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Fast Alternatives to Taylor and Sachs Models for Rigid Perfectly
Viscoplastic Polycrystals

J. Kalisch, A. Bertram

We consider polycrystals consisting of rigid perfectly viscoplastic single crystals. Instead of tracking the evolu-
tion of (a) many individual crystallite orientations we determine the evolution of (b) the Fourier coefficients of
the orientation distribution. Apart from the truncation order, the transition from single to polycrystal constitutive
equations is unique, it does not involve additional parameters. While the reference model (a) requires the solution
of numerous small systems of non-linear ODEs, our model (b) provides a system of linear ODEs the size of which
depends on the truncation order. Upon establishing a data base for the matrix of system (b), the computing time is
decreased significantly as compared to (a).
This paper is meant to introduce the fundamentals of our model in terms of the underlying physical concepts and
a compact and convenient notation. In addition, we introduce a class of alternative approaches that allow for a
non-negative approximation of the orientation distribution and generalise the equations for the texture evolution
to arbitrary sets of base functions.

1 Introduction

Objective. The focus of our work is on the evolution of the crystallographic texture and its influence on the
anisotropy of the plastic behaviour of polycrystals. Since the crystallographic texture is in essence described by
theorientation distribution, we shall use a single crystal model with the internal state being completely described
by theorientation. Thus we considerrigid perfectly viscoplastic single crystals and polycrystals consisting of these.
While the upper and lower bounds of crystal plasticity, i. e. the approaches devised byTaylor (1938) andSachs
(1928), have been studied extensively in academics, in terms of computational costs they are still too demanding
to be applied in industrial forming simulations. Subsequently, we present a less demanding alternative.
Concerning the evolution of the crystallographic texture, we start from the approach byBöhlke (2006), but con-
tinue in different directions. As far as the stress strain-rate relation is concerned, we extend the results ofBöhlke
and Bertram(2003) andBöhlke(2004) to the general anisotropic case. For thepotentialsof strain-rate and stress
this has been done byTsotsova and B̈ohlke (2009b) andTsotsova and B̈ohlke (2009a). We shall include their
theoretical results along the lines.
From a superordinate point of view, our approach follows the strategy to condense the important information of the
microstructure and microscale constitutive functions prior to the application. This is a computationally demanding
procedure, but it needs to be done only once. The permanent costs of the resulting model are comparatively small.
Other approaches following this strategy are, e.g., the CP DFT (crystal plasticity discrete Fourier transformation)
suggested byKnezevic et al.(2009), the CP FFT (crystal plasticity fast Fourier transformation) investigated byLiu
et al.(2010) and the NTFA (non-uniform transformation field analysis) dealt with byFritzen and B̈ohlke(2011a)
andFritzen and B̈ohlke(2011b).

Outline. The paper is organised as follows:Section 2deals with the key mathematical tools of the subsequent
analysis. It contains the representation of functions onSO3 which involves the invariant integration and the
Fourier expansion.Section 3recasts the underlying general framework for rigid perfectly viscoplastic single crys-
tals in terms of non-dimensional and dual variables.Section 4introduces the orientation distribution function and
(locally) homogeneous processes. Then we discuss different models for rigid perfectly viscoplastic polycrystals.
Böhlke’s and our approach differ by the way the closure problem for the infinite number of texture coefficients is
dealt with. We then introduce a class of alternative descriptions of the orientation distribution function in terms
of harmonic tensors. This class allows for truncations that yield non-negative approximations of the orientation
distribution function. Moreover, we establish the decomposition of the truncation error.Section 5lists various
features of our approach that allow for a reduction of the computing time. This section is meant to be the outline
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of a forthcoming paper which includes a detailed description of the reduction procedure.Section 6contains the
example of a uniaxial tensile test. For tensile strains as large as 100 % we find our approach to agree well with the
reference model (i.e. the truncation error is negligible) while the computing time is reduced by several orders of
magnitude.Section 7generalises the homogenisation procedure in Section 4 to arbitrary sets of base functions on
SO3.

Notation. Scalars, vectors, second-order tensors, and tensors of higher or arbitrary order are denoted likea, a,
A, andA, respectively, whileA andA denote a supervector and a supertensor, respectively - we shall give a
more precise description of this concept later. The scalar, dyadic, Rayleigh and infinitesimal Rayleigh product are
denoted by∙, ⊗, ∗ and�, respectively. For a given base{gi} and ann-th order tensorB = Bi1...ingi1 ⊗ . . . ⊗ gin

(mind Einstein’s summation convention), the Rayleigh and infinitesimal Rayleigh product are given by

A ∙B = Ai1...iN Bi1...iN (1)

A ∗B = Bi1...inA[gi1 ] ⊗ . . .A[gin ] (2)

A�B = Bi1...in
(
A[gi1 ] ⊗ gi2 ⊗ . . . ⊗ gin + . . . + gi1 ⊗ . . . ⊗ gin−1 ⊗ A[gin ]

)
(3)

where[ ] indicates the linear mapping (complete contraction of all lower order tensor indices) defined via

A [B ] = Ai1...iMj1...jN Bj1...jN gi1 ⊗ . . . ⊗ giM (4)

The Frobenius norm for tensors of arbitrary order is defined by‖A ‖ := (A ∙A)
1
2 . To our knowledge, the operation

� does not have an official name, currently. It comes in handy whenever derivatives of the Rayleigh product are
required which is, why we have called it infinitesimal Rayleigh product.
Orientations and rotations are denoted byQ andR, respectively. The difference between them is a subtle one,
similar to that between a point in space (or a position vector) and an ordinary vector. Rotations connect orientations
as vectors connect points. Groups are denoted likeG. In particular,SO3 is the group of proper rotations in a three-
dimensional space.

2 Functions onSO3

Invariant integration on SO3. For locally compact groups, such asSO3, there exists a H́aar measure. For our
problem, it suffices to know that this implies the existence of an invariant differential formdμ(Q) giving rise to a
left, right and inversion invariant normalised integration

∀R ∈ SO3 :
∫

SO3

G(RQ) dμ(Q) =
∫

SO3

G(Q) dμ(Q) left invariance (5)

∀R ∈ SO3 :
∫

SO3

G(QR) dμ(Q) =
∫

SO3

G(Q) dμ(Q) right inv. (6)

∫

SO3

G(Q−1) dμ(Q) =
∫

SO3

G(Q) dμ(Q) inversion inv. (7)

∫

SO3

1 dμ(Q) = 1 normalisation (8)

whereG is an arbitrary (possibly tensor-valued) function. On a modest level, we may understand Eqs.5-7 by
considering the integration along a circle: neither the sense of integration nor the starting point affect the result.
In this context, the circle represents the set of a group, e.g., the unit circle{exp(i φ)|φ ∈ [0, 2π[} in the plane of
complex numbers; the group operation then is the usual multiplication of complex numbers. For more information
on the subject we refer toElstrodt(2009) andGel’fand et al.(1963).

Fourier expansion onSO3. If the functionG is square-integrable, it allows for a Fourier expansion (Adams
et al. (1992), Guidi et al. (1992), Sam et al.(1993)). The expansion involves Fourier coefficients{Gmα

} and
mutually orthogonal base functions{Bmα}. The latter are related to mutually orthogonal base tensors{Hmα} by
virtue of the orientationQ. BothBmα

andHmα
are harmonic (i.e. completely symmetric and deviatoric) tensors
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of orderm.
∫

SO3

‖G(Q) ‖2 dμ(Q) < ∞ (9)

⇒ G(Q) =
∞∑

m=0

2 m+1∑

α=1

Gmα
[Bmα

(Q) ] (10)

Gmα
:=

∫

SO3

G(Q) ⊗Bmα
(Q) dμ(Q) (11)

Bmα
(Q) := Q ∗Hmα

(12)

Harmonic base tensors. The set of2m + 1 base tensors span the space of all harmonic tensors of orderm.
Consequently, we can expressIm - the identity on the space of harmonic tensors of orderm - in terms of the base
tensors,

Hmα
∙Hmβ

= (2m + 1) δαβ (13)
2 m+1∑

α=1

Hmα
⊗Hmα

= (2m + 1) Im (14)

Base functions onSO3. The Dirac distributionδ and the identity on harmonic tensors are related to the base
functions via

δ(Q,Q′) :=
∞∑

m=0

2 m+1∑

α=1

Bmα(Q) ∙Bmα(Q′) (15)

∫

SO3

Bmα(Q) ⊗Bnβ
(Q) dμ(Q) = δmn δαβ Im (16)

The Fourier expansion (Eqs.10-11) is then easily understood by considering

G(Q) =
∫

SO3

G(Q′) δ(Q′,Q) dμ(Q)′ (17)

Scalar product. The scalar product of two square-integrable functions,F andG, is given by
∫

SO3

F(Q) ∙G(Q) dμ(Q) =
∞∑

m=0

2 m+1∑

α=1

Fmα ∙Gmα (18)

Supervectors and supertensors.Subsequently, we shall use more compact expressions such as

G(Q)
(10)
= G [B(Q) ] (19)

G
(11)
:=

∫
G(Q) ⊗B(Q) dμ(Q) (20)

B(Q)
(12)
:= Q ∗H (21)

δ(Q,Q′)
(15)
:= B(Q) ∙B(Q′) (22)

∫
B(Q) ⊗B(Q) dμ(Q)

(16)
= I (23)

∫
F(Q) ∙G(Q) dμ(Q)

(18)
= F ∙G (24)

Here,B, F, G andH are supervectors, while the identityI is a second-order supertensor satisfying, e.g.,I [G ] =
G. We have introduced this compact notation in order not to conceal the essential structure of the equations in the
subsequent sections.

3 Rigid Perfectly Viscoplastic Single Crystals

Locally homogeneous process.Throughout this work, we consider constitutive functions at timet and material
point x0 (i.e. a material volume comprisingx0 and being sufficiently small in comparison to the length scales

106



across which the process variablesW andX change significantly and yet large enough to include all important
features of the crystallographic texture). However, we shall suppress the argumentsx0 andt whenever possible.
The term locally homogeneous process is used subsequently to emphasize that within such a volume, the process
variables are assumed homogeneous, but they may still vary from one material point to another.

Single crystal model.The mechanical behaviour of rigid perfectly viscoplastic single crystals is specified by two
constitutive functions,A andS, mapping second-order harmonic tensors to second-order skew and second-order
harmonic tensors, respectively. More precisely, we have

Q̇QT = W − γ̇0 QA (QTXQ)QT (25)

X† = QS (QTXQ)QT (26)

where Eq.25 describes the evolution of the lattice orientationQ for a givenW-X-process, while Eq.26 relates
the dual variables,X andX† (see, e.g.,Hutchinson(1976), Böhlke and Bertram(2003), Böhlke(2004)).
The dual variables correspond to the non-dimensional strain rate deviatorD′

γ̇0
and the Kirchhoff stress deviatorT

′

τc

or vice versa. The material parametersγ̇0 andτc are called critical shear rate and critical resolved shear stress,
respectively. In addition, we can introduce a non-dimensional spinW

γ̇0
and a non-dimensional time increment

dγ := γ̇0 dt.

Duality. The termdual is further emphasized by the following considerations: IfA, S are given explicitly in
terms ofX and theW-X†-process is prescribed, we can recover the same formulation by means of the dual func-
tionsA† andS† - providedS is bijective. Introducing the abbreviationsY := QTXQ andY† := QTX† Q,
Eq.26 is compactly rewritten as

Y† = S(Y) (27)

allowing to establish the dual functions by

S†(Y†) = S−1(Y†) (28)

A†(Y†) = A ◦ S−1(Y†) (29)

If, in addition,S has a convex potentialψ = p(Y), thus

S(Y) =
dp(Y)

dY
(30)

then the dual potentialψ† = p†(Y†) is obtained via the Legendre-Fenchel transformation and satisifies

S†(Y†) =
dp†(Y†)

dY†
(31)

p†(Y†) = sup
Z

(Z ∙ Y† − p(Z)) (32)

= Y ∙ Y† − p(Y) where Y = S†(Y†) (33)

Moreover, we assumeA andS (and thusp) continuously differentiable and bounded - and thus square-integrable
onSO3 - for finite X and arbitrary orientations.

Dissipation. The non-dimensional dissipationη is given by the scalar product of the dual variables and has to
be non-negative. Ifp is convex, the non-negativity is ensured.

η :=
T′

τc
∙
D′

γ̇0
(34)

= X ∙ X† (35)

= Y ∙ Y† (36)

= p (Y) + p† (Y†) (37)

= ψ + ψ† (38)

In the transition from Eq.36 to Eq.37, Eq.33has been used.
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4 Rigid Perfectly Viscoplastic Polycrystals

Orientation distribution function. The crystallographic texture can be described by means of the orientation
distribution function (ODF)f, which, by definition, gives the volume fraction of single crystals (or grains) with a
similar lattice orientation (Bunge(1965))

f(Q) dμ(Q) =
dV(Q, dμ(Q))

V
(39)

The ODF is normalised and non-negative

∫
f(Q) dμ(Q) = 1 (40)

∀Q ∈ SO3 : f(Q) ≥ 0 (41)

Furthermore, texture and crystal symmetries (with groupsGT,GC ⊂ SO3) imply

∀RT ∈ GT : f(RT Q) = f(Q) (42)

∀RC ∈ GC : f(QRC) = f(Q) (43)

The Fourier coefficients of the ODF are called texture coefficientsT.

f(Q) = T ∙B(Q) (44)

T :=
∫

f(Q)B(Q) dμ(Q) (45)

If the ODF is time dependent, thenf(Q, t) = T(t) ∙B(Q) etc. as in the following sections.

The existence of a motion and its implications.For the sake of brevity we define the lattice spin functionΩ

Ω (Q,W,X) := W − γ̇0 QA (QTXQ)QT (46)

If A is continuously differentiable and theW-X-process is piecewise continuous, then the Picard-Lindelöf theo-
rem implies the existence and uniqueness of a continuous solutionQ(t). The uniqueness implies that trajectories
starting from different initial values cannot intersect at finite time. However, they may converge towards a common
limit. Thus, considering the set of all trajectories for a givenW-X-process, we find - at any time - a unique relation
between initial and current orientations.
This corresponds exactly to the concept of a motionχ of material points in continuum mechanics (see, e.g.,Bertram
(2012)), however, now inSO3 with the initial orientationsQ0 corresponding to material coordinates.

Q(t) = χ(Q0, t) (47)

Since all initial orientations are assumed to be subject to the sameW-X-process, our analysis is restricted to lo-
cally homogeneous processes - in other words, to Taylor and Sachs models.

Texture evolution. Using the concept of a motion, Böhlke (Böhlke (2006)) has shown that the evolution of
the texture coefficients is given by

Ṫ =
∫

Ω�B f dμ(Q) (48)

which by means of Eq.44 is rewritten as a linear ODE for the texture coefficients

Ṫ = L [T ] (49)

L :=
∫

(Ω�B) ⊗B dμ(Q) (50)
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The decomposition of the lattice spin (Eq.46) into W- andX-dependent part also translates to the evolution ofT.
As for single crystals, theW-dependent parts accounts for rigid body motions.

L(W,X) [T ] = W �T− γ̇0 A(X) [T ] (51)

A(X) :=
∫ (

Ǎ(Q,X)�B(Q)
)
⊗B(Q) dμ(Q) (52)

Ǎ(Q,X) := QA (QTXQ)QT (53)

Stress strain-rate relation.For locally homogeneous processes we can transform volume averages to orientation
averages via Eq.39. Consequently, the volume average of the potential (Tsotsova and B̈ohlke(2009b), Tsotsova
and B̈ohlke(2009a)) and the volume average of the dual variable are given by

Ψ =
∫

p(QTXQ) f(Q, t) dμ(Q) (54)

X† =
∫

Š(Q,X) f(Q, t) dμ(Q) (55)

Š(Q,X) := QS (QTXQ)QT (56)

According to Eq.24, the right hand sides are scalar products and can be rewritten as follows

Ψ = P(X) ∙T (57)

X† = S(X) [T ] (58)

where the polycrystal constitutive functionsS andP are given by

P(X) :=
∫

p (QTXQ)B(Q) dμ(Q) (59)

S(X) :=
∫

Š(Q,X) ⊗B(Q) dμ(Q) (60)

Sinceψ andX† are related via derivatives (Eq.30) in single crystals, so areΨ andX† in polycrystals

X† =
∂ψ

∂X

∣
∣
∣
∣
Q

(61)

X† =
∂Ψ
∂X

∣
∣
∣
∣
T

(62)

4.1 Our Approach

The sum in, e.g., Eq.10 involves an infinite number of terms, which is impractical to deal with. Therefore, we
consider a finite subsystem of Eq.49 and neglect the contribution of higher order texture coefficients with order
m > M, whereM is the truncation order. Our polycrystal model is thus given by

ṪM = W �TM − γ̇0 AMM
[TM ] (63)

Ψ = PM(X) ∙TM (64)

X† = SM(X) [TM ] (65)

where

A
MM

(X) :=
∫

(Ǎ(Q,X)�BM(Q)) ⊗BM(Q) dμ(Q) (66)

PM(X) :=
∫

p (QTXQ)BM(Q) dμ(Q) (67)

SM(X) :=
∫

Š(Q,X) ⊗BM(Q) dμ(Q) (68)
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In terms of the ODF, this truncation corresponds to projecting the ODF on a subspace

f → fM := TM ∙BM (69)

Depending on the single crystal functionsA andS, we choose a truncation order that renders a reasonable agree-
ment for a set of test processes.

4.2 Reference Model

The reference model (Sachs or Taylor, upper index R) consists of a sufficiently large numberK of single crystals
with volume fractionsfk and orientationsQk. The orientations evolve according to Eqs.25and26and are subject
to the sameW-X-process,

Q̇k QT
k = W − γ̇0 Ǎ(Qk,X) (70)

ΨR =
K∑

k=1

fk p(QT
k XQk) (71)

XR
† =

K∑

k=1

fk Š(Qk,X) (72)

The respective ODF and texture coefficients are given by

fR(Q) =
K∑

k=1

fk δ(Q,Qk) (73)

TR
(M) =

K∑

k=1

fk B(M)(Qk) (74)

4.3 Decomposition of the Truncation Error

Comparing the results of the reference model (Sect.4.2) to those of our approach, we find the following decompo-
sition of the truncation error

Ψ − ΨR = PM(X) ∙
(
TM −TR

M

)
+ (PM(X) − P(X)) ∙ TR (75)

≤ ‖PM(X) ‖
∥
∥TM −TR

M

∥
∥

︸ ︷︷ ︸
=:εT

M

+ ‖PM(X) − P(X) ‖
︸ ︷︷ ︸

=:εP
M

∥
∥TR

∥
∥ (76)

A similar decomposition applies toX† − XR
† .

The termεP
M describes the error due to truncating the Fourier expansion ofp. If p is polynomial inQ, then its

Fourier expansion is finite andεP
M is zero whenever the truncation order is chosen at least equal to the polynomial

order. Otherwise, the error can be estimated using the equivalent expression

εP
M =

(∫

SO3

p2(QTXQ) dμ(Q) − ‖PM(X) ‖2

) 1
2

(77)

Since the norm ofPM increases asM does, the truncation errorεP
M decreases monotonously, and, asp is square-

integrable, it converges to zero
εP
M ≥ εP

M+1 lim
M→∞

εP
M = 0 (78)

By contrast, the termεT
M is the error inTM due to truncating the system of evolution equations The relation of

truncation error and truncation order will be investigated in more detail in a forthcoming paper. For the time being
we have to content ourselves with numerical examples to investigate this error.
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4.4 Evolution of Non-negative ODF Approximations

Non-negative approximations.Working with an infinite number of texture coefficients is impractical. To circum-
vent this problem we may truncate the Fourier expansion, as has been done in the previous section. However, this
can induce regions where the ODF becomes negative, thus violating the constraint of non-negativity (Eq.41). An
alternative approach ensuring non-negativity is described subsequently. First, we consider a continuously differ-
entiable bijective non-negative functiong

g : R→ R+
0 (79)

and, for the time being, an infinite vector of alternative texture coefficientsK, similar toT. Then, the ODF is
replaced by

f = g(K ∙B) (80)

Evolution of alternative texture coefficients. Based again on the concept of a motion, the respective evolution
equations are given by

M(K) [ K̇ ] = L(W,X,K) [K ] (81)

M(K) :=
∫

G(K ∙B)B⊗B dμ (82)

L(W,X,K) :=
∫

(Ω�B) ⊗B + (1 − G(K ∙B))B⊗ (Ω�B) dμ (83)

G(x) :=
x

g(x)
dg(x)
dx

(84)

with second-order supertensorsM andL. In this context,G = 1 corresponds to our original approach.

Lattice spin decomposition. Using Eq.46, we find the reduced system where the influence ofW andX are
separated

M(K) [ K̇− W �K ] = L(0,X,K) [K ] (85)

Invertible M. If G is continuous and either non-negative or non-positive, then the linear mappingM is positive
definite or negative definite, respectively. This implies invertibility and provides a system of non-linear first order
ODEs

K̇ = M−1(K)L(W,X,K) [K ] (86)

Polynomial approach.M is K-independent only ifG = c with constantc. This impliesg(x) := xc.

Homogeneity. Changingg → c g by a non-zero constantc 6= 0 does not alterG. Changingg → gk renders
G → k G.

Exponential approach.The maximum entropy approximation (see Sect.4.6) suggests to investigateg(x) = exp x,
which providesG(x) = x. In this case,M can become non-invertible and the evolution is given by a system of
quasi-linear ODEs. We emphasize that this system doesnot describe the evolution of the pseudo-texture coeffi-
cients in B̈ohlke’s approach (Sect.4.6).

Truncation. Sinceg is non-negative by definition, we can perform the truncationK → KM, M → M
M

, L → L
M

without violating non-negativity.
f → fM := g(KM ∙BM) ≥ 0 (87)

Certainly, there will be a truncation error due to employing a truncated system of evolution equations. However,
for an appropriate choice ofG (and theng), an easier investigation of the related truncation error might be possible.
The following remarks apply to arbitraryg (or G).

4.5 Quadratic Approximation

Among the recently introduced class of approximations, one strikes with particular simplicity: Choosingg(x) = x2

(or G = 2), we obtain the evolution equation

K̇ = F [K ] (88)

F :=
1
2

∫
(Ω�B) ⊗B−B⊗ (Ω�B) dμ (89)
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where the matrixF is exactly the skew part of the matrix in our approach (Sect.4.1). This quadratic approximation
has been suggested byvan Houtte(1983) in a different setting to solve an altogether different question. The
normalisation of the ODF implies‖K ‖ = 1 for any time, thusK(t) differs fromK(0) merely by a rotation (in
accordance withF being skew). This also applies to every subsystem emerging from the truncation procedure.
The potential is rewritten as a positive definite quadratic form inK

Ψ = P(X) ∙ (K⊗K) (90)

P(X) :=
∫

p(QTXQ)B(Q) ⊗B(Q) dμ (91)

4.6 Böhlke’s Approach

An alternative approach based on a finite number of harmonic tensors and ensuring non-negativity of the approx-
imate ODF, has been investigated byBöhlke (2006). In order to circumvent the closure problem, he considers
a finite subvector of texture coefficientsTM (as we have done in our approach) and uses the maximum entropy
method (Jaynes(1957a), Jaynes(1957b), Böhlke(2005), Junk et al.) to approximatef in the integral on the right
hand side of Eq.48. This yields an exponential function ensuring the non-negativity of the pseudo-ODFkM. Upon
replacing

f → kM := exp (KM ∙BM) (92)

the pseudo-texture coefficientsKM are uniquely determined by the constraints
∫

kM BM dμ = TM (93)

In the respective examples provided byBöhlke (2006), the approach allows for a good prediction of the texture
evolution even if the truncation order is as low as 6 or 8, i.e. only a small subvectorTM is taken into account.
However, solving Eq.93 for the auxiliary quantitiesKM in every time increment is computationally demanding -
even for truncation orders as low as these. For the sake of completeness we note that there exists no closed system
of evolution equations forKM, such asFM(K̇M,KM,W,X) = 0.

5 Reduction of the Computing Time

Since this section is intended to be merely an outline of a forthcoming paper, we shall only sketch the facts that
help in reducing the computational costs. These facts also apply to the quadratic approximation (Sect.4.4). For
quick reference we restate our model

ṪM = L
MM

[TM ] (94)

L
MM

(W,X) := W �−γ̇0 AMM
(X) (95)

X† = SM(X) [TM ] (96)

Ψ = PM(X) ∙TM (97)

where

A
MM

(X) :=
(
Ǎ(Q,X)�BM(Q)

)
⊗BM(Q) dμ(Q) (98)

SM(X) :=
∫

Š(Q,X) ⊗BM(Q) dμ(Q) (99)

PM(X) :=
∫

p(QTXQ)BM(Q) dμ(Q) (100)

There are two types of computational costs associated with our approach: initial costs and permanent costs.

5.1 Permanent Costs

Due to the time discretisation in numerical simulations, the piecewise continuousW-X-process is eventually re-
placed by a piecewise constant process which is in fact nothing but a sequence of monotonous subprocesses (or
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increments for brevity). The update ofX†, Ψ andTM along an increment gives rise to permanent costs.

Update. Given an increment (Δt, W, X) and initial valuesTM(t), the task is to determineTM(t + Δt) by
virtue of Eq.94and then calculateX†(t + Δt) andΨ(t + Δt) using Eq.96and97, respectively.

Analytic solution. The evolution equations form a system of linear ODEs. Thus, for any increment, there is
an analytical solution.

TM(t + Δt) = exp
(
ΔtL

MM

)
[TM(t) ] (101)

Depending on the process, the increments can become arbitrarily large. By contrast, in the reference model the
increments are restricted by the problem of finding a solution to systems of non-linear equations.
The analytical solution (Eq.101) involves the matrix exponential being applied to a vector. Usually, this can be
computed even more efficiently than the matrix exponential itself. For more information on computing the matrix
exponential we refer toMoler and van Loan(2003).

5.2 Initial Costs

The initial costs emerge from determining the data base. For a given single crystal model (and truncation order),
the data base needs to be determined only once.

Data base. Obviously, the update requires to determineL
MM

(W,X), SM(X) andPM(X). The contribution
of W to L

MM
is trivial, thus we can considerA

MM
(X) instead. If we had to evaluate these functions anew in

every increment via their definition in terms of integrals overSO3 (Eqs.98-100), our approach would easily be
outperformed by the reference model. However, decomposing the variableX and invoking several symmetries of
the functions, we can reconstruct the function values for anyX from a small data base of function evaluations.
This data base gives rise to the initial costs but reduces the permanent costs considerably.

Coaxial process.Within the aforementioned reconstruction, applying the rotationR (obtained from the decom-
positionX = RX0 RT) is by far the most time consuming operation. However, since we are interested inX†

andΨ rather than in the auxiliary quantitiesT, we can introduce a coaxial process and coaxial quantities and thus
circumvent this step. Again, this significantly reduces the permanent costs.

Zero elements. The first line ofA is zero due to the normalisation of the ODF. The crystal symmetry renders
certain lower order elements ofP, S andA zero. Also, the number of non-zero texture coefficients - and thus the
size of the ODE system - is reduced considerably which, in turn, also reduces the permanent costs.
Depending onA andS, the integrands in Eqs.98-100 are reasonably well approximated by polynomials in the
components ofQ. ThenP andS are finite vectors, i.e. all elements are zero beyond some order related to the
polynomial order. Likewise, the matrixA becomes a band matrix with the bandwidth related to that order. Of
course, these findings apply likewise to the subvectorsPM andSM and the submatrixA

MM
.

Independent components.The elements ofP, S andA are linear mappings from harmonic to harmonic ten-
sors (real numbers can be referred to as harmonic tensors of order zero). In addition, they are invariant under all
rotations that leaveX invariant. This implies orthotropy for all elements of the data base. Once more this reduces
the number of independent components to be evaluated.

6 Example

Schmid’s law. Denoting slip direction and slip plane normal of slip systemα by dα andnα (in an undistorted
reference placement), respectively, we obtain antisymmetric and symmetric Schmid tensors,Aα andSα, by virtue
of the additive decomposition

dα ⊗ nα = Aα + Sα (102)

Sincedα ∙ nα = 0, we havetrSα = 0. The non-dimensional resolved shear stress on slip systemα is given by

xα :=
QTT′ Q

τc
∙ Sα (103)

and Schmid’s law can be written as
max

α
| xα | ≤ 1 (104)
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Hutchinson’s flow rule. As a regularisation,Hutchinson(1976) proposed a power law with a strain-rate sensitivity
parameterq > 0.

A =
∑

α

sign xα | xα |q Aα (105)

S =
∑

α

sign xα | xα |q Sα (106)

p =
1

q + 1

∑

α

| xα |q+1 (107)

The largerq, the better is the approximation (of the shape) of Schmid’s yield surface by the isolines of the flow
potentialp

lim
q→∞

(
1

q + 1

∑

α

| xα |q+1

) 1
q+1

= lim
q→∞

(
∑

α

| xα |q+1

) 1
q+1

= max
α

| xα | (108)

Uniaxial tensile test. We consider a polycrystal consisting of body-centred cubic (bcc) single crystals subject to
uniaxial tension (stress controlled process - Sachs model) and apply Hutchinson’s flow rule.
The crystal symmetry (cubic/octahedral, upper indexC) renders several elements ofP, S, A andT zero (see
Sect.5.2), reducing the list of relevant independent base functions to (see, e.g.,Adams et al.(1992), Guidi et al.
(1992), Böhlke(2005))

BC = (B01 ,B41 ,B61 ,B81 ,B91 ,B101 ,B121 ,B122 , . . .) (109)

which is why we do not consider truncation order 1, 2, 3, 5, 7 and 11. Starting from isotropy

TM(0) = (1, 0, . . . , 0) (110)

and applying uniaxial tension (thus a transversely isotropicX) with zero spin,

X =
T′

τc
=

√
2
3

(

e1 ⊗ e1 −
1
2

e2 ⊗ e2 −
1
2

e3 ⊗ e3

)

(111)

W = 0 (112)

all texture coefficients become transversely isotropic tensors. Being harmonic tensors at the same time, this renders
all odd order texture coefficients zero and all even order texture coefficients having only one independent compo-
nent. Here, we choose the(1 . . . 1)-component. This discards (truncation) order 9 from further consideration.

Analytical solution to our approach. Making use of these reductions and introducing the non-dimensional time
γ := γ̇0 t, we end up with a small system of linear ODEs,

dTi

dγ
= −

∑

j

Aij Tj T = (T0, T4, T6, T8, T10) (113)

Evaluating the analytical solution

Ti(γ) =
∑

j

(exp(−γ A))ij Tj(0) T(0) = (1, 0, . . . , 0) (114)

is a matter of split seconds and negligible when compared to the reference model.

Numerical results. Within any of the figures, the predictions for the evolution of one texture coefficient of or-
derm based on different truncation ordersM are given. Clearly, if the truncation order is, say, 6, then there are
predictions for order 4 and 6 but not the evolution of the texture coefficients of order 8 and 10. The left (a) and right
(b) column contain the plots of(1 . . . 1)-components of the texture coefficients and their difference to the reference
model,ΔT := T−TR, respectively. The non-dimensional timeγ (horizontal axis) is related to the nominal strain
ε via

ε = exp

(
2γ
√

6

)

− 1 (115)
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M line γ ε
4 black dashed 0.25 22.6 %
6 black dotted 0.50 50.4 %
8 black dot-dashed 0.75 84.5 %
10 black solid 1.00 126.3 %
R grey solid 0.849 100.0 %

Herem andM denote the order of the texture coefficient and the truncation order, respectively.
In Fig. 2a and 3a, the black lines are almost indiscernible, i.e. the results for truncation orders 6, 8, 10 and 8, 10
coincide, respectively.

Fig.1a:(1, . . . , 1)-component ofT41 vs. γ Fig.1b:(1, . . . , 1)-component ofΔT41 vs. γ

Fig.2a:(1, . . . , 1)-component ofT61 vs. γ Fig.2b:(1, . . . , 1)-component ofΔT61 vs. γ

Fig.3a:(1, . . . , 1)-component ofT81 vs. γ Fig.3b:(1, . . . , 1)-component ofΔT81 vs. γ

Fig.4a:(1, . . . , 1)-component ofT101 vs. γ Fig.4b:(1, . . . , 1)-component ofΔT101 vs. γ
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Even for strains as large as 100%, the agreement between the reference model and our approach is quite convincing
for truncation orders as low as six. However, having chosenq = 3, X† andΨ contain coefficients up to order eight.
Thus, onlyM ≥ 8 providesεP

M = 0 (see Sect.4.3).
Upon increasing the order, we expect the solutions to converge to those of the reference model. We find this as-
sumption all in all confirmed by the example (see Fig.1a-4b) , but we shall discuss this issue in more detail in a
forthcoming paper. Partly, deviations could be attributed to the initial values of higher order texture coefficients in
the reference model, which are most likely non-zero.

Saturation. It may appear as if the all texture coefficients are bound to increase infinitely. However, since the
first line of the matrixA and its submatrices is zero, they are singular and thus have at least one zero eigenvalue.
The corresponding eigenvectors give stationary solutions.

7 Generalisation to Arbitrary Base Functions

Apart from the Fourier expansion in terms of harmonic tensors that was key to our model of rigid perfectly
viscoplastic polycrystals, there are other sets of base functions, notably the generalised spherical harmonics (or
Wigner D-functions) (see, e.g.,Hielscher et al.(2010)). For some of these sets there already exist quite sophis-
ticated codes. Therefore, we shall generalise our approach to a complete but otherwise arbitrary set of square-
integrable base functions onSO3. Let SO3 be parametrised by three coordinatesq = (q1, q2, q3). The base
functions{bα} and dual base functions{bα} fulfil

∑

α

bα(q) bα(q′) = δ(q,q′) (116)

∫
bα(q) bβ(q) dμ(q) = δα

β (117)

The Fourier expansion and texture coefficients are given by

f(q, t) =
∑

α

fα(t) bα(q) (118)

fα(t) :=
∫

f(q, t) bα(q) dμ(q) (119)

Thus, using eq. 35 inBöhlke(2006), the evolution of the coefficients is governed by (mind the implicit summation
overi)

dfα

dt
=

d
dt

∫
bα(q) f(q, t) dμ(q) (120)

=
∫

∂bα(q)
∂t

∣
∣
∣
∣
q0

f(q, t) dμ(q) (121)

=
∫ (

∂bα

∂qi

∂qi

∂t

∣
∣
∣
∣
q0

)
∑

β

fβ(t) bβ(q) dμ(q) (122)

=
∑

β

Lα
β fβ (123)

Lα
β :=

∫
∂bα

∂qi

∂qi

∂t

∣
∣
∣
∣
q0

bβ(q) dμ(q) (124)

To obtain the time derivatives, we consider

Ω = Q̇QT (125)

=
∂Q
∂qi

∂qi

∂t

∣
∣
∣
∣
q0

QT (126)
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and perform a double contraction of Eq.126with the Levi-Civita tensorε. Introducing appropriate abbreviations,
this provides a linear system for the derivatives

v =
∂qi

∂t

∣
∣
∣
∣
q0

vi (127)

v := ε [Ω ] (128)

vi := ε

[
∂Q
∂qi

QT

]

(129)

For [v1,v2,v3] 6= 0 this system has the unique solution

∂qi

∂t

∣
∣
∣
∣
q0

=
[v,vj,vk]
[v1,v2,v3]

(130)

where(i, j, k) is a cyclic permutation of (1,2,3). As expected in view of Eq.51, the matrixL only depends onW
andX.
The focus of this work is on the evolution of the crystallographic texture and its influence on the stress strain-rate
relation. However, the procedure outlined in this section applies to an arbitrary choice of internal variables provided
(1) the locally homogeneous process and micro-scale constitutive equation ensure the existence of a motion and
(2) a complete set of base functions can be devised.

8 Summary

Summary. We have derived an alternative formulation of rigid perfectly viscoplastic polycrystals. The transition
from single to polycrystal model is unique in that no additional parameters are required. The numerical results
obtained hitherto agree well with the reference model but our approach reduces the computing time by several
orders of magnitude. Since it requires the same input (W andX) as the Sachs or Taylor model, it can be likewise
implemented in FE codes. Moreover, the evolution equations in terms of arbitrary base functions and for a class of
non-negative approximations have been derived.

Outlook. In forthcoming papers we shall (a) present details of the reduction of the computing time, (b) discuss
the convergence of solutions (truncation error vs. truncation order) more rigorously, (c) include examples based
on Taylor models for plane strain compression and simple shear deformation and (d) investigate the quadratic ap-
proximation in more detail.
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Böhlke, T.: The Voigt bound of the stress potential of isotropic viscoplastic fcc polycrystals.Archive of Mechanics,
56, 6, (2004), 423–443.
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