûei(ωt+φu) and fe = f̂ee
i(ωt+φe) where φe,k =

2π

N
EO (k − 1) for k = 1, 2, . . . , N . (3)

In case of synchronous excitation mechanisms, the angular forcing frequency ω is expressed in terms of the Engine
Order (EO) and the rotational speed Ω as

ω = EO · Ω . (4)

Depending on the finite element discretization of the structure, the vector û may contain numerous degrees of
freedom. To reduce the computational effort for solving Eq. (1), the problem is projected to modal subspaces of
gradually smaller dimensions.

2 Reduced Order Modeling of mistuned bladed Disks

In this section, the substructure-based reduction technique presented by Hohl et al. (2009) is summarized prior
to addressing its multi-model extension. The reduction steps include a Component Mode Synthesis (CMS), a
Wave-Based Substructuring (WBS), and a Secondary Modal Truncation (SMT).

2.1 Component Mode Synthesis

Based on the finite element representation of a single segment, the bladed disk is partitioned into a cyclic symmetric
disk and the mistuned blading components. By distinguishing degrees of freedom along the blade-disk-interface
boundary Γ from the internal domain Ξ, the matrix Z related to a component s (i.e. either a blade or the disk) at
operating point n ∈ N is described by,

Z(s,n) =

[
Z

(s,n)
ΓΓ Z

(s,n)
ΓΞ

Z
(s,n)
ΞΓ Z

(s,n)
ΞΞ

]
where Z(s,n) = M(blade),M(disk),K(blade,n) (Ω) ,K(disk,n) (Ω) . (5)

In the following simulations, the parameter n refers to different rotational speeds of the bladed disk. To verify the
extended modeling approach, a speed range from 0 rpm up to 15,000 rpm is chosen. The samples for the stiffness
matrix K(s,n) are taken at rotational speeds of 0 rpm (n = 0), 6,000 rpm (n = 1), and 12,000 rpm (n = 2,
see section 4). This range of the parameter Ω is wide enough to induce distinct changes in eigenfrequencies and
eigenvectors by stress stiffening and spin softening.
According to the fixed-interface approach by Craig and Bampton (1968), the vibrational displacement of each
component is approximated by a set of dynamic component modes Φ(s,n) related to the eigenvalues along the
diagonal of the spectral matrix Λ(s,n) and static constraint modes Ψ(s,n),

K
(s,n)
ΞΞ Φ(s,n) = MΞΞΦ(s,n)Λ(s,n) and Ψ(s,n) = −K

(s,n)−1

ΞΞ K
(s,n)
ΞΓ . (6)

By reducing the amount of retained component modes Φ(s,n) in the transformation matrix T
(s,n)
cms , a low order

modal representation for each component s is obtained,(
u

(s,n)
Γ

u
(s,n)
Ξ

)
= T(s,n)

cms

(
u

(s,n)
Γ

η(s,n)

)
where T(s,n)

cms =

[
I 0

Ψ(s,n) Φ(s,n)

]
. (7)

Subsequent to the transformation in Eq. (7), the disk and blading are reassembled along the interface Γ yielding a
reduced order model of the completely bladed disk. Mode-specific frequency mistuning is directly applied to the
reduced spectral matrix of each blade.
At this point it should be noted that the transformation matrix T

(s,n)
cms in Eq. (7) includes mode sets Φ(s,n)

and Ψ(s,n) which in turn are dependent on the stiffness matrix K(s,n). Since a change in rotational speed Ω
leads to a stiffness variation, the eigenproblem in Eq. (6) has to be solved for each operating point n.
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2.2 Wave-Based Substructuring

After the CMS transformation, the internal displacement u
(s,n)
Ξ is represented by a reduced amount of general-

ized coordinates η(s,n). The amount of interface degrees of freedom u
(s,n)
Γ , however, remains unreduced in the

model. Therefore, a limited modal basis W(n) of orthogonal displacement waves along the blade-disk-boundary
is extracted from a modal analysis of the tuned CMS-reduced blisk model,(

uΓ

uΞ

)
=

[
I 0

Ψ(n) Φ(n)

]
T

(n)
wbs

(
ξ(n)

η(n)

)
where T

(n)
wbs =

[
W(n) 0

0 I

]
. (8)

The orthonormalization of the interface modes Φ(n) is achieved by a Singular Value Decomposition (SVD) as
described by Donders (2008) and Hohl et al. (2009),

Φ(n) = Q(n)Σ(n)V(n)T
and W(n) =

{
q

(n)
i

}
for σ

(n)
i ≥ σ(n)

tol . (9)

The symbol Σ(n) denotes a rectangular matrix, while Q(n) and V(n)T
depict unitary matrices formed column-

wise by the left-singular and right-singular eigenvectors of the matrix Φ(n). Each column q
(n)
i of the matrix Q(n)

represents an orthogonal basis function and is associated to a singular value σ(n)
i . Based on a tolerance σ(n)

tol ,
the amount of column vectors is reduced and the wave basis W(n) is obtained (see section 3.5). Again, the
matrix T

(n)
wbs in Eq. (8) depends on the operating point n and has to be adapted to each rotational speed Ω.

2.3 Secondary Modal Truncation

The last reduction step is based on a modal analysis of the CMS/WBS-reduced model (superscript ∗). By retaining
a limited set of blisk modes Φ(n)∗ in the matrix T

(n)
smt, the transformation to the final modal subspace is achieved,

u
(n)
cms,wbs = T

(n)
smtη

(n) where T
(n)
smt = Φ(n) and K(n)Φ(n)∗ = MΦ(n)∗Λ(n)∗ . (10)

As outlined in the preceding sections, the Secondary Modal Truncation (SMT) in Eq. (10) requires repetitive modal
analyses at each operating point n.

3 Multi-model Extension

To account for the rotation-induced variation of the mode shapes, the modal bases for the CMS, WBS, and SMT
transformation have to be adapted to each operating point of interest. In order to avoid a repetitious passing
through the full reduction process for each rotational speed, the modal bases are enriched by mode samples at
various operating points. For this purpose, each reduction step is reformulated in terms of a multi-model approach
proposed by Balmès (1996), Sternchüss and Balmès (2008), and Sternchüss (2009). In summary, the procedure
comprises the following steps:

1. Enrich the modal basis by adding mode samples at various operating points in the relevant speed range.

2. Orthonormalize the enriched modal basis by means of a Singular Value Decomposition.

3. Reduce the dimension of the orthonormal basis by retaining a limited subset of relevant modes.

Following these general steps, the detailed reformulation of the CMS, WBS, and SMT transformation is outlined
in the following sections. To account for the stiffness variation by centrifugal forces, a second-order approximation
of the reduced stiffness matrix is applied.

3.1 Interpolation of the Stiffness Matrix

Besides the change in mode shapes, the change of the structural eigenfrequencies has to be taken into account.
The eigenfrequencies of a rotating bladed disk may either increase (stress stiffening) or decrease (spin softening)
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with rotational speed. To this end, the following interpolation of the reduced spectral matrix Krom is applied
(Sternchüss, 2009),

Krom (Ω) =

2∑
n=0

Ω2nP(n)
rom = P(0)

rom + Ω2P(1)
rom + Ω4P(2)

rom . (11)

In the present study, a fourth-order polynomial in rotational speed Ω (upper limit nmax = 2) is sufficient to
represent both stiffening and softening effects. The coefficient matrices P(n)

rom are obtained from three samples of
reduced stiffness matrices K(n)

rom at various rotational speeds Ω. In combination with the enriched reduction bases
presented in the following sections, the interpolation in Eq. (11) allows an efficient vibration prediction at constant
and variable rotational speed. It should be noted that this interpolation may be performed at any reduction level.
Since the reduced stiffness matrix features the smallest dimension after CMS, WBS, and SMT transformation, the
interpolation is preferably performed at this final stage of the reduction process.

3.2 Extended Component Mode Synthesis

According to section 2.1, the enriched CMS basis is formed by dynamic component modes Φ(s,n) and static
constraint modes Ψ(s,n) at various operating points. With respect to the second order polynomial in Eq. (11), three
sets of modal samples are used,

T(s)
cms =

[
I 0 I 0 I 0

Ψ(s,0) Φ(s,0) Ψ(s,1) Φ(s,1) Ψ(s,2) Φ(s,2)

]
. (12)

Relating the additional static modes to a reference modal set Ψ(s,0), the transformation matrix T̃
(s)

cms becomes,

T̃
(s)

cms =
[
T̃

(s)

i T̃
(s)

m

]
where T̃

(s)

i =

[
I

Ψ(s,0)

]
and

T̃
(s)

m =

[
0 0 0 0 0

Ψ(s,1) −Ψ(s,0) Ψ(s,2) −Ψ(s,0) Φ(s,0) Φ(s,1) Φ(s,2)

]
.

(13)

Next, the obtained modal basis is orthonormalized by a Singular Value Decomposition and reduced by retaining
only modes associated to singular values above a tolerance σ(s)

tol ,

T̃
(s)

m = Q(s)Σ(s)V(s)T
and T̃

(s)

m,red =
{

q
(s)
i

}
for σ

(s)
i ≥ σ

(s)
tol . (14)

A synthesis of the reduced basis T̃
(s)

m,red and its reference T̃
(s)

i leads to the enriched transformation matrix T̃
(s)

cms,red,

T̃
(s)

cms,red =
[
T̃

(s)

i T̃
(s)

m,red

]
. (15)

3.3 Extended Wave-Based Substructuring

Enriching the set of interface waves in Eq. (8) with samples at different rotational speeds

Twbs =

[
W(0) 0 W(1) 0 W(2) 0

0 I 0 I 0 I

]
(16)

and performing the rearrangement

T̃wbs =
[
T̃m T̃i

]
where T̃m =

[
W(0) W(1) W(2)

0 0 0

]
and T̃i =

[
0
I

]
(17)

yields the reduced WBS matrix T̃wbs,red,

T̃wbs,red =
[
T̃m,red T̃i

]
where T̃m = QΣVT and T̃m,red = {qi} for σi ≥ σtol . (18)
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3.4 Extended Secondary Modal Truncation

Modal analyses of the reduced blisk model at three different rotational speeds provide the SMT basis

Tsmt =
[
Φ(0)∗ Φ(1)∗ Φ(2)∗

]
where T̃smt = T̃m (19)

which is orthonormalized and reduced to form the enriched SMT matrix T̃smt,red,

T̃smt,red = T̃m,red where T̃m = QΣVT and T̃m,red = {qi} for σi ≥ σtol . (20)

3.5 Singular Value Tolerance

To illustrate the feasible range of the parameter σtol, the singular values for a bladed disk at different rotational
speeds Ω are analyzed. The effect of choosing a specific tolerance is assessed in terms of the maximum relative
difference ∆frel,max of the lowest 100 eigenfrequencies fi between the reduced and full finite element model,

∆frel,max = max

{
from,i − ffull,i

ffull,i

}
. (21)

In the following, the singular values σ(n)
i of the interface waves in Eq. (9) are presented. For simplicity, the

values σ̃(n)
i are normalized with respect to the largest singular value σ(n)

1 ,

σ̃
(n)
i =

σ
(n)
i

σ
(n)
1

. (22)

Despite different operating points n, a similar decrease of the singular values for the analyzed rotational speeds of
0 rpm, 6,000 rpm, and 12,000 rpm is shown in Fig. 1. Consequently, a common tolerance σ̃(n)

tol = 0.1 is chosen for
all three angular velocities. Exemplary values for some tolerance levels are listed in Tab. 1.

Table 1: Maximum relative frequency difference ∆frel,max between ROM and FEA as a function of the normalized
singular value tolerance σ̃(n)

tol

Tolerance σ̃(n)
tol Interface waves i Max. frequency difference ∆frel,max

0.1 100 waves < 2%
0.3 75 waves < 5%
0.7 20 waves < 10%
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 = 0 rpm (n = 0)

 = 6,000 rpm (n = 1)

 = 12,000 rpm (n = 2)
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 = 12,000 rpm (n = 2)

Figure 1: Normalized singular values σ̃ of the interface waves (left) and maximum frequency difference ∆frel,max

between the FEA and ROM with various tolerances σ̃
(n)
tol for the first 100 tuned blisk modes (right) at

constant rotational speeds Ω of 0 rpm, 6,000 rpm, and 12,000 rpm
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4 Comparison with the Full Model

To assess the accuracy of the reformulated modeling approach, the reduced order model of a sample blisk com-
prising ten bladed segments is compared to its full finite element representation. First, an appropriate discretiza-
tion of the blisk by finite elements has to be chosen by comparing the results obtained from successively refined
meshes. Since this study is focused on modeling the evolution of dynamic properties under rotation, the rela-
tive change ∆frpm,k of the eigenfrequency fk in the speed range from Ωmin = 0 rpm up to Ωmax = 15,000 rpm is
chosen as a convergence criterion between the meshes,

∆frpm,k =

∥∥∥∥fk (Ωmax)− fk (Ωmin)

fk (Ωmin)

∥∥∥∥ . (23)

The results of the mesh convergence study in Fig. 2 indicate that the maximum frequency change ∆fmax
rpm,k of

about 70% in the analyzed speed range is well predicted by meshes with at least 5,000 degrees of freedom (dof). A
detailed study of 10 mode families with two nodal diameters shows that the maximum frequency change ∆fND2

rpm,k

is related to the first mode family. In view of the computational expense to solve the unreduced finite element
model, a medium mesh size with 9,300 dof is chosen for the subsequent model verification.
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3,060 dof

9,300 dof
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Figure 2: Relative change ∆frpm,k of eigenfrequencies in the rotational speed range from 0 rpm to 15,000 rpm for
different finite element meshes and various nodal diameters ND

The comparison between the reduced and full model in Fig. 3 is performed at different steady operating points with
constant rotational speeds. The reduced order approximation is based on three samples of prestressed stiffness
matrices at speeds Ω of 0 rpm, 6,000 rpm, and 12,000 rpm. The number of retained modes in the enriched
CMS, WBS, and SMT bases is listed in Tab. 2. Prior to addressing a mistuned configuration under rotation, the
tuned dynamics of the blisk are discussed. In conclusion, the effectiveness of the presented approach in terms of
computational time saving is highlighted.

Table 2: Parameters of the reduced order model
CMS WBS SMT

10 modes per blade / 10 modes per harm. index 200 waves 100 blisk modes

Nodal diameter ND
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F
re
q
u
en
cy

f
in

H
z

0

500

1000

1500

2000
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Figure 3: Finite element model, nodal diameter diagram, and ND2-Campbell diagram of the tuned blisk (stiffness
samples for ROM taken at constant rotational speeds Ω of 0 rpm, 6,000 rpm, and 12,000 rpm)
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4.1 Tuned Blisk under constant Rotation

First, the mode shape approximation by enriched CMS, WBS, and SMT bases is evaluated in terms of the Modal
Assurance Criterion (MAC) presented by Allemang and Brown (1982). The interpolation of the reduced stiffness
matrix within a limited range of rotational speeds is rated by means of the relative eigenfrequency difference ∆frel
between the reduced and full finite element model,

MACi,j =
|ΦT

rom,iΨfull,j |2

ΦT
rom,iΦrom,iΨT

full,jΨfull,j
and ∆frel,i =

from,i − ffull,i

ffull,i
. (24)

Since slight frequency differences between the full and reduced order models may lead to a different order of
the associated mode shapes i, the resulting modal assurance criterion MACi,i undergoes abrupt changes between
maximum and minimum values. This circumstance is illustrated by a progressively increasing scatter of large
MAC values for higher modes in the contour plot of Fig. 4.
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Figure 4: Modal assurance criteria and relative frequency differences of the tuned blisk for a constant rotational
speed of 9,000 rpm

Consequently, a modified criterion MAC∗
i,j is defined which yields a gradually decreasing mode correlation for

increasing frequency deviations in Fig. 4,

MAC∗
i,j = max

j

{
|ΦT

rom,iΨfull,j |2

ΦT
rom,iΦrom,iΨT

full,jΨfull,j

}
. (25)

The accuracy of the parameterized multi-model formulation is assessed at the sample speeds of 0 rpm, 6,000 rpm,
and 12,000 rpm as well as intermediate and extended speeds of 3,000 rpm, 9,000 rpm, and 15,000 rpm. A MAC
level above 0.96 and a relative frequency difference below 1% for the first 110 modes in Fig. 5 demonstrates the
accurate approximation of free blisk vibrations at different rotational speeds by the reduced order model. While
this decent approximation is expected for operating points which are included as stiffness samples in the model,
the good correlation at intermediate and extrapolated rotation speeds demonstrates the validity of the underlying
stiffness interpolation in Eq. (11) and the multi-model extension.
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Figure 5: Modal assurance criteria and relative frequency differences of the tuned blisk for constant rotational
speeds ranging from 0 rpm to 15,000 rpm
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This conclusion is substantiated by the excellent agreement of the forced EO2 response of the full and reduced
blisk models at a rotor speed of 9,000 rpm in Fig. 6. The depicted amplitude û∗ is normalized with respect to
the maximum displacement of the tuned blisk at rotor standstill. To illustrate the stiffening effect on the forced
response, an amplitude comparison for various rotational speeds is provided in Fig. 7. Again, the amplitudes of the
full and reduced order models match well in the analyzed range of frequencies and rotational speeds. A detailed
view of the stiffening effect on the resonance of the first flapwise bending mode is provided in Fig. 7.

Figure 6: Forced EO2 response of the reduced and full finite element models of the tuned blisk for a constant
rotational speed Ω of 9,000 rpm

Figure 7: Forced EO2 response of the reduced and full finite element models of the tuned blisk for constant
rotational speeds Ω ranging from 0 rpm to 15,000 rpm

4.2 Mistuned Blisk under constant Rotation

To assess the accuracy of the reduced order prediction for mistuned bladed disks, the stiffness of each blade k
is multiplied by an individual mistuning factor κk in Tab. 3. It should be noted that this frequency mistuning is
applied to the blading at rotor standstill. Consequently, the ratios of tuned and mistuned blade frequencies may
change for various operating points. In the presented reduced order model, this evolution of mistuning factors
with a variable speed Ω is covered by considering the reduced stiffness matrices of each individual blade at three
different rotational speeds and applying the interpolation in Eq. (11).
A comparison between the full and reduced models by means of a mistuned EO2 response at 9,000 rpm is presented
in Fig. 8. Again, an excellent agreement in terms of amplitude and phase approximation is highlighted. The accu-
racy of the reduced order model for various rotational speeds ranging from 0 rpm to 15,000 rpm is demonstrated
in Fig. 9.

Table 3: Frequency mistuning factors of the blisk at rotor standstill (Ω = 0 rpm)
Blade k 1 2 3 4 5 6 7 8 9 10
κk 0.84 0.98 1.05 0.81 1.49 1.05 1.12 0.52 1.41 1.12

Figure 8: Forced EO2 response of the reduced and full finite element models of the mistuned blisk for a constant
rotational speed Ω of 9,000 rpm
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Figure 9: Forced EO2 response of the reduced and full finite element models of the mistuned blisk for constant
rotational speeds Ω ranging from 0 rpm to 15,000 rpm

4.3 Computational Time Saving

To highlight the effectiveness of the presented approach, the computational times required for the forced response
analysis of the previously introduced blisk sample are shown in Fig. 10. The computational setup used for all
simulations is summarized in Tab. 4. First, the time tFEA required for solving the full finite element model is
compared to the overall computation time tROM,total of the reduced order model (including the model reduction as
well as the solution process). This direct comparison demonstrates that the reduced order approach outperforms
the full model by a factor of almost four (saving 73% of computational time).
In addition, the amount tROM,reduction of 48 s indicates that the reduction process takes up more than half of the
overall computation time tROM,total of 77 s. Since the model reduction has to be performed just once prior to the
actual solution process, the reduced order approach provides a computational saving of 90% for the forced response
prediction in comparison to the full finite element model.

Table 4: Computational setup used for all simulations
Operating system CPU RAM

Windows 7 Professional (64 Bit) Intel Core i5-4590 (3.3 GHz) 16 GB
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Figure 10: Comparison of the computational time required for a mistuned forced response prediction (1,000 fre-
quency samples per response curve) by the full finite element model and the reduced order approach

322



5 Analysis of Blisks under variable Rotation

Besides the vibration prediction for various constant operating points, the presented model allows the analysis of
bladed disks at variable speeds of rotation. In the following, the resonance of the first flapwise bending mode for
a synchronous stimulus according to Eq. (4) is analyzed. Since each frequency f is related to a specific rotational
speed Ω via the engine order EO, the structural properties are adapted to each operating point in the analyzed
frequency range according to Eq. (11). It should be noted that despite the variation of rotor speed, the response at
each frequency is assumed as a steady operating state and no transient run-up or coast-down effects are considered.
In Fig. 11, the forced response of the tuned blisk under variable rotor speed (indicated by the tilted line) is com-
pared to its amplitudes at constant rotation for the engine orders EO2, EO6, and EO10. It becomes clear that the
frequencies at the crossings of the synchronous response (tilted line) and the amplitudes at constant rotation meet
the condition in Eq. (4) according to the specific engine order. For example, the amplitude response at 15,000 rpm
(corresponding to Ω = 250 Hz) is crossed by the variable EO2 response at a frequency f of 500 Hz. In addition,
the stiffening effect modeled by Eq. (11) is identifiable as an increase of the resonance frequency with growing
rotor speed.

Figure 11: Forced response of the tuned reduced order model for constant and variable rotational speeds (tilted
line)

A comparison between the forced EO2, EO6, and EO10 responses of a mistuned blisk (see Tab. 3) under variable
rotation and its responses at constant rotational speed is shown in Fig. 12. For simplicity, the mistuned response is
depicted in terms of the overall envelope of the maximum amplitudes. Again, the response crossings for variable
and constant rotational speeds meet the relation in Eq. (4).

Figure 12: Maximum amplitudes of the mistuned reduced model for constant and variable rotor speeds (tilted line)

To study the effect of constant and variable rotor speed Ω on the amplification of mistuned vibrations, the following
ratio between the maximum amplitude of the tuned (superscript tu) and mistuned blisk (superscript mt) is defined:

aΩ =
ûmt,max

Ω

ûtu,max
Ω

. (26)

While the maximum amplitude ratio at constant rotational speed is obtained by division of the amplitude maxima
along the response curves aligned with the frequency abscissa f in Fig. 11 and Fig. 12, the amplification factor aΩ

under variable rotation results from the ratio of the tilted response curves in mentioned figures. It should be noted
that the frequency range which is considered for the determination of the maximum amplitudes ûmax

Ω under variable
rotation depends on the actual rotor speed Ω and the analyzed engine order EO through Eq. (4). Consequently, the
analysis of EO1 is limited to excitation frequencies below 250 Hz since this value corresponds to the upper limit
of the rotational speed range (Ω = 15,000 rpm) validated in section 4.
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The corresponding amplification factors for engine orders EO1 to EO10 are depicted in Fig. 13. It is indicated that
the amplitude amplification ratios for all analyzed engine orders at constant rotor speed tend to decrease for an
increase in Ω. This result is in accordance with the mitigation effect of rotation on mistuning reported by Moyroud
et al. (2002) and Nipkau (2011).

Figure 13: Amplitude amplification of the mistuned reduced order model for constant and variable rotational speed

In comparison, the maximum amplitude amplification for engine orders EO5 to EO10 under variable rotor speed
(indicated by circles in Fig. 13) is of the same order as the ratios at constant rotational speed. For EO1 to EO4 the
assumption of constant rotational speed leads to an overprediction of the mistuning effect. This result can be traced
back to Eq. (4), Fig. 11, and Fig. 12: Since the synchronous stimulus response (tilted line) approaches the response
at rotor rest (Ω = 0 rpm, line aligned with frequency axis) for large EO levels, the amplitude amplification for an
increasing engine order converges towards the corresponding maximum value at rotor standstill.

6 Summary and future Work

The extension of a reduced order model to account for the rotational speed dependence of mistuned bladed disk
dynamics has been presented. By usage of a multi-model formulation presented in Balmès (1996), Sternchüss and
Balmès (2008), and Sternchüss (2009), the reformulated substructural approach allows efficient blade vibration
predictions at constant and variable rotor speeds. The accuracy of the model has been demonstrated in terms of
modal assurance criteria, relative frequency differences, and a forced response comparison. Comparing the compu-
tational times for solving the reduced model and the full finite element representation of a mistuned blisk reveals a
time saving of 90%. The applicability of the proposed approach has been shown by the study of a mistuned bladed
disk at various rotational speeds. The analyses indicate that the rotational motion has a mitigating effect on the
amplitude amplification caused by mistuning.
In future work, the evolution of the speed-dependent mistuning coefficients will be incorporated in the presented
model. Finally, the numerically predicted response may be compared to experimental measurements in an operat-
ing turbomachinery test rig.
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