TECHNISCHE MECHANIK, 32, 1, (2012), 3-20
submitted: October 27, 2011

Comparison of Two Bulk Energy Approaches for the Phasefield Modeling
of Two-variant Martensitic Laminate Microstructure

F. E. Hildebrand, C. Miehe

The unusual thermomechanical properties of shape memory alloys are closely connected to the formation and
evolution of their microstructure. At lower temperatures, shape memory alloys typically consists of martensitic
laminates with coherent twin boundaries. We propose a large strain phasefield model for the formation and dis-
sipative evolution of such two-variant martensitic twinned laminate microstructures. Our model accounts for the
coherence-dependence of the interface energy density and contains a Ginzburg-Landau type evolution equation.
We introduce two conceptually different modeling approaches for the regularized bulk energy, i.e. external and
internal mixing. We construct a suitable gradient-extended incremental variational framework for the proposed
formulation and discretize it by use of finte elements. Finally, we demonstrate the modeling capabilities of our for-
mulation by means of two-dimensional finite element simulations of laminate formation in two-phasic martensitic
CuAINi and compare the energetic modeling properties of the two proposed bulk energy approaches.

1 Introduction

In this work, we present a large strain phasefield model for two-variant martensitic laminate microstructure. Our
model accounts for the coherence-dependence of the surface energy of twin interfaces and employs an evolution
of generalized Ginzburg-Landau type. We consider two different approaches to the modeling of bulk energy and
compare their modeling capabilities by means of numerical examples.

Martensitic laminates in shape memory alloys such as NiTi or CuAINi are microstructures that consist of different
variants of the martensitic crystal phase. They form sharp, coherent interfaces — so called twin boundaries — whose
motion is connected to displacive, diffusionless first-order solid to solid phase transformations. Generally, the
behavior of the different variants can be considered elastic and reversible, whereas the phase boundary motion and
hence the phase transformation is considered dissipative. See, e.g., James (1981), Bhattacharya (2003) and Abe-
yaratne and Knowles (2006), for an overview of crystallographic, energetic and kinetic aspects of shape memory
materials.

Due to their extraordinary properties, shape memory alloys are used in a number of technical applications, see e.qg.
Duerig et al. (1990). A reliable modeling of the complex behavior of these materials is hence of great interest. A
number of macroscale models have been proposed, see e.g. Bertram (1982), Boyd and Lagoudas (1996), Qidwai
and Lagoudas (2000), Auricchio et al. (1997) or Helm and Haupt (2003). However, the predictive capabilities of
these models are often limited. To substantially improve the macroscale models for martensitic transformations, a
profound understanding of microstructural phenomena is indespensable. Such understanding can be gained by the
use of mesoscale models that resolve and predict the evolving spatial morphology of the microstructure based on
micromechanical modeling ingredients. Such ingredients are a coherence-dependent interface energy density, see
Murr (1975) and Porter and Easterling (1992) or kinetic relations, see e.g. Hildebrand and Abeyaratne (2008) for
related atomistic simulations and Faran and Shilo (2011) for related experimental observations.

Basis for such mesoscale models is the continuum-mechanical theory of sharp interfaces, see e.g. Abeyaratne
and Knowles (1990, 2006). Depending on the chosen description of the sharp interface topology, mesoscopic
continuum models for martensitic transformation fall into two categories: sharp interface approaches that model
the interfaces as real discontinuity surfaces and regularized sharp interface approaches that make use of a smooth
approximation of the discontinuities. Examples for sharp interface approaches are adaptive meshing strategies as
employed by Merkle and Rohde (2006), the level-set method as desribed in Hou et al. (1999) and the extended
finite element/level-set approach as used by Ji et al. (2002). All these approaches generally face great difficulties to



describe complex microstructure. This inherent difficulty can be overcome by the use of regularized sharp interface
approaches which belong to the class of phasefield models. They are based on the approximation of the sharp
discontinuities between different phases by smooth transitions of suitable order parameters. Such regularizations of
the sharp interface theory are treated in a general continuum-thermodynamical context in Fried and Gurtin (1993)
and Fried and Grach (1997), where the sharp interface topology as well as the surface energy of the interface
are smeared out over a region proportional to a chosen regularization length scale. All such approaches go back
to the classical Ginzburg-Landau equation as described in Allen and Cahn (1979) or Gurtin (1996). A relation
between variational equilibrium phase field problems and the resulting variational sharp interface problems can be
established by the use 6fconvergence, see e.g. Modica (1987) and Alberti et al. (2005). For time-dependent
evolution problems, a similar relation can be established by an asymptotic analysis, see e.g. Fried and Gurtin
(1993) and Alber and Zhu (2008).

Extensive work on the phasefield modeling of martensitic transformations has been carried out in the past. E.g. Ras-
mussen et al. (2001) and Jacobs et al. (2003) use certain strain components as order parameters in a small strain
context. Levitas et al. (2010) and Artemev et al. (2002) also use a small strain setting but employ the volume frac-
tions of the different phases as order parameters. The main drawback of these approaches is the use of small strains
in the context of a phasefield description of martensitic transformations. This causes two basic problems: (i) small
strains are not suited to describe the relatively large rotations connected with the formation of twin interfaces and
(i) coherence-dependence can be properly modeled by the use of anisotropy only in the reference configuration in
a large strain setting. An example for a large strain phasefield model is Levitas et al. (2009). However, this work is
not a regularized sharp interface model in the meaning introduced here as it does not approximate sharp topologies
by enforcing phase separation but allows for regions of phase mixture away from the interface.

In this work, we outline a phasefield model for the analysis of the formation and time-dependent evolution of
martensitic laminate microstructure. We put a specific emphasis on the modeling of the regularized bulk energy,
where we compare two different modeling approaches: The external mixing as employed, e.g., by Fried and Grach
(1997) and an alternative internal mixing approach. We comment on advantages and drawbacks with respect to
energetic conciseness and driving force modeling. The proposed regularized sharp interface approach is then shown
to be capable of predicting the characteristic formation of twinned laminate microstructure in CuAINi as observed
experimentally, e.g., by Abeyaratne et al. (1996). Section 3 introduces the underlying sharp interface problem
for a two-variant martensitic material. Section 4 explains the geometrically motivated approach to the regularized
description of sharp topologies, allowing the statement of an analogous regularized problem in Section 5. Our
models for the interface energy and two possible bulk energy approaches are treated in Section 6 and the dissipative
evolution of the phasefield is considered in Section 7. The model is embedded in a suitable gradient-extended time-
discrete incremental variational formulation in Section 8 and spatially discretized in Section 9. Finally, numerical
results are presented in Section 10 that underline the importance of a coherence-dependent interface energy and
show the advantages of one of the bulk energy approaches when requiring energetic conciseness.

2 Basic Properties of Martensitic CUAINi

Shape memory alloys can consist of (at least) two different crystal structures: At high temperatures, they form the
high symmetry austenite, and at lower temperatures (or under appropriate loading) crystallographically equivalent
variants of the low symmetry martensite. Here, we consider the alloy CuAlINi that exhibits a cubic austenitic and
an orthorhombic martensitic phase. Specifically, we will treat mixtures of two of the six orthorhombic martensitic
variants of this shape memory alloy. These variants are characterized by the use of two Bain tensors that describe
the martensitic variants as deformations with respect to the cubic austenitic reference configuration
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with parametersr = 1.0619, 5 = 0.9178 and~y = 1.0231, see Ostsuka and Shimizu (1974). The stability of the
martenistic variants implies that the individual free energies of the variarit®) andy, (F') have minima al/;
andU ,, respectively, leading to the requirements

Y1 (RU,) < ¢1(F) VR € SO(3), VFe RY*® and ,(RU,) < ¢»(F) VYR € SO(3), VFe RV, (2)

WhereRiX?’ is the set of all second order tensors with positive determinant. Crystal symmetry relations further
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Figure 1: The martensitic transformation of CuAINi. a) The cubic austenite lattice (black) and b) one variant of
the orthorhombic martensite lattice (light grey). The medium grey cell is shown in both cases for comparison.

imply equal energy of the martenisitc variants
Y1 (RU,) = 2(RU,) VYR,R € SO(3). (3)

In certain situations, this can lead to a coexistence of the variants, which then usually form a twinned laminate
microstructure with coherent sharp interfaces. The two varibatgl2 can form such a kinematically compatible
low energy interface if

1Q,a,m, st QU;—-U;=a®m,, 4)

wherem,, is the reference normal of the resulting (sharp) twin boundary. In other words, out of all reference
interface normalsn, the normalm, is the one that allows the connection of the two bulk-energy-minimizing
deformation state&/; andU, by a coherent and hence low energy interface. Equation (4) is referred to as the
twinning equation and generally has two solutions, see Ball and James (1980); eaidU - as specified in (1),

the two solutions of (4) are
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see, e.g., Abeyaratne et al. (1996). In the following, when it is not essential to specify the particular solution being
used, we shall simply writ€), a andm,,.

3 Sharp Interface Boundary Value Problem

As a basis for our considerations, we briefly summarize the continuum mechanical description of sharp interfaces
as in twinned martensitic laminates. We consider a body with reference configuationtaining the material
points X € B. B consists of two subdomairt$; and B, occupied by variant and varian, respectively. The

two subdomains are separated by the sharp inteffagigh reference normain, such that3; UI' U By = 5 and

Figure 2:Sharp interface formulation of the phase transformation problem in terms of the deformatiop.map
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Figure 3: Sharp and regularized interface topologies. a) The sharp interface suffamparates into B; and
Bs. b) The regularized surfadg,(p) is a functional of the phasefieldand smears ouf over2i.

B1 N By = (. The deformation of the body is described by the deformation galpat maps referential points

X onto spatial pointgp(X) = « € S that form the current configuratia$i of the body and by the deformation
gradientF' = V. Furthermore, we assume that the body is subject to the referential bodyfenee that the
boundaryoB can be decomposed into a Dirichlet pafi,,, where the deformation is prescribedeas, and a von
Neumann pardB; = 0B \ 0B, where a traction is prescribed &g, see Figure 2. Assuming quasistatic loading
(such that the rate of phase transformation is much larger than the rate of loading) and isothermal conditions, we
can write down the resulting sharp interface boundary value problem for a given intEréace

Div(dp¢1) +¥=0 inB; (7)
Div(0py2) + =0 inB; (8)
OpY1-m—ty=0 ondB;NIBb; 9)
OFYs-nm—tny =0 0ndByNIB,y (20)
¢ —@p=0 ondB, (11)
[F]-s=0 onI',Vs L m (12)

where[-] is the jump across the interface and where we have assumed that the two variants are hyperelastic mate-
rials with constitutive relations for the first Piola-Kirchhoff stress of the fdPm = 01 and P, = dps that

require the constitutive prescription of the free energy density functio(B') andy, (F'). Note that alternatively,

one can also prescribe a single enefdy¥") with two wells corresponding to the mininfd; andU .

If we further assume that the body is capable of undergoing phase transformations betweei sadarsuch that
I" can change its position in the reference configuration whe(eX' ) denotes the referential interface propagation
velocity, then we also have to prescribe a kinetic relation of the form

V=V(fr), V=vr-m, (13)
wherefr is the sharp interface driving force defined in terms of the jump opefdtoy

fr=m-[1— (0p)" F]-m —2grkm, , (14)

wheregr is the constant interface energy density per unit areasanis the mean curvature of the interface. Note

that the quantity inside the jump brackets is the energy momentum tensor introduced by Eshelby (1956). For a
more general treatment of the driving force also for the non-isothermal case (but without interface energy), see,
e.g., Abeyaratne and Knowles (1990). Note that both the description of the time-dependent topdlagpveé!l

as the enforcement of the jump condition (12) can be very demanding in numerical simulations.

4 Smooth Phasefield Approximation of Sharp Interfaces

To circumvent the direct and often very complex description of the sharp intdrféoa separates the constituents
of the martensitic laminate, we approximate its topology by use of a smpbetbefieldh(X) € [0, 1], see Figure 3,
and thereby conceptually follow a recent work on regularized fracture, see Miehe et al. (2010). We agsediate
with variantl andp = 1 with variant2. Assuming we are given a plane sharp interface with nomadhat passes
through the origin, we can use the function

-m

p(X) = % [tanh (Xl) + 1} (15)
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Figure 4:Sharp and regularized interface modeling by use of an order pararpetgrA sharp interface ak = 0
leads to a jump ip(X). b) The interface can be regularized by introduction of a regularization length gécale

to smear out this sharp interface over the leritjftsee Figure 4. Note that functions of the type (15) are solutions
of the elliptic partial differential equation

PAp—4p(1—p)(1—2p) =0, (16)

under appropriate boundary conditions. We can further state a related variational principle as the weak form of
(16), namely

p(X) = afg{piengv Fz(p)} ; (17)

where the interface surface functioialp) is defined in terms of the interface surface density, Vp) by

. 6 31
Pz(p)=/8w(p, Vp)dV  with ’n(p,Vp)=7p2(1—p)2+5\Vp\2. (18)

Again, solutions of the type (15) will be the solutions of (17) under appropriate boundary conditions. The func-
tionalT;(p) as defined in (18) has the very nice property that it approximates the interface surfagerdé(€ain
the limit ofl — 0, i.e.

inf { lim Fl(p)} = Surf(T), (19)

peW | -0

see, e.g., Alberti et al. (2005) for a related consideration empldyingnvergence.

5 Smooth Interface Boundary Value Problem

Having introduced the order paramegewe can restate the sharp interface boundary value problem. Assuming we
are given a sufficiently smooth functigi X ) that approximates the given sharp interféicas outlined in Section
4, we can write

Div(dpy) +v=0 inB, (20)
8F1/J-n—t]\[:0 onaBt, (21)
p—9p=0 onoB,, (22)

where we have again assumed a hyperelastic material with a constitutive relation of th& ferndg1 that
requires the constitutive prescription of an enetdy’, p, Vp) accounting both for bulk and interface effects that
recoversP, = 91 for p = 0 and Py, = O for p = 1.

P -n=ty Vp-n=0

Figure 5:Regularized interface formulation of the problem in terms of the deformationgreaqul the phasefield.



If we further assume that the body is capable of undergoing phase transformations betweenivaridfitshen
we also have to prescribe a suitable evolution equatiop,feading to the initial boundary value problem

p—p(f)=0 inB, (23)
p(t=0)—po=0 inB, (24)
Ovpp -m=0 ondB\JB,, (25)
p—pp=0 o0nob,, (26)

where,, is the phasefield Dirichlet boundary and wheres the smooth interface driving force usually defined
asf = —0y(F,p, Vp), see section 7. Note that the introduction of the phasefidlds simplified the structure

of the problem by removing the discontinuities at the cost of an additional field for the approximate description of
the sharp topologies.

6 Energy Storage

The energy storage in martensitic laminates consists of two basic contributiter$ace energwndbulk energy

The concise separation of these quantities is essential, e.g., for the prediction of size effects, where the two contri-
butions compete. Inspired by, e.g., Fried and Grach (1997), we consequently model the stored energy functional
¥ as a sum of the interface energy functiofigl and the bulk energy functiondl. Specifically, we write

U(p) = ¥r(p) + ¥5(e,p), (27)

where the individual energy functionals are defined by

W) = [ ELTDAV. Volen) = [ esEpV. vi)= [TV, @)
Localization leads to an additive split of the energy density functions

Y(F,p,Vp) =Ys(F,p) +¢r(p, Vp). (29)

In the following, we will specify an interface energy density and propose two conceptually different approaches to
the modeling of the mixed bulk energy.

6.1 Interface Energy

Starting from (18) and (19), the construction otaherence-independeiiterface energy is straight forward.
Introducing the interface energy density per unit ajga const., we can immediately write

Ur(p) = gr Surt(T) ~ gr Ty(p) & /B r(p, Vp) dV = /B g0 (p, Vp) dV . (30)

From (30) we can identify theoherence-independeimterface energy density as

6 3l
¥r(p, Vp) = gr n(p, Vp) = gr {lp2(1 -p)?+ 2|V19|2} : (31)
As the interface energy in martensitic laminates is higtdherence-dependerite. as the interface energy is
much lower for coherent than for incoherent interfaces, see Murr (1975) and Porter and Easterling (1992), we
now modify (31) suitably in order to energetically punish incoherent interfaces. Conceptually following Fried and
Grach (1997), we suggestaherence-dependeinterface energy density of the form

Yr(p, Vp) = gr {? p’(1—p)*+ %l Vp[l+X(1—m, ®m,)] Vp} , (32)

where forA > 0, deviations of the interface normat = Vp/|Vp| from the coherent normah, defined in (4)
are energetically punished, and whéreis the interface energy density per unit area of a coherent interface.



6.2 Pure Phase Bulk Energies

As a starting point for the two presented approaches to the constitutive modeling of the regularized mixed bulk
energy densityg(F,p), we first specify the bulk energy densities of the pure variantgF') andv.(F') as
introduced in Section 4. A simple approach that satisfies the constraints (2) and (3) is to use an isotropic (poly-
convex) free energy density function with a single wellFfat= 1 and to shift its minimum taRU; and RU 5,

R, R € SO(3), respectively. Here, we make use of the Neo-Hookean free energy function

U(F) = %[tr(FTF) -3+ g[det(F)B —1], (33)

whereji andﬁ are material parameters. Shifting of the wells leads to the two bulk energy densities
U1 (F) = p(FUT'RT) and ¢»(F) =(FU;'R'), R,Re SO(3). (34)

Note that the shifts of the isotropic functiar( F') by RU, and RU, induce an anisotropy i, (F) and s (F)
that is consistent with the crystal symmetry of the variants. Because of our associatien(oivith variant1 and
of p = 1 with variant2, we now have to ensure thag(F, p) fulfills the requirements

vp(F,p=0)=v¢1(F) = ¢p(F,p=0)=4%FU;'R"), ReSO(),
Us(F.p=1)=us(F) = us(F.p=1)=4¢(FU;'R'), ReS0E) (35)

We will now consider two possible formulations that satisfy (35), and consider their further implications.

6.3 Externally Mixed Bulk Energy

One possible approach to the constitutive modeling of the regularized mixed bulk energy density is to mix the two
free energieg (F') andy. (F') externally leading to

V5(F,p) = (1 = h(p)) Y1 (F) + h(p) ¥2(F), (36)
whereh(p) is a ramping function with the propertié$p = 0) = 0 andh(p = 1) = 1 (and possibly’(p = 0) =

R (p=1) =0), see, e.g., Fried and Grach (1997). With the simple and intuitive choieedf= p we obtain the
regularizecexternally mixedulk energy densityg (F', p) as

Vg(F,p) = (1= p) V1(F) +p p2(F). (37)
We can also express this in terms of the Neo-Hookean free energy fugction
YE(F.p) = (1 —p) $(FUTY) +p $(FU, ™). (38)

Note thatyz (F',p) can become negative, even thou@@“) is strictly positive. Insertion gb = 0 andp = 1 into
(38) immediately yields (35) wittR = R = 1.

6.4 Internally Mixed Bulk Energy

Another approach to the constitutive modeling of the regularized mixed bulk energy density is to mix the two free
energy densitieg (F') ands (F') internally, i.e. to write the mixed free energy density as

Us(F.p) =) (FU " (p) (39)
and to parametriz& (p) in such a manner that
Ulp=0)=RU, and U(p=1)=RU, with R,Re SO(3). (40)
Even though the straight forward choicel@fp) would be

Ulp)=1-p) U, +pUs,, (41)



we choose a parametrization along the rank-one connection betigandU ,, leading to
Up)=(1-p) QUi +pU;=QUi—pa®@m,, (42)
whereQ, a andm, are solutions of the twinning equation (3). The choice (42) is motivated by the fact that inter-

faces connectind/; andU; constitute rank-one connections. With (42), we can write the regulaiitechally
mixedbulk energy density% (F', p) in terms of the Neo-Hookean free energy densitgs

Up(F,p) =0(F[(1—p) QU +pUs| ") =d(F QU —pa®@m,| ). (43)

Note thaty; (F, p) cannot become negative éz:éF) is strictly positive. Insertion op = 0 andp = 1 into (43)
yields (35) withR =Q andR =1.

7 Dissipative Phasefield Evolution

Having specified the interface and bulk contributions to the energy defgKyp, Vp), we can now move on to
prescribe the evolution of our internal variapleThis evolution is subject to a thermodynamic constraint, namely
the dissipation inequality.

7.1 Dissipation Inequality

Sincey(F, p, Vp) contains the gradierfp, we start by evaluating the global dissipation inequality

D:/édV:/{P:F—q/}(F,p,Vp)}dVEO. (44)
B B
and (obtaining the relatio® = 0r1) reduce it to the local statement

0=— p"/) p=- [8171/) — Div (anl/))] p=>0, (45)

whered, 7 is the variational or functional derivative gfwith respect tgp. Often, one introduces the driving force
f and rewrites the dissipation inequality (45) as

S=fp>0 with f=—3,. (46)

Equation (46) is the thermodynamic constraint on the evolution equatigndieen byp(f).

7.2 Resulting Driving Forces

The additive decomposition of the energy densitinto an interfacial part)r and a bulk pari)z also allows an
additive decomposition of the driving forgleas defined in (46)

=+, fr=—0Yr, [8=—05. (47)
With the definition (32) ofyr, the interfacial parifr of the driving force follows as
fr(p, Vp) = dr [31 Div([14+A (1~ m, @m,)]Vp) — 2 p (1 - p)(1 - 2p)] : (48)
For coherent interfaces with interface normwls/|Vp| = m,, equation (48) simplifies to
_ 3r

fr (p, Vp = IVplmo) = {12 Ap—4p (1—-p)(1— 219)} : (49)

Finally, from comparison of (49) with (16) we see thjatas derived in (48) vanishes fpf X) of the form (15)
with coherent interface normah = m,, i.e.

p(X) = % {tanh <X 'lm") + 1} = fr(p,Vp) =0. (50)

10



We can hence interprégt- as a driving force counteracting any deviations from the hyperbolic tangent shape and
the coherent directiom,. Furthermore, the Laplaciatyp in fr is related to the curvature part specified in (14).

Having analyzed the interface energy driving foifge we now turn to the evaluation and interpretation of the bulk
energy driving forcefz. Obviously, fz depends on the choice of the bulk energy densgjy for which we have
specified the two alternative definitiogi§ andy%. The bulk energy driving forcgg resulting from theexternally
mixed bulk energy density; as given in (38) is

f6(F.p) = — ,05(F,p) = (FUZ") — Y (FUT") = 9o(F) — 1 (F) = [¥]. (51)

We thus observe thatxternal mixingof the energies leads to a driving force proportional toghergy jumg.e.
the energy part of the energy momentum tensor, see (14). The bulk energy drivingf foresulting from the
internally mixed bulk energy density; as defined in (39) is given by

f5(F,p) = — 6,0(F.p) = -0 (FU " (p)) : 8,(U(p)) - (52)
With the definition (42) o (p), equation (52) can be simplified to

f5(F,p) = m,(PTF)U 'a. (53)
From (53) we observe thatternal mixingof the energies leads to a driving force that is connected to the momen-
tum partP” F of the energy momentum tensor, see (14). Note that in contrast to (14)Pbatid F' undergo a
smooth transition in the interface region and are hence dependent on

7.3 Evolution Equation and Dissipation Potential

To complete our phasefield modeling of martensitic laminate microstructure, we now have to prescribe an evolution
equationp( f) that satisfies the thermodynamic constraint (46). The simplest possibility to do so is to prescribe a
linear relation betweepandf, i.e.

b=ty = s=pr=Lrxo0, (54)
n n

wheren > 0 is a viscosity parameter. This simple viscous evolution equation is a generalized Ginzburg-Landau
equation of the form

p=—0p¥, (55)

see e.g. Gurtin (1996). An alternative way of specifying the evolution equatiprisato introduce a dissipation
potentialg(p) and to demand

Wo=f = 0o=pf=0y0p=>0. (56)
It is easily seen from (56) that evolution equations of this kind are generally thermodynamically compatible if
o(p) is (i) convex inp, (ii) zero at the origin and (iii) always non-negative. This includes also functions with non-

differentiable points, for which the definitiaiy ¢ has to be generalized to subgradients and for which the evolution
equation is rewritten as

ap(ﬁ—f€0 = (5p¢+5p1/}€0. (57)
The Ginzburg-Landau evolution equation (54) can be easily expressed in the form of (57) by choosing
o(h) = 51° (58)

Note that even though (54) and (57) together with (58) specify a linear relation bepnaghf, this does not
induce a linear relation between the normal velo&itpf a moving phase boundary and the driving fofce

8 Incremental Variational Framework

To express the proposed phasefield model in a variational framework, we employ a gradient-extended incremental
variational formulation, as outlined in Miehe (2010). To this end we introduce a time-discrete potential functional
II™ given by

I (. p; 9 ) = /B " (Fop, Vo) — - (¢ — )] dV — /8 (o =) dA, (59)

11



where we callr™ theincremental internal work densityhich we define by

7" (F,p,Vp; Fn,pn, Vpn) = ¥(F,p) + 1 (p, V) — Y(Frypn, Vou) + 76([p — pa] /7),  (60)

wherer = t,,41 — t,, is the finite step size and where all quantities without the subsgri@note quantities at
tn+1- @ andp att, 1, are then determined by the incremental minimization principle

{p,p} = arg{ inf 11" (e, p; <pn>pn)} , (61)
@, pEW
where)V is the set of admissible solutions

W= {{e,p}|e=¢pondB, andp=ppondB, }. (62)

With the choice (58) for the dissipation potentialthe time-discrete Euler equations of (61) follow as

Div(dp®) +v=0 inB, (63)

O -n =ty ondby, (64)

n(p — pn) + [apdj - Div(andj)] =0 inB, (65)
dvy) - m=0 ondB\dBb,. (66)

We identify equation (63) as the balance of linear momentunpfepecified in (20), equation (64) as the Neumann
traction boundary condition fap specified in (21), equation (65) as the time-discrete implicit algorithmic version
of the evolution equation qf specified in (23) and equation (66) as the Neumann (zero) boundary conditien for
as specified in (25). Furthermore, we see that (62) ensures the Dirichlet conditions (22) and (26).

9 Finite Element Discretization

To numerically solve the smooth boundary value problem specified in Section 5, we spatially discretize the time-
discrete weak form (59) by use of the finite element method. Here, we restrict ourselves to dBngaidé = 2

and consequently alsp € R¢ = 2. We approximate the domais by the union ofE” finite elements3” with

N global nodes, wherk denotes the typical mesh size

Eh
B~ | B! (67)
e=1

On an individual finite elemenrtwith n¢ nodes, we approximate the deformatiprand the phasefielg by use of
the shape functiond’¢ (X)) as

h _ - NIe 0 0 e __ e ge
® (X) - |: 0 N]e 0 d] _N‘pd ’ (68)
I=1
pPH(X)=> [0 0 Nf]dj=N;d, (69)

whered] = [¢1, <p2,p]T is the vector containing thé + 1 degrees of freedom at noden elemente andd® =

T
{di T ...,dflf} contains the collection of alk®(d + 1) degrees of freedoms of th& nodes of element.
Similarly, the deformation gradiet# is approximated by

80;1;1 ne Nle,l 0 0
h _ h _ | P22 | _ 0 Nle,z 0 e _ pe ge
FU'(X) = Veh(X) = | Di? | = ; N, 0 o |di=Bod (70)
54 0 Nj; 0
and the approximation of the phasefield gradiéptfollows as
v h(X) — pfll — i 00 Nle,l d¢ = Bed* (71)
v | T lo o g, [T
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Finally, we relate theZ" element vectord® to the vectord containing theV"(d + 1) global degrees of freedom
by use of the finite element topology matui%¢

d° = A°d. (72)

We can now expresg, p, F' andVp in terms ofd and hence rewrite the time-discrete poterifla(p, p; ¢,,, Pr)
in a time-space discrete form B¢ (d; d,,). This allows us to restate the time-discrete variational principle (61) in
time-space-discrete form, i.e.

d=arg {igf " (d; dn)} , (73)

whered,, is the solution at time stefy,. Equation (73) can be solved by use of a Newton-Raphson type iteration
leading to the update equation
d<=d- [H,hdd]_l[nfld] . (74)

Here we use bilinear quadrilateral finite elements for the discretization of both deformasiod phasefielg.

10 Numerical Results

In this Section, we demonstrate the capability of our phasefield model to predict the formation of martensitic

laminate microstructure in two dimensions by means of finite element simulations. Specifically, we analyze the
influence of the incoherence-dependence and the choice of the bulk energy on the formation of microstructure.
Finally, we investigate the energetics of laminates with increasing fineness.

10.1 Boundary Value Problem

All subsequent simulations are based on the following boundary value problem: Given is & loodgisting of
the two orthorhombic martensitic variantsand2 of CuAINi. The Bain tensors of the two variants are given by
U, andU,, see (1). Recalling equation (2) we know tltat andU, can form kinematically compatible twin
interfaces, i.e. there exi€), a andm,, such that

QUl—U2:a®mo. (75)
The boundary of the bod§5 is now deformed by
p(X)=F¢:X on 0B, F:=(1-¢QU,+¢U,, £€][0,1], (76)

i.e. by a deformation gradient lying on the rank-one connection betédén andU ». Chipot and Kinderlehrer

(1988) have shown that under the assumption that coherent interfaces have no interface energy, the described
boundary value problem is solved by an infinitely fine laminate of variargtsd 2 with twin boundary normals

m,, satisfying (2) and with volume fractioris— £ and¢, respectively, see Figure 6.

To solve a boundary value problem of the presented kind for a material with coherence-dependent interface energy,
we specify the domain
B={X|Xe[0,L]x[0,H]}, (77)

whereL = 1.0 x 10~"m andH = 5.0 x 10~3m and apply the boundary conditions specified in (76) ith 1/2.
We discretize this domain bB00 x 200 bilinear quadrilateral elements, leading to a mesh size~f2.5x 10~ 1°m.

[ a-om\
(e
oB W B

Figure 6:A boundary value problem of the type considered by Chipot and Kinderlehrer (1988): The boa#tary
of a domainB is deformed byp(X) = F:X whereF lies on the rank-one connection betwe@i/, andU .

In the absence of interface energy, analytical solutions are given by infinitely fine lamin&pds.,0dnd U, with
volume fractiong and (1 — ¢) and laminate thickness! .
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Figure 7: Evolution of an initially random phasefield distributigiiz) in @ domain under boundary conditions

(76) for acoherence-independerinterface energy densityr (A = 0). a) — d) show snapshots of the evolution

for an externally mixedbulk energy density, whereas e) — h) illustrate the evolution for timternally mixed
bulk energy density.

10.2 Material Parameters

bulk shear modulus g = 7.0x10° N/m?
bulk exponent B = 20

coherent interface energy densitygr = 21.0 mJ/n?
interface incoherence sensitivity A = 0.0 / 1.0 x 102
viscosity n = 1.0x1075Nms
regularization length I = 75x107%m

Table 1:Material Parameters for Martensitic CUAINI

Table 1 summarizes the material parameters used in the simula&imﬁ are chosen to lie in a realistic range

for copper. Note in this context that the effective stiffness at the martensitic wells is modified by the shift with
U;' andU;* . For the coherent twin interface energy dengitywe use the value given in Murr (1975) for the
interface surface energy density of a coherent twin interface in copper, see also Porter and Easterling (1992). The
associated incoherence penalty paramgter 100.0 is not based on any experimental data. Its influence on the
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Figure 8: Evolution of an initially random phasefield distributigiiz) in @ domain under boundary conditions
(76) for acoherence-dependetmterface energy densityr (A = 100.0). a) — d) show snapshots of the evolution
for an externally mixedbulk energy density, whereas e) — h) illustrate the evolution for timternally mixed
bulk energy density.

shape of needles etc. will have to be further investigated. The value of the viscosity is chosen such that it guarantees
convergence for the employed time step size and has no physical interpretation. Finally, the regularizatién length

is chosen to be both on a physically realistically small length scale and with, also large enough to guarantee

a sufficiently small discretization of the gradients in the interface region. For all simulations, weusem as

specified in (5).

10.3 Influence of Incoherence Penalty

In our first set of numerical experiments, we investigate both the influence of the incoherence penalty parameter
A as introduced in (32) as well as the influence of the choice of the bulk energy dénsiiy the formation

of microstructure. To this end, we carry out four simulations with identical random initial conditigXist =

0) € [0,1]: Two simulations without coherence-dependence, he= 0.0: (i) with the externally mixed bulk

energy density)s = 5 , see Figure 7a—d and (ii) with the internally mixed bulk energy density= %, see

Figure 7e—h. Furthermore, we carry out two simulations with coherence-dependenke; i1€0.0: (iii) with the
externally mixed bulk energy densitysz = 13, see Figure 8a—d and (iv) with the internally mixed bulk energy
densityys = 1%, see Figure 8e—h. All simulations are carried out with a time steptof 0.001s.
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Figure 9: Dependence of theoherence-dependeimterface energy?r (A = 100.0), theexternally mixedbulk
energy¥% and the total energy = U + ¥4 of a body under boundary conditions (76) on the number of layers
of martensitic twingV. Note that¥'g - 0 for N — oo in disagreement with Chipot and Kinderlehrer (1988).
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Figure 10: Dependence of theoherence-dependeimterface energyr (A = 100.0), theinternally mixedbulk
energyV; and the total energy = ¥r + U of a body under boundary conditions (76) on the number of layers
of martensitic twinsV. Note that¥y; — 0 for N — oo as shown by Chipot and Kinderlehrer (1988).

As can be seen by comparing the columns of Figures 7 as well as 8, the choice of the bulk energy/gensity
has no drastic influence on the resulting microstructure. The most obvious difference is the slower evolution for
Y = 1} that possibly stems from the different definition of the driving force. It should be noted that in contrast
to the external mixing, for the choiegs = v, the phasefielgh does not take on values outside the admissible
rangel0, 1].

In contrast to the choice of the bulk energy, a comparison of Figures 7 and 8 shows that the value of the incoherence
penalty parametek has a drastic influence on the resulting microstructure. A valug ef 0.0 leads to the
formation of initial microstructure that resembles the microstructure in diffusive transformations more than that of
martensitic phase changes, see Figure 7. Towards the end of the simulation with0, the interfaces start to

orient themselves towards the two solutiang andm? of the twinning equation as given in 5 but do not form the
characteristic laminate microstructure. On the other hand, an incoherence penalty valael66.0 leads to the

initial formation of the typical needle shaped domains of the different variants that then traverse the body to form
characteristic martensitic laminates with coherent interfaces, see Figure 8.

In summary, we see from the simulations that the use of a coherence-dependent interface energy is required to

suitably predict the formation of martensitic laminate microstructure. The choice of the bulk energy influences the
rate of evolution but seems to have no effect on the form of the resulting microstructure.
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Figure 11:Comparison of phasefield and energy density distributiongkeernally mixed(a)—c)) bulk energy

¥ andinternally mixed (d)-f)) bulk energy);. a) and d) show the phasefield distributionse) of an equi-
librated initial configuration with six layers. b) and e) show the distributions of the interface energy density
1r(2)/1000N/m and c) and f) show the distributions of the interface energy degigity:) /1000N /m.

10.4 Energetics of Laminate Length Scales

As observed in the first set of experiments, the choice of the bulk engsdyad almost no effect on the resulting
microstructure. We now want to investigate the effect of the choice of the bulk energy on the energetic modeling of
the two approaches. To do so, we carry out an additional series of simulations. The idea is to identify the specific
laminate length scale that minimizes the total enebggf the laminate for the given sample size, and to better
understand the competition between interface en@rggand bulk energy 5 for differently fine laminates. To this

end, we prescribe smooth representations of laminatesWith0, ..., 12 laminate pairs of thicknesk/ = L/N

each as initial conditions. We compute the evolutiorpafith a time step ofA¢ = 0.01s until equilibrium is
reached, and then calculate the total endrgs well as the interface ener@y- and the bulk energy z. We carry

out this simulation both fops = 1§ andys = k. Figure 9 shows the resulting plot for the choice/gf = ¢§.

As expected¥'r linearly increases with an increasing number of interfacesVirexx N. The bulk energy); first
decreases, but then increases again. Note that hence the bulk ¢getgy g does not vanish for an infinitely fine
laminateN — oo. This is not in agreement with the analytical results of Chipot and Kinderlehrer (1988). Figure
10 shows the resulting plots @(N),¥r(N) and¥z(N) for the choice)s = 1j. Again, Ur linearly increases

with an increasing number of interfaces, iNer o« N as expected. Furthermore, in contrast to the external mixing,
the choice ofys = 1} leads to a proportionality of 5 o 1/N such that); — 0 for N — oco. This is now in
agreement with the analytical results of Chipot and Kinderlehrer (1988).

The reason for the inconsistent energetics of the chojce- ¢ can be understood by looking at the equilibrium
distributions of bulk and interface energy density for the two approaches. Figure 11 compares the distributions
of ¢r(x) andyp(x). Obviously, the externally mixed bulk energy densitg leads to artefact bulk energy
contributions in the interface region. This is due to the fact thfais only zero forF = RU, andF = RU,

for R € SO(3) and hence does not allow any bulk energy free deformation states connecting the two Biinima
andU ,. However, a bulk energy free connection of the minima is necessary to prevent bulk energy contributions
in the interface region. Such a connection is facilitated by the internally mixed bulk energy dgfsitsit allows

bulk energy free deformation states on the rank one connection betWeandU , parametrized by (42).
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In summary, we see from the simulations that even though both choices of bulk energy lead to qualitatively similar
microstructures, only the the choi¢g = v} allows an energetically concise modeling of two-variant martensitic
shape memory alloys. This energetically concise modeling is the prerequisite for the prediction e.g. of size effects.
Altogether, we thus see that a proper phasefield modeling of martensitic laminate microstructure is only possible
if a coherence-dependent interface energy is used together with an internally mixed bulk energy.

11 Conclusion

In this work, we have presented a large strain phasefield model for two-variant martensitic laminate microstruc-
ture. Our model accounts for the coherence-dependence of the surface energy of twin interfaces and employs an
evolution of generalized Ginzburg-Landau type. We have considered two different approaches to the modeling
of bulk energy: external and internal mixing. Our considerations and simulations show that both driving forces
are connected to the energy momentum tensor: the driving force resulting from external mixing is linked to the
energy part and the driving force resulting from internal mixing is linked to the momentum part. Together with
the coherence-dependent interface energy, both bulk energy approaches are capable of predicting the formation of
martensitic laminate microstructure. However, further investigations show that in contrast to the internal mixing
approach, the external mixing approach is energetically not fully concise and does not allow for the reproduction of
analytical results related to the vanishing of bulk energy for infinitely fine laminates. This inconsistency is caused
by the fact that the external mixing causes bulk energy contributions in the interface region.
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