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The Effect of Field Damping on Rotordynamics of Non-salient Pole
Generators

F. Boy, H. Hetzler

This paper investigates the influence of magnetic field damping on lateral shaft oscillations of non-salient pole
generators. Field damping is caused by compensating currents affecting the magnitude and orientation of the
magnetic field and resulting lateral forces. These currents can either occur in especially constructed devices,
like a damper cage, or simply in the core material as eddy currents. While damper windings are used to reduce
torsional shaft vibrations by generating an asynchronous damper torque, this survey reveals that in contrary to
intuition, the field damping in general may cause self-excited lateral shaft oscillations leading to noise emission
and reliability issues. It is shown that the effect is strongly dependent upon the machine type and the nominal
rotational speed compared to the critical speed. The applied approach is analytical taking into account arbitrary
lateral rotor motion in the context of linear rotordynamics.

1 Introduction

The main purpose of an electric generator is the conversion of mechanical to electrical power. To do so an elec-
tromechanical torque is transmitted by a rotating magnetic field which originates from currents flowing in the
stator and rotor windings and from compensating currents in damper windings or the core material, respectively.
However, the magnetic field also causes reluctance stresses at the air gap surface. Especially when the rotor runs
eccentrically in the stator bore, these stresses are unbalanced, causing unbalanced magnetic forces. The most im-
portant one, pointing towards the direction of the smallest air gap is denoted as unbalanced magnetic pull (UMP)
and has been studied extensively in the past century, as summearised for example by Kaehne (1963). However, in
view of rotordynamics and the evolution of lateral shaft oscillations, especially the force component perpendicular
to the UMP plays an important role due to the fact that it can feed and remove comparably large amounts of energy
to and from the orbital motion of the rotor. Effects influencing the perpendicular force component have been inves-
tigated mainly in asynchronous machines due to the fact that squirrel cage rotors cause strong perpendicular forces
(Früchtenicht, 1982). Furthermore, there are a lot of additional influences changing the amplitude and direction
of the magnetic force. Among them are effects due to parallel paths in the windings, as investigated by Burakov
(2006), magnetic homopolar fluxes (Belmans, 1987) and saturation (Arkkio, 2000).
Damper windings are another interesting example affecting the force. Usually, their purpose is to reduce torsional
shaft vibrations (Jordan, 1970). However, as shown by Dorell et al. (2011) for asynchronous machines and by
Wallin et al. (2013) for salient pole generators, damper windings may also change the direction of the lateral
electromagnetic forces.
This study discusses the influence of field damping on the rotordynamics of non-salient pole generators as a sim-
ilar question to the studies mentioned above. The machines being considered here, usually run at higher speeds,
making effects due to dynamic rotor eccentricity more relevant. While only some of them actually posess damper
windings, field damping as a general qualitative phenomenon, might also be caused by eddy currents in the rotor
core material resulting in an analogous effects.
This study extends existing surveys by Kellenberger (1966) and the authors (Boy, 2016), which found that the
forces and thus the rotordynamics of turbogenerators are strongly dependent on the load condition. In the present
work, it is shown, that field damping might cause self-excited lateral shaft oscillations at higher rotational speeds.
Their dependency on the machine design, occurring homopolar flux and load condition will be outlined.

The applied modelling approach is an analytical one. Solving the combined electro-mechanical problem by space
vector theory and assuming stationary speed of operation, the forces of electromagnetic origin are derived for an
arbitrary orbital motion of the rotor. With this information a stability analysis of the steady state, indicating the
occurence of self-excited oscillations is carried out. All symbols introduced subsequently are explained in the text.
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Additionally a nomenclature is given in the appendix.

2 Model

Investigating electrical machine rotordynamics involves the solution of three subproblems (Fig. 1): The current
flowing in the electrical circuits are sources to the magnetic field in the air gap of the machine. The changing
magnetic flux in return induces voltage into these ciruits. Furthermore the magnetic field exerts forces on the rotor
of the machine, while the rotor motion in return distorts the air gap domain and thus affects the magnetic field.

Figure 1. Electro-mechanical machine model involving three subproblems.

2.1 Assumptions and Kinematics

To analytically solve the magnetic field problem several assumptions have to be made. Both stator and rotor
shall be perfectly aligned cylinders (radii r1 (stator) and r2 (rotor)). The material shall be infinitely permeable,
allowing to restrict the consideration to the air gap domain but excluding saturation effects. The problem shall
be two-dimensional, neglecting axial boundary effects and corresponding stray losses. The actual windings in the
slots are replaced by current sheets a1 and a2 for the stator (index 1) and the rotor (index 2) respectively. This
simplification is permissible according to the field equivalence principle for suffiently smooth surfaces, as it is the
case in non-salient pole machines. The involved compensating currents shall be represented by currents in damper
windings (index D), realised comparable to the squirrel cage of an induction machine with ND bars, which are
continuously connected by conducting rings at the axial ends of the rotor. Corrections in the air gap width due to
slotting or in the winding factors due to skewed damper bars etc. are left out here, as the study is concerned with
qualitative effects.

Fig. 2 shows an overview of the field domain and the involved kinematics. For the description of the problem
several frames of reference are introduced: A cartesian inertial frame of reference K1 = [O, {~ex1 , ~ey1 , ~ez1}], one
where the x-axis is pointing towards the direction of eccentricity (smallest air gap), denoted asK = [O, {~ex, ~ey, ~ez}]
and one, identified by K2 = [O, {~ex2

, ~ey2 , ~ez2}], where the x-axis shall be aligned with a distinct pole axis of the
rotor. Analogous to these coordinate systems, cylindrical systems Z1,Z and Z2 are defined. The magnetic field
problem in the air gap Ω will be stated in cylindrical coordinates, with the radial coordinate r and coresponding
angles θ1 = θ + γ = θ2 + ϑ.

Ω

O~ez

~ey2

~ex
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e γ
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Figure 2. Kinematics and field domain.
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The rotor position can either be described by polar (e, γ), or cartesian coordinates (x1, y1), (x, y) and (x2, y2) in
the different frames of reference. The absolute angular orientation of the rotor is described by the angle ϑ. Note that
all angles θi (with some index i) represent spatial coordinates, while γ and ϑ are discrete mechanical coordinates.
Later on, different electrical angles ϕk will be introduced. They transform with ϕk = pϑk to a corresponding
mechanical angle ϑk.

With the kinematic definitions and physical simplifications stated before and assuming that the mean air gap width
δm = r1 − r2 is small compared to the rotor radius

(
ε = δm

r2
� 1

)
, it can be shown that the magnetic field of

order O(1) is orientated straight radially neglecting terms of higher order O(ε).
Due to circumferential periodicity the one dimensional magnetic flux density can be written as a Fourier series

B = B0 +

∞∑
ν=1

B̂ν cos(νθ2 − ϕBν)︸ ︷︷ ︸
Bν

= B0 +

∞∑
ν=1

Re
{
Bνe

−jνθ2
}
, (1)

here expressed in the frame of reference Z2, corotating with the rotor. In this equation each harmonic resembles a
rotating field wave of different circumferential velocity. In eq. (1) complex notation was introduced, where j is the
imaginary unit and Bν = B̂νe

jϕBν represents the complex amplitude of the ν-th field harmonic. Here and further
on underlining shall indicate complex variables A and overlining their complex conjugate A. In the context of this
work only the fundamental wave of order p (where p is the number of pole pairs) and the eccentricity waves of
order p±1 are regarded. This assumption is justified in machines with a sufficiently well arranged winding design.

Deriving an approximate solution to the magnetic field (which means finding B0, B̂p, B̂p±1 and ϕBp, ϕBp±1)
presumes solving of the voltage equations of the equivalent electrical circuits. These circuits are a representative
phase of the stator and a representative mesh of the damper cage. To derive the induced voltages, it has to be
considered that the field waves of order ν induces alternating voltages of different frequency in the stator windings
(index 1) and damper cage (index D) respectively. Thus, the voltage in an equivalent circuit (see e.g. Jordan
(1970)) can be written as

ui(t) =

∞∑
ν=1

ûiν cos(ωiνt+ ϕiν) =

∞∑
ν=1

Re
{√

2U iνe
jωνt

}
(2)

where i = (1, D) is an index and U iν =
√

2
2 ûiνe

jϕiν is the complex phasors of the ν-th voltage harmonic. The
frequencies are related by ωDν = sνω1ν . In synchronous operation the slip is sp = s = 0 and the higher field
harmonic slips become sp±1 = 1− p±1

p (1− s) = ∓ 1
p .

As the currents in the mentioned circuits are caused by these voltages, they can be expressed similarily. Each
order of these AC quantities can be treated seperately balancing only the complex phasors, which will be done
subsequently.

2.2 Fundamental Field Harmonics

The voltage equations of order p are

U1p = (R1p + jωL1p )I1p + U12p (stator), (3)

0 = (RDp + jsωLDp)IDp ⇒ IDp = 0, (damper cage). (4)

Here U1p = U1p is the phasor of the supply voltage, which shall be aligned with the real axis without loss of
generality. The phasor of the synchronous generated voltage in eq. (3) is U12p = U12pe

jϕ12p , with the effective
value U12p and the polar wheel angle ϕ12p. Note that there is no mutual induction of order p between the rotating
field and the damper cage, as they are assumed to move synchronously (s = 0).

Inserting U12p into eq. (3), neglecting the resistive component (as usual for larger machines (Jordan, 1970)) and
solving for I1p yields

I1p = −j U1p

ωL1p
+ j

U12p

ωL1p
ejϕ12p . (5)
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The fundamental field harmonic is

Bp =
µ0

δm
Re
{
k1pI1pe

j(ωt−pθ1) + k2pi2e
−jpθ2

}
, (6)

where µ0 is the magnetic constant, k1p and k2p are constants depending on the machine geometry and winding
design and i2 is the DC excitation current. Transforming to corotating coordinates Z2 using θ1 = θ2 + ϑ, with
pϑ = ωt− π

2 + ϕ12p, inserting I1p from eq. (5) and regarding k2pi2 = k1p
U12p

ωL1p
finally results in

Bp =
µ0

δm
Re
{
k1p

U1

ωL1
e−jϕ12pe−jpθ2

}
, (7)

where it is easy to identify the complex phasor Bp = B̂pe
jϕBp = µ0

δm
k1p

U1

ωL1
e−jϕ12p

2.3 Eccentricity Field Harmonics

The voltage equations of order p± 1 are

0 = (R1p±1 + jωL1p±1 )I1p±1 ⇒ I1p±1 = 0 (stator), (8)

0 = (RDp±1 + jsp±1ωLDp±1)IDp±1 + U21Dp±1 (damper cage). (9)

Here it is assumed that the field waves of order p±1 cannot induce voltage into the stator phases, which is the case
for integer-slot windings without parallel branches (Tüxen, 1941). The induced voltages U21p±1 originate from
the eccentricity fields and have to be calculated subsequently. Therefore a closer look at the formation of these
harmonics shall be taken here.

As it is well known, the eccentricity field harmonics arise from the multiplication of the magnetic excitation with
the air gap permeance Λ(θ) = µ0

δ(θ) = µ0

δm

(
1 + e

δm
cos θ

)
+ O(ε) (Frohne, 1968), where δ(θ) is the actual air

gap width at a certain circumferential position θ as shown in Fig. 2. Again, higher order terms were neglected.
Multipliying with the fundamental magnetic excitation one obtains

Λ(θ)k1p
U1

ωL1p
cos(pθ2 + ϕ12p) = B̂p

(
cos(pθ2 − ϕBp) +

1

2

e

δm
cos((p± 1)θ2 + ϕ12p ± (ϑ− γ))

)
, (10)

where θ = θ2 + (ϑ− γ) has been inserted. In complex notation these field components read

B̂p Re
{
e−j(pθ2+ϕ12p) +

1

2

e

δm
e∓j(ϑ+γ)e−j((p±1)θ2+ϕ12p)

}
. (11)

Here it is possible to identify the phasor z±2 = x2 ± jy2 = e e∓j(ϑ−γ), representing the rotor orbit position within
the corotating frame of reference (compare Fig. 2). Obviously, the components of the eccentricity field harmonics
shown in eq. (11) cause the mutual induced voltage in the damper cage, which is calculated by

u21Dp±1 =
dΨ21Dp±1

dt
=

1

2
B̂p

∫
M

∂

∂t
Re
{
z±2
δm

e−j(p±1)θ2+ϕ12p)

}
dS, (12)

where Ψ21Dp±1 is the linked flux of the field components of order p±1, caused by eccentricity into a representative
damper mesh surfaceM. Note that the second part of this equation refers to the moving frame of reference. Due
to the fact that the damper cage mesh represents a moving surface, the Helmholtz transport theorem (see e.g.
Rothwell (2008)) has to be applied. In this case the component porportional to the rotor orbital motion (motion of
the damper cage surface) is of order O(ε) and therfore neglected here.

Evaluating eq. (12) results in the voltage phasor

U21Dp±1 =
1

2
B̂pkDp±1

ż±2
δm

e−jϕ12p , (13)

where kDp±1 is a constant similar to k1p and k2p, depending on the machine geometry and damper cage design. At
this point a major drawback modelling the electrical voltages and currents as pure AC quantities shall be pointed
out: considering eq. (13) it is found that the voltage phasor depends on the time derivative of the rotor orbital
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motion ż±2 . This result contradicts the model assumption of a harmonic time dependency and would only be
permissible, if the time rate of change of ż±2 would be small compared to the frequency of u21Dp±1, what might
not be the case.

Nethertheless, inserting the result into the damper cage voltage equation (9) and solving for the current phasors
IDp±1 yields

IDp±1 = − jsp±1

β + jsp±1

U21Dp±1

jsp±1ωLDp±1
. (14)

Here the resistance to reactance ratio β =
RDp±1

ωLDp±1
for the damper cage has been introduced as it is usually done

in literature (Früchtenicht (1982), Jordan (1969)) and the complex number − jsp±1

β+jsp±1
= (ap±1 − 1) + jbp±1 is

identified as the complex field damping factor.

Finally, the field component of the eccentricity harmonics, caused by the damper cage reads

µ0

δm
Re
{
kDp±1IDp±1e

−j(p±1)θ2

}
= −1

2
B̂pRe

{
1

β + jsp±1

1

ω

ż±2
δm

e−j((p±1)θ2+ϕ12p)

}
. (15)

Adding this result to the eccentricity harmonics, caused by the air gap permeance (eq. (11)) results in

Bp±1 =
1

2
B̂p Re

{(
z±2
δm
− 1

β + jsp±1

1

ω

ż±2
δm

)
e−jϕ12pe−j(p±1)θ2

}
. (16)

With this result also the complex amplitudes Bp±1 = B̂p±1e
jϕBp±1 = 1

2 B̂p

(
z±2
δm
− 1

β+jsp±1

1
ω
ż±2
δm

)
e−jϕ12p are

known.

Considering eq. (1) for the magnetic field onlyB0 is left undetermined until now. As mentioned before it results in
a homopolar flux in 2-pole machines and can be calculated as proposed by Belmans (1987). Assuming maximum
homopolar flux leading to maximum electromagnetic forces, a worst case scenario considering rotordynamics will
be investigated in this work. This assumption leads to B0 = 0 completing the derivation of the magnetic field
formula.

2.4 Electromagnetic Forces

The electromagnetic forces can be calculated using the Maxwell stress tensor (Rothwell, 2008). For the sake of
simplicity, stress is integrated over the stator surface here. As higher order terms have been neglected (resulting in
a straight radial flux density) the force formula reads

~F2 = −~F1 = Fx2~ex2 + Fy2~ey2 =
1

2µ0

∫
∂Ω1

B2~erdS. (17)

The calcultation will be carried out in the rotor fixed frame of reference, where ~er = cos θ2~ex2
+ sin θ2~ey2 and

dS = r1`dθ2 with the effective length ` of the air gap.

Calculating the force components Fx2 and Fy2 involves some algebra and has to be done individually for the cases
p > 1 (machines with more than two poles) and p = 1 (2-pole machines). As it is usual in rotordynamics (Gasch,
2006), matrix notation will be used further on. In this context, a matrix M is displayed in bolt letters.
In the first case (p > 1) one finds[

Fx2

Fy2

]
=

[
Re
{

BpBp±1

}
Im
{
∓BpBp±1

}] and

[
Fx2

Fy2

]
=

[
Re
{

BpBp±1 +BpBp−1

}
Im
{
∓BpBp±1 +BpBp−1

}] (18)

in the second case (p = 1). Here, the field wave of order ν = p − 1 = 0 is homopolar, creating additional
force components. Note that the value of p for p = 1 is not inserted for the sake of comparability here and in the
following considerations.
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Evaluating the expressions in eqs. (18) respectively yields[
Fx2

Fy2

]
= celmI

[
x2

y2

]
︸ ︷︷ ︸

F UMP

− celm

ω
P 1

[
ẋ2

ẏ2

]
︸ ︷︷ ︸

F FD

, (19)

in the first case (p > 1), where FD stands for field damping and where I is the identity matrix and

P 1 =
1

2

 β
β2+s2p+1

+ β
β2+s2p−1

(
sp+1

β2+s2p+1
− sp−1

β2+s2p−1

)
−
(

sp+1

β2+s2p+1
− sp−1

β2+s2p−1

)
β

β2+s2p+1
+ β

β2+s2p−1

 . (20)

In the second case (p = 1) the result is[
Fx2

Fy2

]
= celm (I + T )

[
x2

y2

]
︸ ︷︷ ︸

F UMP

− celm

ω
(P 1 + P 2T )

[
ẋ2

ẏ2

]
︸ ︷︷ ︸

F FD

(21)

with

T =
1

2

[
cos(2ϕ12p) − sin(2ϕ12p)
− sin(2ϕ12p) − cos(2ϕ12p)

]
and P 2 =

[ β
β2+s2p−1

sp−1

β2+s2p−1

− sp−1

β2+s2p−1

β
β2+s2p−1

]
. (22)

The electromagnetic spring constant in eqs. (19) and (21) is celm =
πr1`B̂

2
p

2µ0δm
. There are additional forces propor-

tional to the rotor orbit velocity, which had not been considered in earlier works: these forces originate from field
damping. As they are due to induction and as the voltage equations have been solved for the induced currents
explicitly the forces usually proportional to the currents are now proportional to the rotor orbit velocity.
Components on the main diagonal can be considered as inner damping (compare Gasch (2006)), as the coefficients
in P 1 and P 2 are positive. Components at the secondary diagonal correspond to gyroscopic effects relative to the
moving frame of reference. As it is well known from classical rotordynamics, inner damping is a typical source of
self-excited oscillations and in fact it is the only possible source here.

2.5 Rotor Model

The mechanical system is modelled as a classical Laval-rotor (Jeffcott-rotor). With this model one mode shape of
the generator system can be depicted and analysed dynamically. The basic assumptions are that the rotor consists
of a massless elastic shaft (isotropic stiffness c) supported by isotropic rigid bearings with a circular rigid disk
on it. The centre of inertia S shall be eccentric causing imbalance. Combined with the forces of electromagnetic
origin the equations of motion read[

m 0
0 m

] [
ẍ2

ÿ2

]
+

[
d+ di −2mΩ
2mΩ d+ di

] [
ẋ2

ẏ2

]
+

[
cx −mΩ2 −dΩ

dΩ cy −mΩ2

] [
x2

y2

]
= mΩ2

[
eSx
eSy

]
+

[
Fx2

Fy2

]
(23)

in the rotor fixed corotating frame of reference. Here Ω = ω
p is the synchronous angular velocity of the rotor

and m is the rotor mass. In eq. (23) two different kinds of mechanical damping are introduced: one damping
force FD = −dẋ1, proportional to the inertial orbital velocity x1 of the rotor and another force FDi = −diẋ2,
proportional to the orbital velocity ẋ2 of the rotor relative to the corotating frame of reference. While the first
damping force accounts for air friction etc., the second one is due to internal friction, e.g. at joints on the rotor.
The mechanical spring constants cx (along a certain pole axis) and cy (perpendicular to that) are equal in machines
with more than two poles (cx = cy if p > 1) and different in machines with two poles (cx 6= cy if p = 1), due to
the rotor construction (Gasch, 2006). The values (eSx, eSy) = const. are the positional coordinates of the centre
of inertia in the rotor fixed frame of reference.
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In the following the parameters and variables

ω0 =

√
c

m
, τ = ω0t, η =

Ω

ω0
=

ω

pω0
, D =

d

2mω0
,

Di =
di

2mω0
, c =

cx + cy
2

, κ =
cx − cy
cx + cy

, ζ =
celm
c
,

are introduced. In this context ω0 is the angular eigenfrequency of the corresponding undamped system without
electromagnetical forces, τ is a dimensionless timescale, D and Di are mechanical damping ratios, c is the mean
spring constant and κ is a measure for the noncircularity of the rotor shaft. This parameter is κ = 0 for machines
with more than two poles (p > 1), and κ 6= 0 for 2-pole machines (p = 1). The parameters η and ζ will be
explained below. Using these definitions eqs. (23) transform to[
x
′′

2

y
′′

2

]
+

[
2(D +Di) −2η

2η 2(D +Di)

] [
x′2
y′2

]
+

[
1 + κ− η2 −2Dη

2Dη 1− κ− η2

] [
x2

y2

]
− ζ

celm

[
Fx2

Fy2

]
= η2

[
eSx
eSy

]
(24)

where ()′ indicates the derivative with respect to the nondimensional time τ . The factor ζ = celm
c represents the

relative strength of the electromagnetic forces, which are dependent on the electromagnetic machine design. Its
order of magnitude is usually below 10%. Additionally the term 1

ω in eqs. (19) and (21) becomes 1
pη = ω0

ω . Here
η is the mechanical speed of rotation compared to the critical speed of the system. Usually machines running far
below this critical speed (η = 1) are denoted as rigid shaft machines, while the ones running above it are known
as soft mounted (Dawson, 1983).

3 Results

Eq. (24) is an inhomogenous system of two ODEs of second order with constant coefficients for the orbital motion
q = [x2 y2]> of the rotor. Its solution is described by a homogenous- and an inhomogenous part (qh and qp).
The latter one represents the steady state solution, when free oscillations have vanished. In view of electromag-
netically excited oscillations especially the question of self-excited oscillations is of great interest (Früchtenicht,
1982). Therefore in this section a stability analysis will be carried out posing the question under which circum-
stances free oscillations (homogenous solution) of exponentially rising amplitude may occur. Therefore an ansatz
of the kind qh = q − qp = reλτ , where λ is an eigenvalue and r is a corresponding eigenvector, is made and the
characteristic polynomial in λ is derived. Applying Hurwitz’ criterion (see e.g. Merkin (2012)) inequalities for the
stability of the steady state can be found. These expressions describe regions in the parameter space where free
oscillations decay (stable steady state) or rise (unstable steady state).
Before presenting stability maps a short view on relevant system parameters shall be given: Besides the mechanical
parameters η, κ and D and Di, there are three electromagnetic parameters: ζ, ϕ12p and β. The parameter ζ for
the relative strength of the electromagnetic forces has already been explained. As it turns out in the following,
its influence on the stability is quite significant. Furthermore the electrical torque angle ϕ12p and the resistance
to reactance ratio β play a role in this context. For generators the torque angle is in between ϕ12p = 0 (no load)
and ϕ12p = π

2 (critical load). Despite that it will not exceed π
4 under normal load conditions. The resistance to

reactance ratio β has an order of magnitude of O(10−1). As the influence of the mechanical parameters D and
κ is known, their values are set to D = 0.002 (weak damping) and κ = 0.1 in the case of 2-pole machines. The
influence of all other parameters will be shown subsequently.

Fig. 3 shows two basic stability maps plotting the regions of stable and unstable states in the parameter space. In
the figure the force parameter ζ is plottet against the specific rotational speed η for a 4-pole machine (Fig.3 (a)) and
a 2-pole machine (Fig.3 (b)) considering homopolar fluxes, respectively. Each map shows stable regions in white
and unstable states in grey for a basic parameter configuration. Note that changing the specific rotational speed
η = Ω

ω0
does not mean changing to the absolute running speed of the machine, which is fix and given by Ω = ω

p ,
but changing the critical speed ω0 relative to Ω. Thus in Fig. 3 different machine designs are compared.

Analysing the stability behaviour different aspects raise the attention: As a first point both maps show an unstable
region at high rotational speeds and high electromagnetic forces. In both cases one finds, that the higher the
nominal rotational speed compared to the critical speed, the more likely it seems to be, that a stable state becomes
unstable. As a major difference, 2-pole machines (Fig. 3 (b)) have two additional reagions of unstable states. One
narrow region around the critical speed (η = 1), which corresponds to the one found in earlier works (Kellenberger
(1966), Boy (2015)) and one at very low running speeds and low values of ζ. The region around η = 1 originates

390



0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

stable

unstable

specific rotational speed η

fo
rc

e
pa

ra
m

et
er
ζ

(a)

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

stable

unstable

specific rotational speed η

(b)

Figure 3. Stability map for the steady state of a 4-pole (a) and a 2-pole machine (b).
Here D = 0.002, Di = 0, ϕ12p = π

8 and β = 0.1 were chosen.

from the shaft noncircularity. Fig. 3 (b) shows that it is affected by the electromagnetic forces, as the critical speed
is reduced with higher values of ζ. The second additional reagion is very small and seems not to be relevant for
normal operational conditions. It originates from homopolar fluxes.

As stated before additional forces due to field damping can be compared to inner mechanical damping. To analyse
their effect, consider Fig. 4, which shows a classical stability map considering the influence of inner mechanical
damping for the example of a 4-pole machine. Here the damping ratio D

Di
is plottet against the specific rotational

speed η. From literature (Gasch, 2006) it is known, that in presence of inner damping, a certain critical speed
depending on the damping ratio exists. Introducing electromagnetic forces to the system changes this map signifi-
cantly, as indicated by dashed lines in the map. These lines show the stability border, if the resistance to reactance
ratio β is increased from 0 by 0.025 to 0.1. Here it becomes obvious, that field damping may reduce the stability
of the steady state. However, it should be noted here that the shown effect becomes weaker, if the machanical
damping forces become stronger compared to the electromagnetical forces.
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Figure 4. Stability map for the steady state of a 4-pole machine comparing the mechanical and inner Damping
varying β from 0 by 0.025 to 0.1. All remaining parameters are chosen according to Fig. 3.

Having discussed the basic stability behaviour, a short view on parameter influence shall be taken as a last point of
this section. For the sake of brevity these results are not shown explicitly, but simply explained.
Rising the number of pole pairs moves the stability border (critical speed in Fig. 3) towards lower values of η.
This fact shows that self-excited oscillations become more likely in machines with a higher number of pole pairs.
Although this model is not well suited for non-salient pole generators (which have even more magnetic poles),
they might be even more sensitive to such oscillations.
Considering the stability conditions derived from Hurwitz’ criterion one finds that the load condition (torque angle
ϕ12p) does not affect generators with more than two magnetic poles. However, in 2-pole machines when homopolar
fluxes are present the picture changes. While in this case the narrow region of unstable states around η = 1 (Fig.3
(b)) grows with increasing torque angle, the border of critical speeds for the region caused by field damping is
slightly shifted towards higher rotational speeds. Furthermore the small region at very low speeds becomes larger.
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4 Summary and Conclusions

Within this contribution the effect of field damping on lateral rotordynamics of non-salient pole generators has been
investigated. The implemented electro-mechanical model comprises the electrical ciruits of the stator and the rotor,
as well as a damper cage, an approximation to the involved magnetic field problem and a Laval-rotor (Jeffcott-
rotor). It has been shown that the currents flowing in the damper cage are affected by the orbital motion of the
rotor and that there is a back coupling via electromagnetic forces exerted by the magnetic field. The mathematical
structure of these forces is similar to inner mechanical damping and depends on the rotational speed of the machine,
the machine design in general and the electrical properties of the damper cage. The survey has clearified that self-
excited oscillations might occur in machines operating under high nominal rotational speeds compared to their
critical speed. The stability behaviour is different for 2-pole machines and ones with a higher number of pole pairs
due to the occuring homopolar fluxes in the first case.

In future surveys it would be sensible to reconsider the modelling in detail. At the one hand side, a major model
contradiction concerning the assumptions of AC voltages in the damper cage has been found and at the other hand
side effects like saturation should not be neglected. As a further point the model should be validated by more
detailled numerical simulations and practical experiments.
Recently the authors pointed out, that rotational disturbances (e.g. hunting) may also significantly influence the
steady state stability (Boy, 2016). A combined investigation of field damping and these effects could also be
considered.
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Nomenclature

r1 stator radius a1 current sheet stator
r2 rotor radius a2 current sheet rotor
K cartesian coordinate system ND number of damper cage bars
Z cylindrical coordinate system ϕk electrical phase angle
~ex, ~ey, ~ez cartesian basis vectors p number of pole pairs
~er, ~eθ, ~ez cylindrical basis vectors ν number of field harmonic
r, θ, z cylindrical coordinates ε = δm

r2
small parameter

e rotor eccentricity B magnetic flux density
γ rotor eccentricity phase angle j imiginary unit
ϑ rotor angle A complex quantity
δ(θ) actual air gap width at angle θ A complex conjugate
Ω air gap region u(t) voltage
∂Ω air gap region boundary U voltage phasor (particular solution)
M representative damper cage mesh i(t) current
µ0 magnetic field constant I current phasor (particular solution)
k machine winding parameter ων angular frequency of ν-th harmonic
Λ(θ) air gap permeance at angle θ sν slip of ν-th harmonic
z± rotor eccentricity phasor ω supply angular frequency
Ψ flux linkage R resistance
~F1 force acting on the stator L inductivity
~F2 force acting on the rotor β specific resistance of damper cage
` effective air gap length S center of inertia
I unity matrix ω

p synchronous angular frequency
P 1,P 2 force matrix damper cage ω0 angular eigenfreq. (undamped system)
T transformation matrix (homopolar flux) η specific rotor speed
celm electromagnetic stiffness constant κ noncircularity parameter
c mechanical stiffness constant ζ specific electromagnetic stiffness
cx mechanical stiffness constant τ nondimensional time

(x-direction) ()′ nondimansional time derivative
cx mechanical stiffness constant q mechanical position matrix

(y-direction) qh homogenous solution
m rotor mass qp particular solution
d external damping constant λ eigenvalue
D specific external damping constant r eigenvector
di internal damping constant
Di specific internal damping constant
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