
TECHNISCHE MECHANIK,33, 2, (2013), 97 – 103

submitted: December 11, 2012

Numerical Properties of Spherical and Cubical Representative Volume
Elements with Different Boundary Conditions

R. Glüge, M. Weber

It has been found that, due to the smaller surface to volume ratio, the spherical representative volume elements
(RVE) converge faster to the effective properties than cubical RVEs, in terms of the RVE volume (Glüge et al.,
2012). It remains to discuss whether one can actually draw a numerical advantage from this in the finite element
calculations, since there are also some drawbacks, for example the necessarily irregular meshing. It has been
demonstrated that the boundary conditions, in conjunction with different solution strategies for the linear system
that emerges in the FEM, can significantly influence the numerical expense (Fritzen and Böhlke, 2010a). In the
light of these results, we examine the numerical properties of spherical and cubical RVEs with linear displacement
and periodic (resp. antipodic) boundary conditions.

1 Introduction

The industry requires an ever increasing quality and precision of forming process simulations, while keeping
expenses preferably low. This has lead to the incorporation of the microstructural properties like texture and grain
structure into material models. Unfortunately, the analytical determination of effective properties from the lower-
scale structure (homogenization) is restricted to quite elementary problems. Thus, there is a demand for efficient
numerical schemes for the determination of effective properties from representative material samples. In many
cases, the representative volume element (RVE) method is used, where a (nearly) representative volume element
is subjected to some process, and effective material properties are extracted by averaging. The resulting boundary
value problem is mostly tackled by the finite element method (FEM). Then, one can use a set of RVE-results as
input for the adaption of an effective material law, e.g., with the nonuniform transformation field analysis (Fritzen
and B̈ohlke, 2010b), or even consider the RVEs as material points in large-scale FE simulations (e.g., Feyel (1999);
Ilic and Hackl (2009)). Especially for the multiscale FEM approach, the RVE simulations need to be very efficient
from a numerical point of view. The question for an numerically optimized RVE is raised, where one may consider
different boundary conditions, RVE sizes, RVE shapes and numerical solution strategies. The answer is not as
straight forward as one might think. It is for example well known that periodic boundary conditions (PBC) result
in a faster convergence in terms of the RVE size, compared to linear displacement boundary conditions (Kanit
et al., 2003; Gl̈uge et al., 2012). However, the node coupling in case of PBC increases the bandwidth of the
matrix that appears in the linear system in the FEM, which results in higher numerical costs (Fritzen and Böhlke,
2010a). In this work, we address the questions how the RVE-shape affects the numerical properties, specifically
the difference between cube and sphere, and discuss different combinations of RVE shapes, boundary conditions
and solution techniques exemplarily for a simple homogenization task. Due to the smaller surface to volume ratio,
the boundary influence in spherical RVE is smaller than in cubical RVE, which results in a better convergence to
the effective material properties in terms of the RVE volume. However, the reduced RVE volume does not result
directly in a numerical advantage. Clearly, since the convergence depends on the material and microstructure
under consideration, these issues depend on the materials, the microstructure, and the specific FE implementation.
However, the case examined in this work may serve as a representative example.

2 Problem Setup

The benchmark problem is the same that has been used for the analysis of convergence in terms of RVE volume in
Glüge et al. (2012), briefly summarized in the following sections.
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Parameter Matrix Inclusion

Young’s modulusE in MPa 5000 50000
Poisson’s ratioν 0.4 0.3
Volume fraction 0.7 0.3

Table 1: Material parameters for the matrix and the inclusion material

2.1 RVE and Boundary Conditions

We consider four RVE setups, namely cubical RVEs with periodic boundary conditions, spherical RVEs with
antipodic boundary conditions (ABC), and linear displacement boundary conditions on both types. The latter are

u = H ∙ x0 on∂Ω (1)

where the displacement gradientH is prescribed on the entire boundary of the domainΩ that is occupied by the
RVE. The periodic/antipodic boundary conditions require

u+ − u− =H ∙ (x+
0 − x−

0 ) (2)

t+ + t− =0 (3)

on∂Ω. The points on the surface are coupled in pairs, where the reference surface normals must satisfy

n+
0 + n−

0 =o. (4)

One might consider Eq. (3) basically independent of Eq. (2), since 6 independent equations are needed to complete
the boundary value information for two boundary points. However, practically no other choice than Eq. (3) is
reasonable. Firstly, static equilibrium requires

∫
∂Ω

tdA = o and
∫

∂Ω
(x × t − t × x)dA = o, and an equal

treatment of all boundary points allows only for the application of Eq. (3). Secondly, Eq. (3) is generally adopted
automatically in any FE system when imposing Eq. (2), since the node coupling should not contribute to the
internal power. The contribution to the stress powerp from the coupled points is

p = u̇+ ∙ t+ + u̇− ∙ t−, (5)

which becomes with Eq. (2)

p = u̇+ ∙ (t+ + t−)
︸ ︷︷ ︸

pcoupling

− t− ∙ Ḣ ∙ (x+
0 − x−

0 )
︸ ︷︷ ︸

pexternal

, (6)

where the first term does not involve the external loading. Since the coupling, as a constraint, should not contribute
to the stress power, Eq. (3) follows frompcoupling = 0 for all possible deformations. Last but not least, only this
choice guarantees compliance with the Hill-Mandel-condition (Glüge et al., 2012).

Applied to a cube, one mostly couples opposing surface points such that a periodicity frame emerges, thus the
denomination asperiodic boundary conditions. However, the periodic coupling may also be shifted in order to
rotate the periodicity frame (Coenen et al., 2012) or such that no periodicity frame is induced. On the sphere, the
coupling is unique: only antipodic points have opposing surface normals. Interestingly, the coupling equations are
the same in all cases. The (non)-periodicity depends on the assignment of pairs of surface points. Therefore, it
might be clearer to speak of coupled boundary conditions when one refers to the Eqs. (2) and (3) alone.

2.2 Materials and Microstructure

We used the same material and RVE description as published in Glüge et al. (2012), in order to take advantage
of a large set of existing RVE results. The material under consideration is a matrix-inclusion material. The
matrix is isotropic and linearly elastic. The inclusions, with a total volume fraction of 0.3 are spherical, isotropic,
linearly elastic particles of equal diameter, distributed uniformly without preferred alignment or pattern. They are
considerably stiffer than the matrix material. The material parameters are collected in Table 1.
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approx. total No. approx. No. of No. of surface No. of DOF for No. of DOF for
No. of incl. of nodes nodes per incl. nodes linear disp. BC periodic/antipodic BC
2.4 4462 1858 962 10500 11943
4.7 7992 1704 1538 19362 21669

spherical 11.1 17832 1604 2562 45810 49653
RVE 19.2 31478 1639 3650 83484 88959

28.2 45794 1625 4930 122592 129987
37.5 59926 1598 5642 162852 171315
4.6 4916 1072 1538 10134 12441
9.0 9264 1034 2402 20586 24189

cubical 21.2 21171 998 4268 50709 52656
RVE 36.7 35940 980 6146 89382 98601

53.8 50656 941 7778 128634 140301
71.62 68924 962 9602 177966 192369

Table 2: RVE and mesh sizes that have been tested.

2.3 Test Setup

We carried out uniaxial tension tests, in which the effective Young’s modulus is to be determined. The latter is
accomplished by imposing most components of the average displacement gradient,

H(uax)ij =




ε 0 0
0 − 0
0 0 −



 . (7)

Not prescribingH(uax)22 andH(uax)33 results in zero stress componentsT 22 andT 33 of the effective first Piola-

Kirchhoff-stresses, which are stress-power-conjugate toḢ . Young’s modulus is given by

E = T 11/ε, (8)

whereε needs to be small.

2.4 Numerical Setup

For the FE simulations, we employed hexahedral eight-node bricks with linear shape functions for the meshing,
which is regular in case of the cubical RVE (see Fig. 1. The microstructure has been accounted for by the
Gauss-point-method (Kreikemeier, 2012), where the largest element size has been constrained to one eighth of
the inclusion diameter. The inclusions have been dispersed randomly in the RVE, where intersections with the
RVE boundary have been allowed, disregarding the periodicity frame. The volume fractions have been ensured
by trial and error distributions. To impose an average displacement gradientH , three additional nodes have been
used, the three degrees of freedom (DOF) of which appear in the constraint equations. These equations allow for
a linear coupling of arbitrary DOF, which serve for the implementation of the displacement boundary conditions
(Eqs. (1) and (2)). The simulations have been conducted on an eight-core Intel I7-950 CPU1, using the FE system
ABAQUS 6.10-2 and its iterative and direct solver. Different RVE-sizes have been examined, the parameters of
which are collected in Table 2. One can already notice that the number of nodes per inclusion is approximately 1.7
times larger for the spherical RVE. This is due to the common element size limit. The cube is meshed regularly
with cubical elements, while the meshing of the sphere requires smaller and distorted elements. For numerical
parameters like tolerances and precisions, ABAQUS default values have been used.

2.4.1 Influence of the Type of Boundary Condition on the Numerical Problem

Firstly, the linear displacement boundary conditions require twice the number of constraint equations, compared to
the periodic/antipodic boundary conditions. Presuming that each constraint equation is used to eliminate a DOF,

1Linux 3.2.0-33-generic x86-64 GNU/Linux with Intel Fortran 12.0.4
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Figure 1: Deformed cubical and spherical RVE with periodic and antipodic boundary conditions, one fourth is cut
out. The color map indicates the accumulated plastic strain from 0 (blue) to 0.2 (red).

one has a slightly reduced number of DOF in case of the linear displacement boundary conditions. Secondly, the
node coupling for the periodic/antipodic boundary conditions induces an increase of the system matrix bandwidth,
see Fritzen and B̈ohlke (2010a). For some matrix storage schemes and solvers, this can result in a severe decrease
of performance.

2.4.2 Influence of the RVE Shape on the Numerical Problem

Taking the cubical RVE as reference, there are two competing effects when going to spherical RVE. Capturing the
same volume requires approximately 19% less surface, hence one may expect a corresponding reduction of the
number of surface nodes. However, this holds only when both types of RVE are meshed the same way, i.e. both
regularly or irregularly. In the present example, the cube is meshed regularly. With hexahedral elements, this is
not possible on spherical RVE. With a common maximum permitted element length, one has a higher density of
surface points on the sphere. Thus, the overall reduction of surface points is only approximately 8% (see Table 2,
largest spherical and third-largest cubical RVE).

3 Results

For most calculations, the iterative solver performes better than the direct solver, regarding the time per iteration
as well as memory requirements. Only in case of relatively small FE models the direct solver is slightly faster. The
largest ratiotΔdirect/tΔiterative (timer per iteration using the direct solver over timer per iteration using the iterative
solver) is obtained as approximately 7.5 for the largest cubical RVE with periodic boundary conditions.

3.1 Effect of the Type of Boundary Condition and RVE Shape on the the Solver Performance

Time per iteration Regarding the time per equilibrium iteration, there is no notable difference between spherical
and cubical RVE in case of linear displacement boundary conditions. Only the total number of DOF is relevant.
Going from linear displacement boundary conditions to periodic/antipodic boundary conditions, a slight decrease
of performance is observed for the iterative solver, while the direct solver displays a more pronounced decrease of
performance. The results are depicted in Fig. 2. The leading coefficients of the quadratic and linear regressions
on the data points (time per iteration in seconds over the number of DOF) are summarized in Table 3. For the
direct solver, the leading coefficients in the quadratic regressions differ by a factor of approximately 2.97 for the
spherical and by approximately 4.9 for the cubical RVE when going from linear displacement to periodic/antipodic
boundary conditions, while for the iterative solver these ratios are with 1.19 for the sphere and 1.09 for the cube
close to one.

Memory usage ABAQUS estimates a minimum and an optimum amount of required memory, where for the
latter the read and write activity from and to the hard disk is minimized. The memory usage is plotted in Fig. 3
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RVE setup direct iterative
spherical, LDBC 0.00719910−6 0.7868210−3

spherical, PBC 0.02142610−6 0.9381610−3

cubical, LDBC 0.00646810−6 0.8301310−3

cubical, PBC 0.03192510−6 0.9069010−3

Table 3: Leading coefficients in the quadratic (direct solver) and linear (iterative solver) regression functions for
the CPU time per iteration in seconds over number of DOF for the different RVE setups.
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Figure 2: Time per equilibrium iteration over the number of degrees of freedom needed by the direct (left) and
iterative (right) solver for the different RVE setups. In the legend, S and C stand for sphere and cube, while L, P
and A stand for linear displacement, periodic and antipodic boundary conditions.

for different RVE setups and solvers. The minimum memory requirements are similar for both solver types, and
relatively insensitive to the RVE shape.
Iterative solver:It turns out that the memory requirements of the iterative solver are insensitive both to the kind of
boundary condition and the shape of the RVE. The ratio of the optimum to the minimum memory usage is rather
small, and lies mostly below 1.4.
Direct solver: While insensitive to the RVE shape, the minimum memory requirement is approximately doubled
when going from linear displacement to periodic/antipodic boundary conditions. The optimal memory usage
depends highly on the boundary conditions and the RVE shape: it is insensitive to the shape of the RVE in case
of linear displacement boundary conditions, but sensitive to the RVE shape when periodic/antipodic boundary
conditions are used. Similarly to the increase of time per iteration, the node coupling due to periodic/antipodic
boundary conditions increases the memory usage. This behaviour is more pronounced for the cubical RVE, since
the ratio of coupled DOF to the overall number of DOF is, due to the greater surface to volume ratio, larger than for
the spherical RVE. In any case, the optimum memory required is considerably higher than the minimum memory
requirement, at least by a factor of 3.5.

3.2 RVE Quality

One can estimate the overall RVE quality by relating the precision of the effective material to the numerical
expense. Here, we use the absolute value of the relative deviation ofERVE from the asymptotic Young’s modulus
E∞, |(E∞ − ERV E)|/E∞, as the error estimate. Plotting this measure over the time per iteration gives a clear
picture of which RVE/boundary condition/solution technique is most advantageous, see Fig. 4. Each data point is
the result of an averaging over 100 RVE simulations with different inclusion distributions.E∞ has been taken as
the average of the results of the largest spherical and cubical RVE.

One sees immediately that the numerical extra-costs of periodic/antipodic boundary conditions instead of linear
displacement boundary conditions pay off, regardless of solver type and RVE shape. The convergence is quite
fast when PBC/ABC are applied. The advantage of the spherical RVE over the cubical RVE observed in Glüge
et al. (2012) is almost cancelled out by the higher munber of nodes per volume, due to the irregular meshing of the
sphere. Still, especially for small RVE, the effective properties are estimated more efficiently for spherical RVE.
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Figure 3: Memory usage over the number of degrees of freedom for different RVE setups for the direct (left)
and iterative (right) solver. In the legend, S and C stand for sphere and cube, while L, P and A stand for linear
displacement, periodic and antipodic boundary conditions, and M and O stand for the minimum and optimum
performance memory requirement.
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Figure 4: Absolute value of the realtive deviation of the RVE Young’s modulus from the asymptotic Young’s
modulus over the numerical expense. In the legend, S and C stand for sphere and cube, while L, P and A stand for
linear displacement, periodic and antipodic boundary conditions.
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4 Summary

When addressing the question whether the advantage of spherical RVE in terms of surface to volume ratio results
in a reduction of computational time, two specific conclusions can be drawn:

In case of periodic/antipodic boundary conditions and the direct solver, the reduced number of surface points leads
to a better performance of spherical RVE compared to cubical RVE with a similar number of DOF, since there are
less numerically disadvantageous node adjacencies. This advantage is partially cancelled out due to a necessarily
irregular meshing of the sphere, when hexahedral elements are used. With a common maximum element size, the
spherical RVE require more nodes per volume (namely by a factor of approximately 1.7).

In most situations, one will use the iterative solver and a microstructure-conform meshing, for which none of
these two issues plays a role. However, for the multiscale FEM, one is usually restricted to relatively small RVE,
where the direct solver is to prefer, and periodic/antipodic boundary conditions, for obtaining reasonable effective
properties at small RVE sizes. Then, it seems appropriate to use spherical RVE with antipodic boundary conditions,
both due to better convergence in terms of RVE size and a better performance of the direct solver.
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