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Run-up Simulation of Automatic Balanced Rotors Considering
Velocity-dependent Drag Coefficients

L. Spannan, C. Daniel, E. Woschke

The paper at hand presents the modelling approach of a laboratory centrifuge with a vertically mounted rotor
and an automatic balancing device, which counterbalances the unbalance in one plane. This device consists of
an annulus containing the outer ring of a ball-bearing as well as steel balls and is filled with a newtonian fluid.
The fluid, accelerated by the annulus’ walls, flows around the balls and positions them in the annulus. In order to
develop a design method for the balancing device the velocity dependency of the drag coefficient is considered and
the influence of fluid density and viscosity on the balancing efficiency is examined. An experimental comparison
shows that the flow in the concave bearing race can be represented by the flow around a ball in contact with a flat
surface. It can be shown that, depending on the run-up acceleration, a selective choice of the fluid properties has
a positive influence on the vibrations near the critical speed and the response time of the counterbalancing effect
at supercritical speeds.

1 Introduction

Unbalances in high-speed rotors can lead to excessive vibrations. At the same time, balancing of unbalances due
to production or assembly can be uneconomical or process dependent variations in imbalance may be present. In
these cases automatic balancing systems can be implemented, which use movable fluids or solids in order to coun-
terbalance the rotor unbalance. Applications of such systems can be found in CD-ROM drives, washing machines
and angle grinders.

It is common knowledge that dynamic systems show a phase shift between excitation and deflection while passing
resonances. Assuming low damping, the rotor deflects in the direction of the unbalance when operated subcritically
and deflects opposing the unbalance when operated supercritically. In contrast, the balancing masses in automatic
balancers are driven speed independently by the centrifugal forces Fcf to the position most distant to the center of
rotation OR, meaning in the direction of deflection e of the center of geometry OG. Therefore, automatic balancers
are increasing the unbalance excitation at subcritical speeds and act counterbalancing at supercritical speeds, see
fig. 1. In order to get a good description of the transient positioning of the counterbalancing masses the modelling
of the driving forces is essential. The aim of this paper is to contribute to this model with regard to the description of
flow resistance. Without loss of generality the following explanations and descriptions refer to automatic balancers
with one ball only.
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Figure 1: Functionality of automatic ball balancers. Demonstration of driving forces on the counterbalancing mass
in a rotating reference frame.
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2 State of Research

One of the first publications on ball balancers is the patent from Thearle (1936). Since then, multiple studies
were conducted and a growing interest in this topic can be observed, especially in the last 15 years. In order to
achieve an efficient balancing device multiple system parameters need to be specified. The findings from preceding
publications are summarised in this section.

2.1 Friction

The contact between the balls and the raceway is inducing friction, which is directed oppositely to the ball movement
along the raceway. Figure 1 shows that the driving force

Fpos = |F⃗pos| = |F⃗cf + F⃗N |, (1)

with F⃗N describing the normal force on the ball, is decreasing with increasing approach to the stable stationary
position. Therefore, an area near the stable stationary position exists where the friction is sufficient to hold the ball
in place aside the ideal position. Hence the optimal counterbalancing cannot be achieved.

This negative influence of friction was identified analytically by Huang et al. (2002). Ishida et al. (2012) used
different friction modelling approaches in their numerical models. They differentiated between Coulomb friction,
which is proportional to the normal force, static rolling friction and rolling friction on the basis of hysteresis losses
and concluded that the static rolling friction is influencing the balancing effectiveness dominantly. With respect
to the design of automatic balancing devices a minimisation of the ball and raceway surface roughness is to be
aspired. As described by Ishida et al. (2012), the influence of friction can be reduced by an increased number of
balls, preferably in separate raceways, because the balls are not getting to rest at the same time. In addition, the
static rolling friction decreases with increasing ball diameter.

2.2 Raceway Eccentricity

Due to an eccentricity � of the raceway, its geometric centre OG is not coinciding with the center of mass OM of the
balanced rotor, leading to a stable position (Fpos = 0) of the ball aside the ideal balancing position, see fig. 2. This
negative influence was examined by Huang et al. (2002) and Majewski (1988) amongst others. From this follows
that irregularities of the circular race form, see fig. 3, have negative influence on the balancing capabilities, too.
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Figure 2: Influence of raceway eccentricity on the
positioning at supercritical speeds.
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Figure 3: Exaggerated representation of an arbitrary
form irregularity.

2.3 Non-synchronous Motions

Ryzhik et al. (2003) showed that in an operation range above the critical speed !i the balancing balls are not
circulating with the rotor frequency but with the critical frequency. This causes the balls to not come to rest and
therefore the rotor unbalance cannot be counterbalanced. Only after reaching a border rotating speedΩbo,i the balls
get accelerated to the rotor speed resulting in the balancing effect to be performed. In order to avoid the operation
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of automatic balancing devices below the critical speed and in the speed range of non-synchronous motions, the
operating range has to be restricted, see fig. 4. A possible solution to avoid non-synchronous motions by using
multiple balls and partitioning the annulus is described by Ishida et al. (2012). The partitioning walls are enforcing
the rotor speed to the balls, avoiding non-synchronous motions. As a drawback, the maximum counterbalancing
force is reduced.
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Figure 4: Exemplary magnifying function of an unbalanced rotor with operation ranges of automatic balancing
devices.

2.4 Viscosity and Density of the Fluid

In contrast to the surface roughness and the raceway eccentricity, where small values are preferred, the choice of an
optimal fluid in the automatic balancing system leads to a conflict of aims (Ryzhik et al. (2003)), which has to be
resolved. With increasing density �fl and viscosity � the lag between the rotor and ball velocity is decreased due
to the flow resistance. On one hand the lag is desired at subcritical speeds so that the balls are not positioned near
the rotor imbalance causing an increase in rotor vibration. On the other hand a fast reduction of lag and positioning
of the balls to their ideal position is desired once the critical speed is exceeded. The objective of the choice of fluid
is to keep the vibrations in the run-up phase moderate and to gain a quick balancing effect at supercritical speeds.
The modelling of the viscous coupling between the rotor (the annulus), the fluid and the balls has a great impact on
the quality of the simulation results.

Many previous stationary (Ryzhik et al. (2003); Green et al. (2006); Ishida et al. (2012); Kim and Na (2013); Chen
and Zhang (2016)) and transient (Sperling et al. (2002)) models make use of a linear correlation between themoment
of fluid dragMD and the difference in rotating speed between the rotor and the ball

MD = � ⋅
(

'̇R − '̇b
)

. (2)

The parameter � inherits several system properties and depends on the fluid, the annulus geometry and the ball
diameter and is difficult to determine without experimental data. Huang et al. (2002) make use of a physically
motivated approach on the basis of the fluid drag force FD, leading to a nonlinear correlation between the moment
and the rotating speed difference based on geometric and physical quantities

MD = FD ⋅ Rb =
1
2
�fl ⋅ Ā ⋅ CD ⋅ v

2
rel ⋅ Rb ⋅ sign(vrel) (3)

= 1
2
�fl ⋅ Ā ⋅ R

3
b

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
constant

⋅CD ⋅
(

'̇R − '̇b
)2
⋅ sign('̇R − '̇b) . (4)

Rb, Ā, CD, vrel describe the radius of the ball center track, the ball cross-sectional area, the drag coefficient and the
flow velocity, respectively. Huang et al. make the assumption of a constant drag coefficient CD, which is called into
question by the authors. Furthermore, it should be noted that the velocity of the fluid '̇fl is not equal to the rotor
speed '̇R in transient models. The spin-up of fluids in rotating annuli cannot be calculated analytically (Benton and
Clark (1974)). Hence the fluid is modelled as a rigid body and its acceleration is described by a linear correlation
in the style of equation (2)

Mfl = �fl
(

'̇R − '̇fl
)

, (5)
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where the parameter �fl is fitted to the experimental data. Additionally, the radial increase of the flow velocity, see
fig. 5, is neglected for small ball diameters d << Rb, leading to a flow velocity of vrel = Rb('̇fl − '̇b).
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Figure 5: Flow velocity profile at sta-
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Figure 6: Coordinates and forces describing the dynamics of
the balancing ball neglecting raceway eccentricity.

Another aspect of transient modelling is the added virtual mass, whose inertia is antagonising the acceleration of a
rigid body in a fluid. The appropriate virtual mass coefficient for balls in contact with a flat surface was identified
experimentally by Jan and Chen (1997) to be CA = 2. Derived from their conclusions, the impact of the added
mass effect is decreasing with an increasing ratio in the densities �b∕�fl. The moment of virtual mass equals

MA = FA ⋅ Rb = �fl ⋅
�d3

6
⋅ CA ⋅

(

'̈fl − '̈b
)

⋅ Rb . (6)

The recited publications neglect the dependency of the drag coefficientCD from the flow velocity vrel. This relation
is usually expressed with the use of the dimensionless Reynolds number

Re =
vrel ⋅ d
�

=

(

'̇fl − '̇b
)

⋅ Rb ⋅ d
�

. (7)

In order to describe the following experimental results a modified Reynolds number based on the rotor speed '̇R
is introduced

Re∗ =

(

'̇R − '̇b
)

⋅ Rb ⋅ d
�

. (8)

The paper at hand presents a transient modelling approach of an automatic balancing device, which considers the
velocity dependent drag coefficient.

3 Experimental Analysis

The test rig, which is modelled in this study and whose run-up is simulated, is depictured in fig. 7. A discoidal
rotor is joint on an axis, which is mounted vertically in the stator of an electric motor. The stator itself is mounted
by three elastomer bushings, which affect the systems damping and flexibility significantly. The system has an
eigenfrequency at !1 = 50 rad s−1 which is related to a translatoric eigenmode orthogonal to the axis of rotation.
And a second eigenfrequency at !2 = 125 rad s−1, which is related to a tilting eigenmode orthogonal to the axis
of rotation. The conducted experiments use a maximum operation frequency of Ω = 70 rad s−1, at which a self-
balancing effect of the system is expected. In order to reduce the friction force on the ball an outer ring of a ball
bearing is used as a race track, see fig. 8. The discoidal rotor is balanced statically in order to set defined unbalance
masses into the threads located circumferentially afterwards.

In order to neglect the interaction between multiple balls only one ball with the mass mb = 7.6 g is used whose
center is moving on a circular track with a radius of Rb. The mass mu of the added imbalance is matched, so that
the ball can counterbalance this mass exactly. This results in

mu ⋅ ru = (�b − �fl) ⋅
�d3

6
⋅ Rb = 512 gmm , (9)

with �b being the ball density.
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Figure 7: Test rig with the automatic balancing prototype.
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Figure 8: Cross section of the rotor.

With the use of a video camera, which is mounted above the test rig, the position of the rotor and the ball is recorded
at 25 frames per second. The corresponding angular velocities, which are shown at the top of fig. 9 can be derived
from the footage. It can be seen that the angular velocity of the ball is lagging behind the rotors angular velocity
until it reaches the predefined nominal speed. Using equation (8) and the speed difference the Reynolds number
can be derived, which is plotted at the bottom of fig. 9.
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Figure 9: Time dependent quantities of a rotor run-up. Relation C∗D = f(Re∗) corresponding to fig. 10. Fluid
properties: � = 0.65mm2s−1, �fl = 760 kgm−3.

Despite the flow velocity being relatively high during the run-up of the rotor, it is reduced in the synchronous phase
in which the balls are positioned relative to the imbalance. The dependency of the drag coefficient CD from the
Reynolds number for a free flow around a sphere is well documented in the literature. One empirical approximation
from Morrison (2013) is plotted in fig. 10 as a reference. The ball in automatic balancing devices of the described
type is in steady contact with the race, which is often designed as a cylindrical surface. Assuming a sufficient
large Rb, the flow characteristic can be described by a sphere in contact with a flat surface. Jan and Chen (1997)
conducted experimentally that the drag coefficient is increased when considering the wall contact. To achieve this,
they examined the terminal velocity of spheres moving down a tilted surface in fluids of different viscosities. The
drag coefficient as a function of the Reynolds number is plotted in fig. 10.

Considering this relationship, the drag coefficientC∗D for the experimental data in fig. 9 can be derived. A significant
increase in the drag coefficient can be identified at the start of the positioning phase (t = 13.8 s). Deviations due
to the concave contour of the race are assumed to be negligible. This is supported by studies of Chhabra et al.
(2000) on the drag of spheres in tubes, in which it is concluded that the influence of concavity is not significant for
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Figure 10: Drag coefficients of flows around spheres.

Reynolds numbers below 4000 and diameter ratios between sphere and tube below 0.5.

Even without knowledge of the exact flow velocity of the fluid the presented data suggest that the drag coefficient
underlies high variance during the run-up process of automatic balancing devices. Therefore a significant influence
on the balancing characteristic is expected. This influence is examined in the next section with the help of simulation
models, which compare the consideration of velocity dependent drag coefficients to the commonly used models.

4 Influence on the Run-up Simulation

The rotor under consideration is modelled in a multi-body simulation program using force elements to represent the
interaction between the bodies. The eigenfrequencies are mostly influenced by the bushings, which are modelled by
using frequency dependent spring and damper elements. The run-up process is defined by the rotor speed sequence
shown in fig. 9. Using a viscosity coefficient of �fl = 720 × 10−6 Nms rad−1 for equation (5) a good agreement
with the experimental record of the ball’s velocity is reached in the acceleration phase (t < 10 s). With an increasing
viscosity coefficient the lag between the rotor speed and the ball speed is decreasing.

Based on this model with velocity dependent drag coefficients three additional run-ups with constant drag coef-
ficients CD are conducted. Firstly, a value of CD = 0.74 is used, which is reached for Reynolds numbers above
104 as shown in fig. 10. Secondly, a value of CD = 3.7 is used, which corresponds to the mean value in fig. 9 for
t > 13.8 s. Thirdly, a value of CD = 2.0 in between the prior values is chosen. Fig. 11 shows the effect of the
different drag coefficient modelling approaches in the simulation on the ball velocity.

The most obvious disagreement of the simulation results is located in the time interval in which the rotor reaches
its nominal speed. In view of the time difference between the rotor reaching its nominal speed and the ball get-
ting synchronous with the rotor1 the relative and absolute deviations with respect to the reference simulation with
velocity dependent drag coefficients are shown in table 1.

This leads to the conclusion that the modelling approach of the drag coefficients has an influence on the dynamics
inside the automatic balancing device and should not be neglected, if an optimal choice of the fluid properties is
the objective.

Table 1: Time difference in reaching the synchronous motion of the ball with different modelling approaches.

CD
constant corresponding

0.74 2.00 3.70 fig. 10

Δt [s] 4.66 3.10 2.22 3.78

rel. deviation +23% -18% -40% —

1The final point in time at which the relative deviation from the nominal speed is above 1% is used to characterise synchronous motion.
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Figure 11: Influence of the drag coefficient model on the ball velocity simulation results.

5 Summary

In the design of automatic balancing devices the choice of fluids shows potential for optimisation. The density
and viscosity are influencing the positioning of the counterbalancing mass directly and therefore affecting the rotor
vibrations. In particular the reduction of the system-dependent vibration increase at subcritical speeds is to be
aimed at.

The modelling of the driving forces on the ball becomes important in simulating the transient process. Previous
studies on the influence of friction and virtual mass are implemented in the simulation model. Up to now, the
dependence of the drag coefficient from the flow velocity is neglected. The experimental data in section 3 show the
variation of the flow conditions during the run-up and provide the motivation to consider the velocity dependency.

Some discrepancy between the simulation and the experimental data of the ball velocity remains in the positioning
phase of the ball. It is assumed that the modelled Coulomb friction is not sufficient and the simulation therefore
shows oscillatory behaviour of the ball speed. Variation of the friction coefficient � in reasonable ranges showed
little effect, thus a model including rolling friction should be implemented in further research. The effect of neglect-
ing the velocity dependency of drag coefficients is discussed on the basis of simulations in section 4. Despite this
restriction the comparison of the different modelling approaches shows a significant influence on the ball velocities
and therefore on the transient position of the counterbalancing mass.

The presented study neglects the difference between a flat surface and the curved ball bearing raceway on hand.
In addition to that, irregularities in form and position of the mounted raceway are not taken into account leading
to remaining differences in the stationary ball positions in comparison to the experimental results. These model
enhancements are implemented in future studies. Furthermore, the viscous representation of the fluid acceleration
is currently determined by a parametric study in order to reach a good agreement with the experimental data. An
alternative based on a priori known quantities, i.e. by solving the Navier-Stokes equations numerically, is to be
implemented instead.

6 Future Prospects

For future studies a test rig is planned to validate the curve CD = f(Re) as presented by Jan and Chen (1997) for the
annulus geometry at hand. Moreover a more accurate model and identification of the friction coefficients is aspired
in order to improve the transient simulation. Due to the fact that the acceleration of the fluid is represented by the
fitted parameter �fl, numerical solutions will be pursued to get a model on the basis of the annulus geometry, the
fluid properties and the rotor acceleration only. The objective is a simulative a priori design of the optimal fluid
properties for the automatic balancing device at hand and a subsequent experimental validation.
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