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On Behavior of a Double Rotor HAWT with a Differential Planet Gear

E. Shalimova, L. Klimina, K.-H. Lin

The mathematical model of a double disk horizontal axis wind turbine is constructed. The turbine has two pro-
pellers (actuator disks). One propeller is rigidly connected to a carrier of a planet gear, the other is rigidly
connected to an external ring of the same planet gear. A rotor of an electrical generator is rigidly connected to
a sun of the planet gear. The generator is included into a local electrical circuit with several consumers. The
quasi-steady model of aerodynamic action is used. The electromechanical torque acting on the rotor of generator
is assumed to be a linear function of an angular speed of the rotor. Existence and stability of steady motions are
studied. Analysis of characteristics of steady motions such as angular speed of each propeller and mechanical
power trapped from the flow is performed. A control strategy is suggested.

1 Introduction

Experimental tests and mathematical modeling have proved that using of two contra-rotating propellers in the
construction of a horizontal axis wind turbine (HAWT) improves its aerodynamic characteristics (Jung et al.,
2005; Shen et al., 2007; Farthing, 2010; Lee et al., 2012). Corresponding models of turbine aerodynamics are
well-developed (see Hansen (2015)). But only in few of them the influence on the turbine dynamics produced by
the interaction between mechanical and electrical parts of the HAWT is taken into account. Such an interaction is
very essential for a so-called small-scale turbine with the generator connected to a local electrical circuit. Changes
of electrical load influence such turbines greatly. In particular, the hysteresis of a trapped power with respect to
increase/decrease of electrical load appears. This fact was shown for a classical (one propeller) HAWT in the
frames of closed mathematical model by Dosaev et al. (2009).

In the current paper it is supposed that the generator of the double disk HAWT is connected to a local electrical
circuit. The closed dynamical model with taking into account electromechanical interaction in the system is con-
structed. One of the parameters of the model is responsible for the value of external resistance in the circuit, so it
describes the load from consumers upon the HAWT.

A special type of a double disk HAWT is studied: Propellers are installed at two rings of a differential planet gear
(DPG), a rotor of a generator is connected to the third ring of the gear. Thus, the dynamics of the system essentially
differs from that of a classical double disk HAWT, for which one propeller is joined to a rotor of a generator and
the other is joined to a stator.

The evident advantage of using the DPG is that the relative angular speed of the rotor of the generator can be much
higher than the relative angular speed of one propeller with respect to the other. Moreover, the DPG offers more
options for additional control devices.

2 Description of the Mechanical System

The mechanical system includes two propellers. The front propeller is rigidly joined to the carrier of a DPG, the
second propeller is rigidly joined to the external ring of the DPG (Figure 1). The front propeller is supposed to
produce good torque at high tip speed ratio (to be leading at a regular mode of the operation). The back propeller
is supposed to produce rather good torque at low tip speed ratio (to be leading at a starting stage of the operation).
A rotor of a generator is rigidly joined to the sun gear of the DPG. The generator is connected to a local electrical
circuit with a changeable external resistance.

Assume thatrc, rs, rr, rp are the radiuses of corresponding rings,Jc, Jr, Js, Jp are the central moments of inertia
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of rigid bodies “front propeller + carrier”, “back propeller +external ring”, “sun + rotor”, each planet,mp is the
mass of each planet.

Suppose that there is no slipping between elements of DPG. Then the mechanical system has two degrees of
freedom.

Figure 1. A general scheme of the system.

2.1 Model of External Forces

Assume that each propeller is under an aerodynamic action of an upcoming wind flow of a speedV , and the rotor
of the generator is influenced by an electromagnetic field presenting between the rotor and the stator. Let us use
the following model (similar to Dosaev et al. (2009, 2015)) for corresponding torques: Aerodynamic torquesTc ,
Tr and electromagnetic torqueTs with respect to the axis of rotation.

Tc = 0.5ρSbV 2fc(λ), λ = bωcV
−1,

Tr = 0.5ρSdV 2fr(η), η = dωrV
−1,

Ts = −c2ωs(R + r)−1,
(1)

whereωc, ωs, ωr, are the angular speeds of the carrier, the sun, and the external ring of the DPG,b is the radius
of the front propeller,d is the radius of the back propeller,S is the characteristic area of each propeller,ρ is
the air density,λ andη are the tip speed ratio of the front and back propeller respectively,c is the coefficient
of electromechanical interaction (responsible for conversion of mechanical energy into electrical energy),r is
the inner resistance of the generator,R is its external resistance.fc(λ), fr(η) are dimensionless functions of an
aerodynamic torque.

Examples of functionsfc(λ), fr(η) are represented in the Figure 2. The qualitative behavior of these functions for
λ > 0 andη < 0 respectively corresponds to results of experimental tests (see Dosaev et al. (2009)). Parts of the
curves, for whichλ < 0 andη > 0 respectively, correspond to non-desirable direction of the propeller rotation. It
is supposed that in these cases the aerodynamic torque increases or decreases exponentially. Thus, the functions
fc(λ), fr(η) are continuous, but not differentiable atλ = 0 andη = 0 respectively (Figure 2).

Further qualitative results are valid for a wide class of functions. For the front propeller, the productωcTc is positive
for λ ∈ (0, λ1) and forλ ∈ (λ2, λ3). For the back propeller, the productωrTr is positive forη ∈ (η1, 0). The
maximum absolute value of aerodynamic torque for the front propeller is larger than that for the back one. Thus, if
the front propeller starts from zero angular speed, it can not reach its optimal angular speed without external help.
On the other hand, if the back propeller works alone, it can not produce as high torque as the maximum torque of
the front one.
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Figure 2. Dimensionless aerodynamic torques (on the same scale).

In further calculations it is assumed for simplicity thatb = d (the radius of the front propeller is equal to the radius
of the back propeller).

3 Dynamical Equations and Statement of the Problem

Dynamical equations for a single-propeller HAWT with a DPG were derived in Dosaev et al. (2009). These
equations can be easily modified for the case of two propellers, taking into account the relations (1). The obtained
equations for a double rotor HAWT are as follows:

λ′ = a(A2 + A3)fc(λ) + kA3fr(η) − pa−1A2λ + pk−1A2η;
η′ = kfc(λ) + k2(a−1A3 + A1)fr(η) + pka−1A1λ + pA1η,

(2)
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All listed parameters are positive values. Parameterp is responsible for the electrical load in the circuit and for the
wind speed, parametersA1 , A2 , A3 , J are responsible for geometrical and inertia properties of the system.

Stable steady solutions of the system (2) correspond to operation modes of the wind turbine.

The task is to describe these steady solutions depending on parameters of the model, especially with respect to
the parameterp. This parameter is responsible for the changeable conditions of operation such as the wind speed
and the external resistance (e.g. if there are no consumers in the circuit,p is zero). The other parameters of the
model for a particular wind turbine are fixed. Another task is to design a control strategy that allows reaching the
operation mode with maximal trapped power.

4 Operation Modes

Each steady solution(λ∗, η∗) of the system (2) satisfies the following equations:

λ′ = a(A2 + A3)fc(λ) + kA3fr(η) − pa−1A2λ + pk−1A2η = 0;
η′ = kfc(λ) + k2(a−1A3 + A1)fr(η) + pka−1A1λ + pA1η = 0.

(3)
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Equations (3) define two curves:λ′ = 0 andη′ = 0. These curves divide the plane{λ, η} into domains with
determined signs ofλ′ andη′. Thus the direction of the trajectory(λ(τ), η(τ)) is determined in each domain. This
is enough to find steady points and check their stability.

An example is shown in the Figure 3. The curve “1” is given by{λ′ = 0}, the curve “2” is given by{η′ = 0};
the arrows represent qualitative direction of trajectories in corresponding domains; black points correspond to
attracting steady solutions, white points correspond to repelling steady solutions. The picture was constructed
numerically for the following values of the parameters:a = 0.125, A1 = 3.7, A2 = 2.8, A3 = 3.4, and
p = 0.0008.

Figure 3. An example of location of steady points in the plane{λ, η}.

In our example the system possesses three attracting steady states:Wi, i = 1, 2, 3 (Figure 3).

In the operation mode corresponding toW1 both propellers rotate in the same direction. The rotation speed of
the back propeller is high, and the rotation speed of the front propeller is close to zero. In the operation mode
corresponding toW2 the propellers rotate in opposite directions with a rather high speed. In the operation mode
corresponding toW3 the propellers rotate in opposite directions, the speed of the front propeller is high, the speed
of the back propeller is close to zero.

An attracting steady regime is preferable for practical applications, if a corresponding value(ωcTc + ωrTr) of
mechanical power taken from the flow is the largest. For the case shown in Figure 3, such a regime corresponds
to the steady pointW2 = {λ∗ = 6.4, η∗ = −3.7}. Notice, that maximal value ofλfc(λ) could be reached for
λ = 6.2, and maximal value ofηfr(η) corresponds toη = −3.4. Thus, in the operation mode corresponding to
the pointW2 , the power produced by both propellers is near the maximum. The valuep = 0.0008 is chosen for
the purpose to get closer to the maximum power taken from the flow.

5 Discussion and Control Strategy

The following problem is to reach a preferable operation mode from the starting state of the turbine, i.e.{λ =
0, η = 0}. For a single propeller small-scale HAWT, this problem can be solved by disconnecting consumers at
the stage of starting the turbine (Dosaev et al. (2009)). Consumers are to be connected when the turbine reaches
a rather high speed. This approach is suitable for a HAWT with aerodynamic torque function qualitatively similar
to the functionfr in Figure 2 (the equationfr(η) = 0 has only one root). But if the only propeller of a HAWT is
qualitatively similar to the front propeller, no high angular speed can be expected without additional starter.

In our double disk system, the back propeller acts as a starter for the front one. Still from the Figure 3 one can
notice that the point{0, 0} doesn’t belong to the domain of attraction of the preferable steady stateW2.

The following control strategy bringing the system to a preferable operation mode is proposed:

Step 1. The external load coefficientp is set to zero, that means the consumers are disconnected from the circuit of
the generator. (This first step is similar to the case of a single propeller HAWT.) The system will go to the steady
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state with smallλ and rather highη (see Figure 4). All parameters of the model in Figure 4 are similar to those
in Figure 3 except the value of external load coefficientp. Thus, Figure 4 characterizes the behavior of the same
turbine for disconnected electrical load.

Figure 4. An example of location of steady points forp = 0. Solid line shows an example of a trajectory.

From zero initial conditions, the system approaches the attracting steady stateW01, that is approximately{0.4,−4.3}
in our example. If we just connect the desirable electrical load (p = 0.0008), the task will not be fulfilled, be-
cause the pointW01 is not in the domain of attraction ofW2 (but in the domain of attraction of the stateW1). So
additional step of control switching is needed.

Step 2. Letp be zero and the system be already in the stateW01. Apply the brake torque to the external ring. Here
we assume that the brake system can be applied to any ring of the DPG, and it stops the corresponding ring very
quickly. Additionally, assume that the moment of inertia of the sun ring is much higher than the moment of inertia
of the carrier. So when the brake stops the external ring, the angular speedωs of the sun remains almost constant.
Neglect small deviations ofωs, and write down the kinematic relation (ωsrs = 2ωcrc − ωrrr) before and after
applying the brake:

ωs01rs = 2ωc01rc − ωr01rr,
ωs01rs = 2ωc03rc.

(4)

From equations (4) we obtain that the angular speed of the carrier after the second control intervention will be
ωc03 = ωc01 − 0.5ωr01rr/rc. In our examplerr/rc = 2. So we obtain:λ03 = λ01 − η01 ≈ 0.4 + 4.3 = 4.7.
Notice that forλ ≈ 4.7, as well as forη = 0, the aerodynamic torque acting upon the corresponding propeller
is accelerating (with respect to desirable direction of rotation). In our example for the casep = 0, the point
{λ03, 0} ≈ {4.7, 0} is in the domain of attraction of the pointW02 ≈ {8,−4.3} (Figure 4). So after the system
comes close to the state{λ03, 0} we switch off the brake, allowing the external ring to move free. Then the system
moves from the state{λ03, 0} to the stateW02.

Step 3. Now the system is in the stateW02. Connect electrical load, making the desirable valuep = 0.0008. For
p = 0.0008, the pointW02 is in the domain of attraction of the desirable steady pointW2. The task is fulfilled.

It is noticeable that for the classical double disk contra-rotating HAWT, for which one propeller is joined to a rotor
of a generator and the other is joined to a stator, and no DPG is used, the problem of accelerating one propeller
using another one has not such an easy solution. In that case there is no option for a brake to transmit the energy
of rotation of one propeller into the energy of contra-rotation of the other without special additional mechanism.

Thus, we confirmed one of the advantages of a DPG, that is to offer useful control options for reaching the desirable
operation modes.
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6 Conclusions

In this paper the closed dynamical model of a double propeller contra-rotating HAWT with a DPG is introduced.
Torsional behavior of the system under external loading is discussed. Steady operation modes are studied with
respect to a certain example of the configuration of the system. By this example it is shown that the system
possesses an operation mode for which mechanical power produced by each propeller is close to its maximum. To
obtain such an operation mode certain conditions on parameters of the model should be fulfilled.

It is the common situation, that the domain of attraction of this desirable operation mode does not include the
initial state of the system with zero angular speeds of both propellers. Due to this fact, the special control strategy
that makes the system reach desirable operation mode is constructed. This strategy involves two control actions:
Disconnection/connection of consumers in the local electrical circuit of the generator and switching on/off of the
brake applied to the external ring of the DPG. It was shown on the example, that this strategy provides the desirable
result.
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