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An Analysis of the Exponential Electric Displacement Saturation Model
in Fracturing Piezoelectric Ceramics

C. Linder

This paper presents a numerical analysis of a recently proposed exponential electric displacement saturation model
to simulate crack initiation and crack propagation in piezoelectric ceramics. The motivation for the account of
electric displacement saturation on a constitutive level can be found in the observed difference between theoretical
predictions and the actual experimental obtained dependency of crack propagation onset on the applied electric
field. Contrary to earlier accounts of electric displacement saturation, the exponential saturation of the electric
displacement versus electric field relation allows for applications in problems like propagating cracks in fracturing
piezoelectric ceramics where no analytical solutions exist. This requires the incorporation of strong discontinu-
ities in the form of jumps in the displacement field and the electric potential for the electromechanical coupled
solid within the individual finite elements. Based on two numerical examples for which experimental results are
available the extension of such an advanced finite element framework to take into account electric displacement
saturation is shown in this work to be independent of the finite element discretization and results in numerical
solutions close to the experimentally observed results.

1 Introduction

Two major challenges arise when numerically modeling piezoelectric ceramics at failure. First, the electrome-
chanical coupled material requires a sophisticated constitutive model to describe realistically appearing physical
phenomena like anisotropy, the direct and converse piezoelectric effect or the observed polarization switching for
alternating applied electric fields. Secondly, the numerical description of failure, which already poses a challenge
in purely mechanical materials and gains complexity for electromechanical coupled materials, requires advanced
computational frameworks to describe the appearing physical phenomena like cracks for which criteria of initiation
and propagation are needed in an efficient way. The particular material modeled in this work is an already poled
lead zirconate titanate PZT-4 piezoelectric ceramics operated in a regime where polarization switching is assumed
to not play a role. Due to its high brittleness characterized by a fracture toughness in thé bféker,/m (Suo

et al., 1992) such material is though prone to fracture and therefore an ideal candidate to investigate the effect of
electric displacement saturation.

This saturation of the electric displacement for large electric fields can be motivated by physical arguments for
piezoelectric ceramics showing a reduction of the ionic movement in such materials at high applied electric fields
(Jona and Shirane, 1993) and in that way poses a limitation on the amount of the polarization and hence the
electric displacement. Since in electromechanical coupled materials defects in the form of inhomogeneities, voids
or cracks not only are causing a drastic amplification of stresses but also result in a drastic increase of the electric
guantities, those regions are identified as possible areas where electric displacement saturation might play a key
role. In particular, it led to the development o$tip saturation modeih Gao et al. (1997) with the goal to explain

the discrepancies between the experimentally observed results and the theoretical predicted influence of the electric
field on the initiation of crack growth in an infinite domain including a pre-existing notch. Whereas the energy
release rate, a key fracture quantity whose value is a measure of potential crack initiation which can be theoretically
computed through complex variable approaches extended from mechanical problems (Lekhnitskii, 1950; Eshelby
et al., 1953; Stroh, 1958) to the linear piezoelectric regime (Parton, 1976; Pak, 1990; Suo et al., 1992), predicts
an even dependency of the crack initiation on the applied electric field (i.e. regardless of the orientation of the
applied electric field with respect to the polarization direction the initiation of cracks perpendicular to the poling
direction is always inhibited), experiments report an odd dependency (Tobin and Pak, 1993; Park and Sun, 1995b;
Wang and Singh, 1997; Fu and Zhang, 2000). To avoid this discrepancy, in Park and Sun (198aintkeeergy

release ratds suggested as a possible fracture criterion which led to theoretical predictions close to experimental
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results but also raised criticism due to its lack of physical foundation (Gao et al., 1997; Fulton and Gao, 2001;
McMeeking, 2001). Another approach is suggested in Gao et al. (1997) based on the introduction td@hew
energy release rate/hich arises when computing a path integral which crosses the introduced saturation zone in
front of the crack tip oriented normal to the poling direction and limits the electric displacement to not surpass
a certain saturation value. Their approach follows the one of Dugdale (1960) for the incorporation of plasticity
into material models of metals and relies on the superposition of a complex function onto the singular solution of
a crack in an infinite linear piezoelectric material and therefore is limited to problems for which such analytical
solutions exist. For those though, the approach nicely agrees with the tendency observed in experiments.

The deficiency of being restricted to problems for which analytical solutions exist is avoided in a recently pro-
posed simplified account of electric saturation of exponential type in Linder and Miehe (2012). In that work, firstly
the effect of displacement saturation is analyzed for unpoled ferroelectric ceramics when no cracks are present
by its incorporation into a rate-dependent ferroelectric model proposed in Miehe and Rosato (2011) resulting in
a modification of the dielectric hysteresis curves in the region of high electric fields. Secondly, the exponential
electric displacement saturation model is also incorporated into an advanced finite element formulation capable of
describing strong discontinuities, i.e. jumps in the displacement field and the electric potential, in the interior of
the individual finite elements. This allowed for the simulation of two realistic problems in the form of a compact
tension test and an off-centered three point bending test of a PZT-4 piezoelectric ceramic material loaded mechan-
ically and electrically so that a crack starts to propagate from a pre-existing notch through the overall specimen.
Comparisons of the fracture initiation load and the crack paths with the experimentally observed results in Park
and Sun (1995b) revealed an excellent agreement. In particular, the curved crack path observed in experiments
for the three point bending test is closely matched contrary to the almost straight crack path predicted in an earlier
work (Linder et al., 2011a).

The numerical framework which allows for the numerical modeling of strong discontinuities also employed in this
work goes back to the work of Simo et al. (1993). Extensions to two dimensions (Simo and Oliver, 1994; Armero
and Garikipati, 1995) and three dimensions (Wells, 2001; Mosler and Meschke, 2003) or to the finite deformation
regime (Armero and Garikipati, 1996) within the purely mechanical framework have been made over the years.
Following an approach of identifying certain separation modes of the fracture process and incorporating those
directly into the finite element formulation (Linder and Armero, 2007, 2009; Armero and Linder, 2008, 2009) an
extension to model fracture also in electromechanical coupled solids is proposed in Linder et al. (2011a). Use
of a decomposition of the overall problem into a global problem representing the standard electromechanically
coupled boundary value problem and a local problem through which the strong discontinuities are incorporated is
made. Introduced additional unknowns to describe the amount of displacement separation or the amount of jump
in the electric potential can be statically condensed out on the element level resulting in an extremely efficient
finite element formulation. This possible static condensation sets this framework apart from nodally enriched
approaches (Meés et al., 1999) where the overall size of the system increases with an increase of the crack length.
Both methods have in common that in addition to the material model in the bulk additional constitutive relations
along the strong discontinuities are needed. Due to the brittleness of the material under investigation, in this work
the crack boundary conditions are chosen as mechanically fully softened and electrically impermeable. It is noted
though, that in particular the latter assumption is heatedly discussed in the literature (Parton, 1976; Deeg, 1980;
Hao and Shen, 1994; Landis, 2004).

The scope of this work is to numerically show that the incorporation of the simplified exponential electric saturation
model into the advanced finite element framework capable of describing strong discontinuities in the displacement
field and the electric potential yields a formulation which is independent of the finite element discretization. It

is shown that the fitted value of an introduced parameter of the saturation model characteristic for the saturation
shape is independent of the mesh size, as are the values for the crack initiation onset and the predicted crack
paths. Section 2 illustrates the account of electric displacement saturation of exponential type into a standard
invariant formulation of anisotropic linear piezoelectricity. The numerical finite element framework with embedded
strong discontinuities is briefly reviewed in Section 3 where the required modifications to account for electric
displacement saturation are pointed out. Two numerical simulations in the form of the compact tension test and the
off-centered three point bending test are performed in Section 4 and compared with the experimentally obtained
results in Park and Sun (1995b). The discretization independence of the obtained results is demonstrated based
on the comparison of the numerical results for different finite element discretizations. Finally, in Section 5 a few
concluding remarks related to this work are given.
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2 Account of Electric Displacement Saturation in Piezoelectric Ceramics

A piezoelectric solid inl < ngim < 3 dimensions is characterized by the mechanical displacementfiafd the
electric potentialp. From those primary unknowns the symmetric infinitesimal strain tenaad the electric field
e follow as 1
5[gradu + (gradu)’] and e = —grady (1)
where grad) is the standard gradient operator of a quantitywith respect to the coordinate of a material
point. The second law of thermodynamics yields the symmetric stress iermut the electric displacement field
d based on the electric enthalpy functipras

e = (gradu)® =

o=0.0(,e) and d=—0d.1)(e,e). 2)

Together with the density of free charge carrigfsand the external volumetric loading, the governing field
equations within the body for the infinitesimal theory and the quasi-static case are given as

dive+pb=0 and divd = p°. 3)

After separating the overall boundary of the solid i@ = 0,2U 0,Q2 and 9 = 0,0 U 9,52, where the
displacement and the electric potential are prescribed asu andy = ¢ on 9,2 and 9,2, respectively, and
the traction and the surface charge density are imposethas t andd - n = —g on 9;Q2 and, {2, respectively,
standard arguments yield the weak equations corresponding to the field equations (3) as

/pb-5udV—|—/ i-dudA—/m(graszu)SdV =0 and /p‘" dpdV + / q‘5<pdA+/d-(gradégp)dV =0
Q 0Q Q Q 942 Q
(4)

for all admissible variationsu anddy with u = 0 on 9,2 anddyp = 0 on 9,2, respectively.

To account for electric displacement saturation, the invariant formulation proposed d8chnd Gross (2004)

to model the response of piezoelectric ceramics with a macroscopic polarization whose directoiip|, where

p is the polarization vector, remains constant when operated within a limited linear regime is modified in Linder
and Miehe (2012) through an exponential saturation of the relation between the electric displacement field and
the electric field as illustrated in the left part of Figure 1. The electric enthalpy function of the resulting linear
piezoelectric model is given as

O =y (11, Iy, I3, Iy) + o (Is, Is) + O3(I1, Is, I5, Is, I7) (5)

in terms of the purely mechanical contributign and the electromechanical coupled pastgiven as
. 1 .
P = §A112 +ply + oIy + agls + a3z I3 and i3 = G111 + Bolzls + B3y (6)

as well as the purely electrical contributid@ responsible for the electric displacement saturation and given as

o = (7115 +7213) - exp(—|I6| /€). (7

The used invariants are definedias=e - 1,I, =¢?-1,Is5=¢-a®a, ], =€*> - a®a,ls=e-e,Is=€e-a

andl; = ¢ - a ® e in terms of the second-order identity tensoand the polarization directar. The employed
material parameters ave u, a1, as andag for the elastic constantg;, 5, andgs for the piezoelectric constants
and~; and~, for the dielectric constants. In addition, the saturation expafienintroduced in (7) to describe the
shape of the electric saturation. Note that> oo recovers the case when electric displacement saturation is not
accounted for. Insertion of the expression (5) for the electric enthalpy into (2) results in closed form solutions of
the stresses and the electric displacement field as

o = ()\Il + 05313 + 6116)1 + 2/.16 + 20(1(8(1 ® a)s + (2042[3 + 04311 + 52[6)(0, ® a) + ﬁ?,(e ® a)S

— (8111 + B213)a + ﬁ3€a} + [— 2y1e — 2v2lsa + 2;;(71[5 + 7213)64 ~exp(—|Ls]/§)].  (8)

The sensitivities of the stresses and the electric displacement with respect to the strain field and the electric field
yield the fourth-order elasticity tens@ = 0.0, the third-order tensor of piezoelectric moduli= d.d and the
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Figure 1: lllustration of the influence of the electric displacement saturation model of exponential type proposed
in Linder and Miehe (2012) on the simplified electric displacement versus electric field relation in piezoelectric
ceramics (left). lllustration of the strip saturation model proposed in Gao et al. (1997) confined to a strip ahead of
the crack tip with saturated electric displacemént= d, (right).

second-order tensor of dielectric modbli= d.d. Of particular interest for the electric saturation model is the
closed form expression of the latter given as

4 I 1

b= [—2% 1-2yp(a®a)+ E|T2| (m(e®a)*+y2ls(a®a)) — ?(7115 +72162)(a®a)} -exp(—|Is]/€)] (9)
which approaches zero in all components|fai — oo rather than the constant vallble= —2v, 1 — 2v2(a ® a)
obtained when no electric displacement saturation is accounted for.

The motivation for the exponential saturation (7) originally introduced in Linder and Miehe (2012) goes back to
the work of Gao et al. (1997), who introduced a displacement saturation model along a strip ahead of the crack
tip of a piezoelectric material as shown on the right of Figure 1 to resolve the discrepancy between experimental
and theoretical results observed along the prediction of the dependency of the crack propagation onset on the
applied electric field. The analytical solution derived in Gao et al. (1997) is obtained by the superposition of a
complex function to account for the electric displacement saturation onto the singular solution of a piezoelectric
crack in an infinite domain, similar to an approach developed by Dugdale (1960) for the modeling of the plastic
deformation in a thin metal sheet. The necessity of closed form solutions substantially limits the applicability
of such approach. This limitation is avoided in the formulation proposed in Linder and Miehe (2012) by the
simplified account for electric displacement saturation based on (7). Closed form expressions of total and strain
energy release rates derived by a complex variable solution (Stroh, 1958; Barnett and Lothe, 1975; Suo et al., 1992)
of a Mode | and a Mode Il crack in an infinite domain when accounting for the exponential electric displacement
saturation in Linder and Miehe (2012) revealed a reduced dependency of these values on the orientation of the
applied electric field in the presence of electric displacement saturation. The even dependency on the orientation
of the electric field for the total energy release rate and the odd dependency of the strain energy release rate is
kept though so that for the latter a positive electric field along the polarization direction enhances crack growth
whereas a negative electric field, i.e. acting opposite to the polarization direction, impedes crack growth as also
observed in experimental results in Park and Sun (1995b). In addition, in Linder and Miehe (2012) the electric
displacement saturation model is applied to problems where no analytical solutions exist. Examples include the
investigation of its account on a material response proposed in Miehe and Rosato (2011) which is capable of
representing dissipative effects in piezoelectric ceramics by a proper account of polarization switching as well as
the investigation of its influence when it comes to the numerical solution of crack initiation and crack propagation
by a finite element approach which is capable to describe strong discontinuities in the element interior, the so called
finite elements with embedded strong discontinuities

It is the goal of this work to show, that the numerical results obtained by this advanced finite element approach in
Linder and Miehe (2012) when accounting for electric displacement saturation are independent of the chosen finite
element discretization. To do so, in the following Section 3 a brief introduction of the finite element approach with
embedded strong discontinuities is given, before in Section 4 the actual numerical investigation of the discretization
influence is provided by a comparison of the numerical results obtained for a compact tension test and an off-
centered three point bending test of a PZT-4 piezoelectric material.
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3 Finite Elements with Embedded Strong Discontinuities Accounting for Electric Displacement Saturation

In this section a brief review of the approach capable to embed strong discontinuities within the individual elements
is presented and the minor modifications needed for the account of electric displacement saturation are outlined.
Section 3.1 shows how strong discontinuities in the form of jumps in the primary unknowns can be embedded into
the continuum setting which subsequently is extended towards the finite element setting in Section 3.2.

3.1 Account for Strong Discontinuities and Electric Displacement Saturation in the Continuum Setting

To model failure in solids and describe the phenomena of crack initiation and crack propagation, the setting out-
lined in Section 2 must be extended. In particular, jumps in the displacement field and the electric potential must
be accounted for to model the characteristics of a fracturing piezoelectric solid. The finite element approach
with embedded strong discontinuities does this by a decomposition of the overall problenglotmabproblem
representing the standard electromechanical coupled boundary value problem without the presence of strong dis-
continuities and #ocal problemthrough which those are incorporated into the formulation. Within the continuum
setting this means that a material painbf the global problem is equipped through the local problem with the
possibility of forming a strong discontinuitly, separating the local neighborhofgd < Q2 of the material point

into two parts2;” and(2; . As a result, jump$u] and[¢] in the displacement field and the electric potential arise,
where[()] = (-)™ — (-)~. Anillustration of this decomposition is given in Figure 2.

The overall primary variableg andy in €2, following from this decomposition can then be computed as

U = Ugjobal Ulocal([[uﬂ) and ¢ = Pglobal + @'0061'([[‘:0]]) (10)

whereugioha @aNdpgiobal are the contributions coming from the global problem amgda([u]) andyioca([¢]) are
those arising from the local problem, directly depending on the jupappsind[¢]. The decomposition observed
in (10) carries along to the expression for the total strain #edehd the total electric field, which after insertion
of (10) into (1) take analogous forms as

g = Eglobal(uglobal) + €Iocal([[u]]) and e = eglobaI(SDglobaI) + elocal(ﬂ@]]) (11)

which is valid in the bulk of the neighborho®,\I';,. As before gqiona @Ndegional are the global quantities arising
from the global problem anséi,c, andejocy are the local parts arising from the local problem with a dependency
of the latter on the arising jumgs:] and[¢] in the primary unknowns.

Through the decomposition (10) new unknowng and [¢] are introduced. Their determination requires addi-
tional equations. Those can be physically motivated by the requirement that the traction along the strong disconti-
nuity arising from the stresses in the bilk= o must be in equilibrium with the tractiot([u]) arising from a
constitutive model alongj,, which depend on the actual displacement separdtdnSimilarly, equilibrium must

be satisfied between the normal component of the electric displacement fieldd - n and an applied surface
charge density. The weak form of those requirements can then be stated for the admissible vadtidrasd

d[¢] as
/ 5[u] - (om —tr)dA =0 and / 51] (d - n + gr) dA = 0. (12)

The stresses and the electric displacements then follow from the total strain and electric fields in (11) through the
constitutive relation (2) depending on a proper choice of the electric enthalpy funicti®a account for electric
displacement saturation use of the expression in (5)/faogether with the particular choice of the dielectric
contribution ), in (7) is made. It can be observed that the way how the strong discontinuity is incorporated
through the local problem is not affected by the account for electric displacement saturation.

In addition to the constitutive relation in the bulk, the traction and the surface charge density along the strong
discontinuity must be computed based on a constitutive relation &lpng thermodynamic consistent framework

is proposed in Linder et al. (2011a) resulting in a relation of the normal component of tractiand the normal
component of the displacement jurfp,] as well as a relation between the surface chargand the amount of
electric potential jumy] as

tr, = max {0, fi, +S,[u,]} and —qr=%~maX{0,f¢+S¢|M|}~ (13)
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Figure 2: Continuum setting of the finite element approach with embedded strong discontinuities. At a material
pointz of the global continuum problem the constitutive relation is taking into account electric displacement satu-
ration and a possible appearance of a strong discontinuity. The latter is accounted for through the local mechanical
and electrical problems with possible jumjpsg] and[¢] in the displacement field and the electric potential.

local mechanical
continuum problem

Here, the strengtlf;, against normal separation, the normal component of the electric displacgmpresent
when the discontinuity is initiated as well as the softening modyli< 0 andS, < 0 of the mechanical and
electrical cohesive damage law are introduced.

For the determination of the onset of crack initiation and its propagation direction a common criterion is given
by the loss of ellipticity condition. This criterion, commonly used for mechanical problems (Simo et al., 1993;
Armero and Garikipati, 1995; Oliver et al., 2003) is extended in Linder et al. (2011a) to electromechanical coupled
problems. After its onset, the numerical simulations shown in Section 4 make use of the assumption of fully
softened and electrical impermeable crack boundary conditions.

Next, this continuum framework is shown to be easily transferred to the finite element setting where the global
problem now consists of the discretized domain of the specimen and the local problem is replaced by a single finite
element which now is capable of having a strong discontinuity propagating through it.

3.2 Account for Strong Discontinuities and Electric Displacement Saturation in the Finite Element Setting

In the discrete setting the decomposition of the overall problem into global and local parts introduced within the
continuum setting of Section 3.1 is retained. As illustrated in Figure 3, the Q8lig | J*" Q" is discretized by

nelem finite element$2”. In the presence of strong discontinuities, this discretization represents the global problem
with the required approximation of the global displacement field, the global electric potential, the global strain
field and the global electric field as

ugﬁobm:Nud» </>§‘|oba|: N, o, EglobaI: B.d and eSuoba|= -B,¢ (14)

in terms of the standard shape function matribgsandN,,, the generic “B-bar” matriceB,, anng, for stan-

dard displacement based, mixed, or enhanced finite element formulations as well as the nodal emldes

of displacements and the electric potential. Insertion of the approximations (14) into the weak equations (4) and
following standard arguments in finite element analysis yields the discrete finite element equations

e=1

R, = neen / pNLbayv + / N tdA— / B,odV and R, =nan / N, pdV+ / N, qdA+ / B ddV.
an 8, Qh Qn Qn '

X Qh

(15)

Analogous to the continuum setting, the strong discontinftys introduced through the local problem requiring
in addition to the approximations (14) the approximation of the displacement jumps, the electric potential jumps,
the local strain field and the local electric field as

[[uh]] =Ju&y, [[‘phﬂ = J<P£<p7 €I}cLJcaI =%.€§, and eI]tl')(:al = _(gwéga (16)

in terms of proper jump interpolation matric&s(s) andJ ., (s) depending on a local coordinat@long the strong
discontinuityI'”, two introducedcompatibility operatorss,, and %, as well as two newly introduced internal
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Figure 3: Finite element setting of the finite element approach with embedded strong discontinuities. At the
integration points of a single finite elemen} of the global continuum problem the constitutive relation is taking

into account electric displacement saturation. Furthermore, the element is able to account for the appearance of a
single strong discontinuity” through the local mechanical and electrical problems with possible jjinfigsand

[¢"] in the displacement field and the electric potential.

degrees of freedorg, and§,, holding the mechanical and electrical information of the strong discontinuity, re-
spectively. Combination of (14) and (16) in the presence of a strong discontinuity results in the overall strain and
electric fields given as ~ -

e"=B,d+%,£, and e"=-B,¢—%,E,. (17)

Insertion of the approximations (17) into the weak form (12) of the required equilibrium along the strong discon-
tinuity then yields the second set of residual equations as

rf, = — / &l odV — / JitrdA and rf = / &rddV — / Il qrdA (18)
Qn rh Qn

rh

where two new quantities, the so calleqguilibrium operatorss,, and&, are introduced which assure the satisfac-

tion of equilibrium along the strong discontinuity. It is emphasized that the local residual equations (18) only need
to be solved for elementswhere a strong discontinuity in the displacements or the electric potential is present.
The respective integrals in the bulk and along the strong discontinuity in (18) are easily evaluated with standard
guadrature rules of the form

h h
Qe FS
quadr quadr

[oar =Y and [ paa=Y ol (19)
Qr =1 ry =1

n n

as summation over the respective quadrature points and account of W&‘iﬁ‘hﬂdwrg in the bulk and along the
strong discontinuity as well as the pointwise Jacobjzand the lengttr» of the straight segmeiit”.

A procedure proposed in Linder and Armero (2007) based on the identification of certain mechanical separation

modes and in Linder et al. (2011a) based on the identification of certain electrical separation modes of a single
finite element allows for the closed form derivation of the compatibility operators introduced in (16) as

G- ¥ Bln X Blm ¥ Blmemien 3 Blmemin— mem

Aeqht Aeqht Aeqht AeQhT
= A = A
€, = —[ Y Bl Y Bl —mHFQ} (20)
Aeqht Aeqht

wheren andm are unit normal and tangential vectofg, ® m)2 =n®m —m @ n, T4 = x4 — xr Is the
vector from the center of the strong discontinuity to a particular nodel of the element and{-» represents the

Heaviside function which takes the vallién Q" and0 in Q™.

The equilibrium operators introduced in (18) solely depend on the geometry of the finite element and can be
computed in closed form for the mechanical (Linder and Armero, 2007) and the electrical (Linder et al., 2011a)
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Figure 4. Compact tension test. Geometry and loading illustration of the PZT-4 piezoelectric ceramic plate with
a pre-existing horizontal notch. The mechanical load is tensile and applied through circular rigid bars near the
bottom and top left corners. Electrically, the plate is loaded by a zero electric potePi@l" at the bottom
surface and a non-zero electric potenti#P at the top surface. The poling direction of the specimen is oriented
vertically from the bottom to the top surface. Experiments (Park and Sun, 1995b) report a propagating crack from
the tip of the notch horizontally towards the right surface.

contribution as

1 1 1 1
- _|=p©@ (V) s D D s
b = ~[pOmen), pOmempE, pPmen), p®nem)]
1 1

in terms of polynomial functiong® (z,) for & = 0, 1 which represent approximations of the produgis and

d - n of orders up tg within a local coordinate framéxz, y} centered at the centroid of an elemé&ft and the
measure of the element sizg = A /fpn. The former can be computed in close form (Linder and Armero,
2007; Linder et al., 2011a) as -

i+j<p -1

(k) _ K i F i 1 _ [ 1 itm, j+n } [ 1 k. m,n }

pY (z,y) = Z ag @'y’ with [a(i’j)} = [Am /m:c YTV o Fhs xmy"dA (22)
1,7=0 e e e e

forallm,n =0,1,...,pwith m+n < p satisfying the relation between the bulk and the discontinuity integration
1
p® (2, y)amy"dV = / sFxmy"dA. (23)
Aar Jan lrn Jpn

The discrete equations (15) and (18) of the global and the local problem are finally brought to zero through a
Newton iterative procedure through which the introduced internal degrees of fregdand§ , can be statically
condensed out at the element level (Linder and Armero, 2007; Linder et al., 2011a) leading to an extremely efficient
numerical methodology for the simulation of fracture in electromechanical coupled solids.

The electric displacement saturation neither effects the framework of the local problem in the continuum or the
finite element setting. What it effects is the constitutive relation at the integration points of the global problem
resulting in modified onsets of crack propagation as well as modified crack propagation paths. This dependency is
investigated in the following Section 4 and shown to be independent of the chosen finite element discretization. The
mechanical as well as the electrical discontinuities are approximated linearly in the following numerical examples.

4 Representative Numerical Simulations

In this section the effect of electric displacement saturation is outlined on two realistic examples for which ex-
perimental results are available in Park and Sun (1995b). The goal is to numerically analyze the independence
of fracture initiation and subsequent arising crack propagation in piezoelectric ceramics when taking into account
electric displacement saturation on the finite element discretization. In Section 4.1 the compact tension test of a
PZT-4 piezoelectric ceramics is discussed and in Section 4.2 an off-centered three-point bending test of the same
material is simulated.
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Figure 5: Compact tension test. lllustration of the finite element meshes used for the determination of the electric
saturation exponet(top row) and for the simulations of the propagating crack (bottom row). The meshes for the
evaluation of the saturation exponent are only refined at tip of the notch and cor&isd1 finite elements for

the coarse mesh (left) arid19 Q1 finite elements for the fine mesh (right). The meshes for the simulation of the
propagating crack are refined throughout the horizontal region from the tip of the notch towards the right edge and
consist 0f6159 and10083 QL1 finite elements for the coarse and the fine mesh, respectively.

4.1 The Compact Tension Test

The first example is provided in the form of a compact tension test made of a plate with a pre-existing notch for
which experimental results are given in Park and Sun (1995b). The specigien ism long, 19.1 mm high and

has a thickness &f.1 mm. The horizontal notch is vertically centered and starts from the left surface with a length
of 11.5mm and a thickness di.46 mm. The mechanical load puts the plate under tension and is applied in the
form of a prescribed vertical displacement through two circular rigid bars3a@thm of diameter placed.6 mm

from the top and bottom left corners of the plate. Electrically, the specimen which is poled in vertical direction
from the bottom to the top surface is loaded by the application of a zero electric potei#Hial' at the bottom
surface and two different non-zero values for the electric potenttéls= —9.55 kV andp'®® = —19.1 kV at the

top surface whose values are applied after a short rise timel fs. Both, the geometry and the loading of the
problem are illustrated in Figure 4.

The material used in the experiment is modeled by the anisotropic constitutive relation provided in Section 2
where the influence of the electric displacement saturation on the determination of crack propagation onset and
crack propagation path is investigated. The material parameters are chesen-ak3.9, cio = 7.78, ¢13 = 7.43,

c33 = 11.3 andeyy = 2.56 for the elastic constants in units given[ag* N/mm?], asez; = —6.98, e33 = 13.84

ande;; = 13.44 for the piezoelectric constants in units given@gm?] and as;; = 6.0 andesz = 5.47 for the
dielectric constants in units given g$)~3 mC/(kV m)]. The relation between those material parameters and the
ones used in Section 2 is givenh& C12, b = (011—612)/2, o = 2¢44+C12—C11, Q0 = (611 +033)/2—2644—013,

az = ci3 — C12, 1 = —es1, o = —es3 + 2e15 + €31, 3 = —2e15, 71 = —€11/2 andy; = (11 — €33)/2.

With this setup, the experimentally observed propagation of a horizontal crack from the tip of the pre-existing
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Figure 6: Compact tension test. Influence of the electric saturation parafratdrthe tensile normal strengfh,

on the fracture load of the tension test using a coarse and a fine mesh given in the top row of Figure 5 when loaded
for two different values of'°P. The experimental data are shown by circles, the values ferco (corresponding

to the case without electric displacement saturation) are shown by filled markers for the different tensile strengths.

notch towards the right surface shall be simulated. Since the main goal of this work is to show the independence
of the electric displacement saturation model of exponential type and its influence on the crack initiation and
crack propagation on the finite element discretization, different finite element meshes are used in the numerical
simulations presented below. The meshes illustrated in the top row of Figure 5 consist of a coarse and a fine mesh,
both refined at the crack tip, made up H90 and5319 Q1 elements, respectively. The meshes illustrated in the
bottom row of Figure 5 consist of a coarse and a fine mesh made 6p5Byand10083 Q1 finite elements which

are refined at the region from the tip of the pre-existing notch towards the right surface representing the region
where the crack path is expected based on the experimental results reported in Park and Sun (1995b). It is noted
that rather than enforcing the crack to propagate along the finite element edges, the proposed formulation allows
the crack to propagate through the individual finite elements.

Before targeting the simulation of the actual crack propagation, the introduced saturation exponény of

the electric displacement saturation model needs to be evaluated. To do so, the two meshes which are refined
around the region of the tip of the pre-existing notch in the top row of Figure 5 are used when loadetRvith
—9.55kV and ' = —19.1kV. The saturation exponent is varied frgm— oo, which corresponds to the

case when no electric displacement saturation is accounted fr-td £V /mm which results in a large electric
saturation zone at the tip of the pre-existing notch. Secondly, the tensile strength of the material is varied from
fi, = 60 — 100 N/mm?. With these values the crack propagation onset given by the numerical solution for the
two different applied electric potentials at the top surface is computed and compared with the experimental results.
In Linder and Miehe (2012) the same procedure is applied only for the coarse mesh which resulted in the best
fitting for parameters of = 10 kV/mm andf,, = 80 N/mm? as shown in the left column of Figure 6. Based on

the coinciding results obtained for the fine mesh, illustrated in the right column of Figure 6, the mesh insensitivity
of the determination of the electric saturation exponent is clearly demonstrated. Furthermore, the result for the
tensile strength is close to the experimentally used valu 8fN/mm? reported in Park (1994).

Next, the actual crack propagation when applying an electric potential at the top surfaé® ef —9.55kV is
modeled using the two meshes in the bottom row of Figure 5 and the above obtained values for the saturation
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Figure 7: Compact tension test. Influence of the finite element discretization on the crack propagation which is
shown as yellow line using the coarse and fine mesh of the bottom row of Figure 5 for an active electric displace-
ment saturation with a saturation exponen{ ef 10 kV/mm. Shown is the evolution of the electric potential and

the zone of electric displacement saturation by plotting the valsexp(—|Is|/€). The latter is observed to be
small and travels along with the propagating crack tip.
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Figure 8: Compact tension test. Influence of the finite element discretization on the relation between the reaction
force and the applied displacement using the coarse (left) and the fine (right) finite element mesh shown in the
bottom row of Figure 5 and for different saturation exponénts3, 5, 10, 20, oo kV/mm. For both discretizations

a smaller value of results in a larger electric displacement saturation zone, a higher reaction force at which the
specimen fractures and a faster propagating crack from the tip of the pre-existing notch towards the right surface.

exponent and the tensile strength of the material. The goal is to show that both, the onset of crack propagation
as well as the crack propagation itself is independent of the two chosen finite element discretizations. The results
obtained for the coarse mesh, also reported in Linder and Miehe (2012), shown in the left column of Figure
7 are supported by the results obtained for the fine finite element discretization shown in the right column of
Figure 7 with an almost identical behavior of the crack propagation simulation which again demonstrates the mesh
independency of the proposed formulation. Also the size of the electric saturation zone, illustrated in Figure 7
by plotting the valuel — exp(—|Is|/£), which is0O when no saturation takes place ahevhen the material is
electrically fully saturated, is in close agreement for both discretizations and travels together with the crack tip
towards the right surface.

Finally, the mesh size independency is also outlined through an evaluation of the reaction force versus applied
displacement relation for the two meshes in the bottom row of Figure 5 when applying an electric pot&htal
—9.55kV at the top surface. The results are shown in Figure 8 which agree for both discretizations in the sense
that smaller values &, characteristic for larger electric displacement saturation zones, result in an increase of the
initiation load of fracture and a subsequent faster decay showing a faster crack propagation speed.

4.2 The off-centered Three Point Bending Test

The second example for which the influence of finite element discretization is investigated is the off-centered
three point bending test for which experimental results are again provided in Park and Sun (1995b). It consists
of a plate19.1 mm in length,9 mm in height and with a thickness of againl mm. The pre-existing vertical

notch has a length afmm, is 0.46 mm thick and shiftedt mm to the right of the horizontal center of the plate.
Mechanically, the specimen is loaded by an imposed displacement at the center of the top surface. The electrical
loading is given by the application of a zero electric potenti&f at the left surface and a non-zero electric
potential"" = —9.55 kV, applied after a short rise time 6f1 s at the right surface. The poling direction

of the specimen is horizontal and points from the left towards the right. Both, the geometry and the loading of
the problem are illustrated in Figure 9. The material parameters are the same as those for the compact tension
test in Section 4.1 together with the same values used for the fitted parameters of the tensile ftremgtithe
saturation exponergt

The two chosen finite element discretizations, both refined in the region where the crack is supposed to propagate,
consist ofl506 and2692 Q1 elements and are illustrated in Figure 10. Expected is a crack onset at the tip of the pre-
existing notch with a subsequent initially vertical but then curved propagation in the direction of the point where
the mechanical load is applied. The observed vertical initial region in the crack path is shown in Linder and Miehe
(2012) to be amplified in the presence of electric displacement saturation when using the coarse finite element
discretization. It remains to be shown that the same tendency is obtained for the fine finite element discretization.
The results of the size of the electric saturation zone obtained by plotting thelvaluap(—|Is|/£) within the
range|0, 0.5] and the crack propagation path is illustrated in Figure 11 and demonstrates again the mesh size
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Figure 9: Off-centered three point bending test. Geometry and loading illustration of the PZT-4 piezoelectric
ceramic plate with a pre-existing off-centered vertical notch. The mechanical loading is given by an imposed
displacement at the center of the top surface. The electrical loading is applied in the form of a zero electric
potentialp'®® at the left surface and a non-zero electric potentid at the right surface The poling direction of

the specimen is oriented horizontal from the left towards the right surface. Experiments (Park and Sun, 1995b)
report an initial vertical crack initiating from the tip of the pre-existing notch which is subsequently curved towards
the point where the mechanical load is applied.
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Figure 10: Off-centered three point bending test. lllustration of the coarse (left) and fine (right) finite element
meshes consisting d606 and2692 Q1 finite elements, respectively. Both meshes are refined in the region where
the crack is supposed to propagate.

insensitivity of the model. It can be observed, that the orientation of the electric saturation zone is normal to the
horizontal poling direction rather than tangential to the crack path orientation which is in line with the originally
proposed strip saturation model of Gao et al. (1997). It can be further seen that the crack advances earlier for the
coarse mesh but the final result of the crack path remains mesh independent.

Finally, in Figure 12 a comparison of the obtained crack propagation paths for the two finite element discretizations
outlined in Figure 10 with the experimental results reported in Park (1994) and Park and Sun (1995b) is made for
different values of the saturation exponént= 3,5, 10,20, co kV/mm. Comparing the results for the coarse

(left column) and fine (right column) finite element discretization demonstrated again the mesh independency of
the method. Both meshes show that a smaller saturation exponent (characterizing a larger electric displacement
saturation zone) leads to a more distinct vertical orientation of the crack path. A very good agreement with the
experimental results is obtained for both meshes when the saturation exponent is ckfosetds//mm which

is in line with the results obtained by the parameter fitting of Section 4.1 for the compact tension test.

To conclude this section, the electric displacement saturation model of exponential type proposed in Linder and

Miehe (2012) is shown to predict the crack propagation onset as well as the crack propagation path independent
of the chosen finite element discretization. This assertion is drawn based on numerical simulations of two notched

PZT-4 piezoelectric ceramic specimens and comparison of the obtained numerical results with the experimental

results reported in Park and Sun (1995b).
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Figure 11: Off-centered three point bending test. Influence of the finite element discretization on the crack prop-
agation which is shown as yellow line using the coarse (left column) and fine (right column) mesh shown in
Figure 10 for an active electric displacement saturation using a saturation expogeatlofkV/mm. The value

1 — exp(—|Is]/€) is used to illustrate the electric saturation zone which is propagation along with the advancing
crack tip. The crack starts to propagate earlier for the coarse mesh but the final crack paths are mesh independent.
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experiments

left: Park (1994)
right: Park and Sun (1995b)
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Figure 12: Off-centered three point bending test. Influence of the finite element discretization on the final crack
path for different values of the saturation exponent 3,5, 10,20, co kV/mm. The result for the coarse mesh

is shown in the left column whereas the result of the fine mesh is shown in the right column. Both discretizations
show that a smaller value of the saturation exponent results in a more vertical crack path. Whereas too small values
of ¢ result in non-physical crack paths, the choicé ef 10 kV/mm is in good agreement with the experimentally
observed crack path for both discretizations.
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5 Conclusion

In this work the effect of electric displacement saturation of exponential type on the determination of the onset of
crack propagation as well as on the resulting crack propagation paths in fracturing piezoelectric ceramics proposed
in Linder and Miehe (2012) is analyzed from a numerical point of view. Itis numerically shown that the conclusions
drawn in the work of Linder and Miehe (2012) with regard to the effect of electric displacement saturation are
independent of the finite element discretization. The determination of the saturation exponent through the compact
tension test is revealed to be independent of the mesh size as are the obtained onsets and crack propagation paths for
the compact tension and the off-centered three point bending test. The numerically obtained curved crack paths in
the latter test, for the first time obtained in Linder and Miehe (2012), are reproduced for a much finer discretization
in this work. In the future, similar phenomena as the electric displacement saturation influencing the fracture
behavior of electromechanical coupled materials are being analyzed for materials with inherent microstructure like
in our recently proposed model of the viscous behavior in polymers (Linder et al., 2011b).
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