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Multi-Scale Simulation of Viscoelastic Fiber-Reinforced Composites

S. Staub, H. Andr̈a, M. Kabel, T. Zangmeister

This paper presents an effective algorithm to simulate the anisotropic viscoelastic behavior of a fiber-reinforced
composite including the influence of the local geometric properties, like fiber-orientation and volume fraction.
The considered composites consist of a viscoelastic matrix which is reinforced by elastic fibers. The viscoelastic
composite behavior results anisotropic due to the local anisotropic fiber-orientations. The influence of the local
time-dependent viscoelastic properties are captured within two elastic microscopic calculations for each fiber-
orientation in the composite part. These calculations can be performed within a preprocessing step, and thus
no expensive, time-dependent viscoelastic multi-scale simulation has to be carried out to incorporate the local
properties. The advantage of the presented approach is that the locally varying microscopic properties can be
captured in a one-scale simulation within a commercial finite element tool like ABAQUS.

1 Introduction

Since many years the relevance of fiber-reinforced composites is increasing considerably in numerous fields of
engineering, such as automotive and aircraft industry, see Carbon Composites. Due to the high strength, and the
possibility of lightweight construction these composites replace more and more traditional materials like steel.
The mechanical properties of such fiber-reinforced polymers depend on the fiber volume fraction, the local fiber-
orientation, the geometrical and elastic properties of the fibers as well as on the viscoelastic polymer matrix. In
order to design these materials tailored to their specific applications it is important to understand and simulate the
macroscopic effects depending on different microscopic settings in advance. Investigation of the relation between
the microscopic properties like, e.g., fiber-orientation, and macroscopic effective properties, like e.g. stiffness,
only in terms of laboratory experiments is much to time consuming and expensive. Therefore, in the work at hand
a viscoelastic model to simulate the full macroscopic mechanical composite is presented, which is based on the
geometrical, elastic and viscoelastic properties of the single constituents. Especially, the geometric properties, like
the fiber volume fraction and the local fiber-orientation may vary remarkably in a macroscopic composite part due
to the manufacturing process, which in many cases is injection or compression molding.

The work at hand is organized as follows: In Section 2 the governing equations of the considered microscopic
boundary value problem are given and the applied microscopic isotropic viscoelastic model is reviewed. In a next
step in Section 3 the basic steps of the applied homogenization are summarized and the considered composite which
consists of a viscoelastic matrix reinforced by stiff elastic fibers, is describes in more detail and the viscoelastic
behavior of the composite is studied numerically. Then, in Section 3.3 the isotropic viscoelastic model due to
Kaliske and Rothert (1997) from the previous section is extended towards an anisotropic model, which captures
the anisotropic relaxation behavior of the composite. The main advantage of the presented anisotropic model is the
potential of incorporation of microscopic properties like fiber-orientation within a commercial finite element tool
like ABAQUS. Finally, the presented concept is illustrated by numerical examples in Section 4.

Helpful references to literature are given in each section.
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2 Linear Isotropic Viscoelastic Model

In order to give an algorithm for the numerical treatment of linear isotropic viscoelasticity the corresponding initial
boundary value problem is reviewed. The equilibrium condition is given by

div σ(x, t) = 0 ∀(x, t) ∈ Ω × [0, T ] (1)

wherein σ(x, t) denotes the (time-dependent) stress tensor. The prescribed mixed boundary conditions on
∂Ω = ∂Ωd ∪ ∂Ωt with ∂Ωd ∩ ∂Ωt = ∅, can be summarized by

displacement u(x, t) = u0(x) in ∂Ωd × [0, T ]
traction t(x, t) = t0(x) in ∂Ωt × [0, T ]

}

. (2)

Thereby,u(x, t) denotes the displacement field,n the outward unit normal vector andt(x, t) := σ(x, t) ∙ n the
traction vector. For further details on the initial boundary value problem the reader is referred to the standard
textbooks in continuum mechanics, as Malvern (1969) or Holzapfel (2001).

The description of the mechanical problem is completed by the constitutive law which gives the relation between
the stresses and the strains. In the work at hand a viscoelastic material behavior is considered and thus the stresses
are connected to the strain rates in terms of the following convolution integral

σ(x, t) =

t∫

0

IΓ(x, t − s) :
∂ε(x, s)

∂s
ds. (3)

Therein, IΓ(x, t−s) corresponds to the fourth-order relaxation tensorΓklmn(x, t−s) of the viscoelastic material.
The viscoelastic behavior is realized by a generalized Maxwell model consisting of a finite numberN Maxwell
elements. Then, the normalized relaxation function is

Ψ(t) = 1 +
N∑

j=1

γj exp

(

−
t

τj

)

. (4)

Thereby,γj , j = 1, . . . N represent the normalized relaxation coefficients, i.e., in the one-dimensional case

γj =
Ej

E∞
, wherebyEj denotes the modulus of the Maxwell elementj andE∞ the longterm modulus, i.e., the

elastic or Young’s modulus.τj are the corresponding relaxation times.

First, an isotropic viscoelastic matrix material is considered. Although many polymers show different relaxation
times under tensile- and compression-loading, here a constant Poisson’s ratio is assumed, which together with the
isotropy yields that all components have the same relaxation behavior and thus

IΓ(t) = Ψ(t)Cr = Cr +
N∑

j=1

γj exp

(

−
t

τj

)

Cr (5)

is valid, wherebyCr corresponds to the relaxed stiffness tensor, i.e., in terms of the elastic stressesσ0 at lim t → ∞

holdsCr = lim
t→∞

∂σ(t)
∂ε(t)

.

Insertion of (5) into (3) yields the time-dependent total stress as

σ(t) =

t∫

0



1 +
N∑

j=1

γj exp

(

−
t − s

τj

)


 Cr :
∂ε(s)
∂s

ds (6)

Thus, the total stress can be decomposed into an elastic and a viscoelastic part via

σ(t) =

t∫

0

Cr :
∂ε(s)
∂s

ds +

t∫

0

N∑

j=1

γj exp

(

−
t − s

τj

)

Cr :
∂ε(s)
∂s

ds (7)
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By application of the definition of the elastic stressσ0(t) = Cr : ε(t) and permutation of the integration, the
summation equation (7) can be rewritten as

σ(t) = σ0(t) +
N∑

j=1

t∫

0

γj exp

(

−
t − s

τj

)

:
∂σ0(s)

∂s
ds

︸ ︷︷ ︸
=:hj(t)

. (8)

Thereby, the second term of the right hand side can be identified with stress-like internal variableshj(t).

In a next step, a discretization in time is carried out and according to the work by Kaliske and Rothert (1997) a
multiplicative split

exp

(

−
tn+1

τj

)

= exp

(

−
tn + Δtn+1

τj

)

= exp

(

−
tn

τj

)

exp

(

−
Δtn+1

τj

)

(9)

is performed in terms of the actual time stepΔtn+1 which yields a recursive update of the internal variables via

hn+1
j = exp

(

−
Δtn+1

τj

)

hn
j + γj

tn+1∫

tn

exp

(

−
tn+1 − s

τj

)

:
∂σ0(s)

∂s
ds. (10)

In order to solve the viscoelastic problem within a standard finite element scheme a discretized version of the
constitutive law, which yields the total stresses as a function of the strains, and the corresponding viscoelastic
stiffness tensorCvel(t) are required. Due to the fact that the considered viscoelastic law is time-dependent, the
stresses and the stiffness tensor are updated in each time stepΔtn.

The elastic stresses in each time step are obtained in terms of the elastic stiffness tensor via

σn+1
0 = Cr : εn+1. (11)

According to equation (8) the total stresses in each time step read

σn+1 = σn+1
0 +

N∑

j=1

hn+1
j (12)

whereby the update of the discrete internal variables are obtained by a discretization and an analytical integration
of (10) which yields

hn+1
j = exp

(

−
Δtn+1

τj

)

hn
j + γj

1 − exp
(
−Δtn+1

τj

)

Δtn+1

τj

[
σn+1

0 − σn
0

]
. (13)

Finally, the viscoelastic stiffness matrix is achieved as the derivative of the total stresses with respect to the strains

Cvel,n+1 :=
∂σn+1

∂εn+1
=



1 +
N∑

j=1

γj

1 − exp
(

Δtn+1

τj

)

Δtn+1

τj



Cr. (14)

Therein, the first term on the right-hand side can be identified with the discrete relaxation function, i.e.

Ψn+1 = 1 +
N∑

j=1

γk

1 − exp
(

Δtn+1

τj

)

Δtn+1

τj

, (15)

is valid. Therefore, equation (14) reduces to

Cvel,n+1 = Ψn+1 Cr. (16)
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Initialization

• elastic stress and internal variables

σ0
0 = σr

0 and h0
j = h∗

j (I)

For each time stepΔtn

• calculate the elastic stress by using given total strain

σn+1
0 = Cr : εn+1 (II)

• update the internal (stress-like) variables

hn+1
j = exp

(

−
Δtn+1

τj

)

hn
j + γj

1 − exp
(
−Δtn+1

τj

)

Δtn+1

τj

[
σn+1

0 − σn
0

]
(III)

• update the total stress

σn+1 = σn+1
0 +

N∑

j=1

hn+1
j (IV)

• calculate the viscoelastic stiffness tensor

Cvel,n+1 = Ψn+1 Cr with Ψn+1 = 1 +
N∑

j=1

γj

1 − exp
(

Δtn

τj

)

Δtn

τj

(V)

Figure 1: Time integration of viscoelastic material model

The necessary steps to calculate the total stresses and the viscoelastic stiffness matrix in each time step is sum-
marized in Figure 1. These quantities can be applied as constitutive law in every standard finite element analysis
software.

3 Linear Anisotropic Viscoelastic Model for Fiber-reinforced Composites

In the work at hand a macroscopic viscoelastic finite element simulation of a fiber-reinforced composite is carried
out. Due to the fact that many parts in engineering applications are manufactured by injection molding, the fiber
distribution is not homogeneous in each area. Therefore, the macroscopic simulation should take account of the
local fiber-orientation and fraction in each element. In the current work a procedure is developed, which captures
the influence of local fiber orientation within a preprocessing step. The macroscopic viscoelastic simulation, which
here is performed by application of the commercial tool ABAQUS (www.simulia.com), then is able to capture this
dependency without performing a full two-scale simulation, as given e.g. by the FE2 scheme, see ,e.g., Feyel and
Chaboche (2000), Kouznetsova et al. (2001), and Ricker (2011). Thus, the required simulation costs are reduced
drastically, despite the fact that the influence of the micro structure is incorporated.

In the following a polypropylene (PP) polymer matrix reinforced by short circular glass fibers is considered. The
glass fibers are assumed to behave linear elastic with a Young’s modulus ofE = 73 GPa and a Poisson’s ratio
ν = 0.23. The matrix material is modeled by a linear viscoelastic constitutive law which is approximated by a chain
of generalized Maxwell-elements. The number of Maxwell-elementsN has been set to 24, and the normalized
relaxation coefficientsγk and the corresponding relaxation timesτk have been fitted to master curves of storage
and loss modulus, which have been determined in experiments. Within these experiment the short-term (unrelaxed)
Young’s modulus of the matrix resulted inEu = 2.75 GPa and the long-term (relaxed) modulus inEr = 0.32
GPa. The Poisson’s ratio of the matrix is assumed constant in time (to fulfill (5)) atν = 0.44. For more on the
need or expendability of time-dependent Poisson’s ratios the reader is referred to Lakes and Wineman (2006).

First, the necessary background on homogenization theory is reviewed shortly.
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3.1 Homogenization and Effective Properties

In order to determine the effective relaxation of the composite an averaging procedure is carried out. Therefore,
the effective macro stresses and strains are defined as

Σ(t) :=< σ(x, t) > and E(t) =< ε(x, t) > . (17)

Therein, the averaging operator is given by the following volume averaging

< • >:=
1
V

∫

V

• dV. (18)

The boundary conditions which give the scale-transition between the macro- and the micro-scale are chosen such
that the energy equivalence principle

Σ : E =< σ : ε >, (19)

proposed by Hill (1963), is valid. This can be achieved, e.g., by application of periodic, mixed or Dirichlet bound-
ary conditions. For further details on the scale-transition the reader is referred to literature on homogenization
techniques, e.g. Nemat-Nasser and Hori (1999) and Mura (1987). In case of a viscoelastic material the energy
density< σ : ε > is a transient quantity, i.e., the effective stiffness tensorC is obtained in each time step via

Σ(t) = C(t) : E. (20)

The elastic coefficients of the fourth-order tensorC can be computed by application of six loadcases (three or-
thogonal tension- and three orthogonal shear-load cases) to the underlying micro-structure. Thus, in each timestep
six boundary value problems have to be solved to obtain the macroscopic relaxation of a composite. In case of
periodic or Dirichlet boundary conditions the resulting global stiffness tensor is the same for all six loadcases.

In order to reduce the number of computations, focus is out onto the relaxation behavior of a viscoelastic matrix
reinforced by stiff elastic fibers. Therefore, in a next step the relaxation behavior of fiber-reinforced composites is
studied numerically.

3.2 Numerical Study on Relaxation Behavior of Fiber-reinforced Composites

Initially, microscopic volume elements for given fiber fractions and orientations are generated by the software
package GeoDict (see Wiegmann et al. (2006) and www.geodict.com). This software package allows the automatic
generation a random fiber distributions based on parameters like fiber volume fraction, orientation, thickness and
length. A microscopic geometry is depicted exemplary in Figure 2. In this example a fiber volume fraction of

Figure 2: Microscopic volume element consisting of matrix reinforced by fibers, on the right-hand side only the
fibers are displayed

10 % is considered. The placement of the fibers is performed periodically and it is assumed that the fibers do not
percolate which is ensured by a minimum distance of two voxels between two neighboring fibers. All fibers have
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the length300 μm and the diameter12 μm. Due to the periodicity of the structure the same fibers are cut at the
boundary and continue at the opposite boundary. The contemplated volume element is discretized in643 voxels
which for the applied voxel length of6 μm results in a length of384 μm in each direction.

The direction of the fibers is characterized by the fiber-orientation tensor according to Advani and Tucker (1987).
The influence of the fiber-orientation onto the elastic properties is for example studied in Iorga et al. (2008). The
(second-order) fiber-orientation tensorQ is obtained via the following averaging over the unit vectorsUn of each
fibern

Q :=
1
N

N∑

n=1

Un ⊗ Un (21)

Additionally, the fourth-order fiber-orientation tensor

Q :=
1
N

N∑

n=1

Un ⊗ Un ⊗ Un ⊗ Un, (22)

can be considered, but this topic goes beyond the scope of this work. The influence of the fourth-order tensor is
e.g. regarded in B̈ohlke et al. (2010).

In the following example a fiber-reinforced viscoelastic matrix is considered. Thereby, four different realizations of
the same micro-structure are generated by prescribing a target fiber-orientation and then their effective properties
are averaged. The obtained averaged fiber-orientation tensor of the realizations reads

Q =




0.741 −0.007 0.030

−0.007 0.015 0.000
0.030 0.000 0.244



 . (23)

In Figure 3 the relaxation behavior of some components of the effective stiffness of the composite is plotted.
Thereby, the unrelaxed and relaxed Young’s moduli of the viscoelastic polymer matrix are given byEu = 2.75
GPa andEr = 0.32 GPa, whreas the elastic glass-fibers are characterized byE = 73 GPa. In all examples the
viscoelatic relaxation is modeled by 24 Maxwell element, for which the parameters have been fitted to master-
curves obtained by experiments.

Within Figure 3 the dashed lines correspond to the unrelaxed and relaxed modulus of the composite in the cor-
responding direction. Remarkably, all plotted relaxation curves have the same shape, but are arranged between
different limits. The other components of the composite, which are left out here, show a similar relaxation behav-
ior. Only, theC11 component (Voigt notation), which corresponds to the main orientation of the fibers, shows an
oscillating behavior at higher time scales. Due to the similarity in the shapes of the relaxation curves, according to
the work of Krzikalla et al. (2011), the viscoelastic curves are normalized to values between 1 and 0, via

Cnorm
ij (t) =

Cij(t) − Cr
ij

Cu
ij − Cr

ij

(24)

see Figure 4. Therein, the unmarked lines display the deviation between the normalized relaxation of the composite
and the pure matrix material, which for the illustration is scaled by factor 5. The figure reveals that each component
of the stiffness tensor behaves similarly to the normalized relaxation of the pure matrix material. In deBotton and
Tevet-Deree (2004) it has been described already that for a viscoelastic matrix reinforced by stiff elastic fibers,
the normalized relaxation curves are governed by the relaxation of the pure matrix material and that the matrix
material relaxes slightly faster as the composite.

In order to complete these considerations, the influence of the stiffness contrast between the relaxed matrix and the
fiber is considered. Figures 5 and 6 show the normalized relaxation of the stiffness tensor for different contrasts
between the relaxed Young’s modulus of the matrix and the fibers. The micro-structure is taken from the previous
simulations, and again an arithmetic averaging over 4 realizations is performed. The Young’s modulus of the fibers
areE1 = 8 GPa andE3 = 32 GPa and for the matrix it holdsEr = 0.32 GPa. These figures reveal that the bigger
the contrast between the stiffness of the matrix and the fiber the closer the normalized relaxation curves to the one
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Figure 3: Relaxation of fiber-reinforced viscoelastic matrix withEu = 2.75 GPa,Er = 0.32 GPa, and elastic
fiber modulusE = 73 GPa
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Figure 4: Normalized relaxation curves for fiber-reinforced viscoelastic matrix withEu = 2.75 GPa,Er = 0.32
GPa, and elastic fiber modulusE = 73 GPa

of the pure matrix material. Concludingly, for the regarded glass fibers withE = 73 GPa, the relaxation behavior
of the composite can be assumed to be governed by the relaxation of the pure matrix material.

In the following, the algorithm from Section 2 is extended such that the anisotropic relaxation behavior of com-
posites can be regarded.
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Figure 5: Normalized stiffnesses of matrix and composite withE1/Er = 25
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Figure 6: Normalized stiffnesses of matrix and composite withE3/Er = 100

3.3 Numerical Treatment of Anisotropic Relaxation of Fiber-reinforced Composites

In order to capture the anisotropic viscoelastic behavior of fiber-reinforced composites the relaxation tensor as
given in equation 5 is defined component-wise as

Γklmn(t) = Ψklmn(t) Cr
(klmn) (25)

where in each component ofΨklmn is obtained via

Ψklmn = 1 +
N∑

j=1

ξj
klmn exp

(

−
t

τj

)

. (26)

The relaxation coefficientsξj
klmn need to guarantee the condition that the normalized relaxation behavior of the

composite in each direction equals the normalized isotropic relaxation behavior of the pure matrix material accord-
ing to the previous section. To this end focus is put onto the normalized relaxationRm which for the matrix and
the composite is

Rm(t) :=
Ψ(t) − 1

N∑

j=1

γj

=
Ψklmn(t) − 1

N∑

j=1

ξj
(klmn)

∀ k, l,m, n, = 1, 2, 3. (27)
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Thus, att = 0 it holds

Rm(0) =
Ψ(0) − 1

N∑

j=1

γj

=
Ψklmn(0) − 1

N∑

j=1

ξj
(klmn)

= 1 ∀ k, l,m, n, = 1, 2, 3, (28)

which yields

N∑

j=1

ξj
klmn =

N∑

j=1

Ψklmn(0) − 1
Ψ(0) − 1

γj . (29)

Insertion ofΓklmn(0) = Cu
klmn and equation (25) yield the following component-wise definition of the relaxation

coefficients

ξj
klmn =

[
Cu

klmn

Cu
(klmn)

− 1

]
γj

γ̄
with γ̄ =

N∑

i=1

γi. (30)

Therefore, to include the influence of the local fiber orientation in each of the macroscopic element and to describe
the corresponding anisotropic relaxation behavior two elastic simulations to determineCu andCr in each element
are required.

The advantage of this procedure is that these elastic calculation can be performed in a preprocessing step. The
effective unrelaxed and relaxed stiffness tensors then can be stored within a data base. Furthermore, to reduce
the number of required simulations, interpolations of the stiffness tensors with respect to already simulated micro-
scopic fiber orientations are possible. The required steps for the preprocessing are summarized in Figure 7.

In a next step the viscoelastic constitutive law from Section 2 is extended to anisotropic viscoelasticity based on
the anisotropic relaxation coefficientsξj

klmn. Similar to the isotropic viscoelasticity, here only the determination
of the total stresses in terms of the strains and the corresponding viscoelastic stiffness matrix is considered. This
information is then used in a standard finite element code, as e.g. ABAQUS, to solve the macroscopic problem.

The anisotropic viscoelastic stresses result according to (3) and (5) then in

Σkl(t) =

t∫

0



1 +
N∑

j=1

ξj
klmn exp

(

−
t

τj

)


Cr
klmn :

∂εmn(s)
∂s

ds. (31)

In order to simplify the notation, the anisotropic composite matrix for each Maxwell element is defined as

Dj
klmn := ξj

klmnCr
(klmn), (32)

and thus (31) results in

Σ(t) =

t∫

0

Cr +
N∑

j=1

exp

(

−
t

τj

)

Dj :
∂ε(s)
∂s

ds. (33)

Analogously to the isotropic viscoelasticity a split into the elastic and the viscoelastic part of the stresses yields

Σ(t) = Σ0(t) +
N∑

i=1

Hj(t), (34)

where the anisotropic internal variables are

Hj =

t∫

0

exp

(

−
t

τj

)

Dj :
∂E(s)

∂s
ds. (35)
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Application of a multiplicative split (see equation (9)), discretization and analytical integration result in a recursive
formula for the anisotropic internal variables

Hn+1
j = exp

(

−
Δtn+1

τj

)

Hn
j +

1 − exp
(
−Δtn+1

τj

)

Δtn+1

τj

Dj :
[
En+1 − En

]
(36)

Again, for the applied finite element scheme the viscoelastic tangent matrix is required which according to (10) is

Cvel,n+1
aniso :=

∂Σn+1

∂En+1 = Cr +
N∑

j=1

1 − exp
(
−Δtn+1

τj

)

Δtn+1

τj

Dj . (37)

Therein, the relaxation function of each Maxwell element can be identified by

Ψn+1
j =

1 − exp
(
−Δtn+1

τj

)

Δtn+1

τj

, (38)

and thus (37) reduces to

Cvel,n+1
aniso = Cr +

N∑

j=1

Ψn+1
j Dj . (39)

The anisotropic viscoelastic material law for composites in summarized in Figure 8.

For each fiber orientation in the elements of the composite

• calculate the effective unrelaxed and relaxed stiffness tensorsCu andCr by two elastic simulations

• for each Maxwell-Elementk of the matrix material

– calculate the relaxation coefficients of the composite (by component):

ξj
klmn =

[
Cu

klmn

Cr
(klmn)

− 1

]
γj

γ̃
with γ̃ =

N∑

i=1

γi (VI)

– calculate the anisotropic composite matrix (by component):

Dj
klmn = ξj

klmn Cr
(klmn) (VII)

Figure 7: Preprocessing for anisotropic viscoelastic composite model

4 Numerical Examples

In the following section the viscoelastic behavior of a fiber-reinforced structure is simulated by two different
approaches and the results are compared numerically. A standard viscoelastic approach as implemented in each
finite element analysis tool is applied and compared to the model from the previous section which is able to capture
the full anisotropic relaxation behavior with respect to the local fiber-orientation. Subsequently, the first approach
is denoted as isotropic viscoelasticity, due to the fact that only the isotropic viscoelastic behavior of the matrix
material governs the viscoelastic behavior of the composite. The second approach where in each direction of the
composite the relaxation coefficients are scaled separately, is referred to as anisotropic viscoelasticity.

In the presented relaxation test a quarter of a stripe with hole as given in Figure 9 is considered. The microscopic
fiber-orientation within this example is chosen in an academic way, i.e. unidirectional in-plane fibers are consid-
ered. The orientation of the fibers is changed stepwise within ten stripes across the stripe, from fibers which are
parallel to the x-axis to fibers-parallel to the y-axis. In z-direction the fiber-orientation is kept constant. Also the
fiber volume fraction is considered constant at 5%. As mentioned before a viscoelastic PP matrix is considered
with short- and long-term moduliEu = 2.75 MPa andEr = 0.32 MPa. The Poisson’s ratio is kept constant at
ν = 0.44. The linear elastic glass fibers are characterized byE = 73 GPa andν = 0.32. For the numerical
relaxation experiment a displacementuy = 0.1 mm is applied in longitudinal direction. This displacement is held
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Initialization

• elastic stress and internal variables

Σ0
0 = Σr

0 and H0
j = H∗

j (VIII)

For each time stepΔtn

• calculate the elastic stress by using the given total strain

Σn+1
0 = Cr : En+1 (IX)

• update the internal (stress-like) variables depending on the anisotropic relaxation

Hn+1
j = exp

(

−
Δtn+1

τj

)

Hn
j +

1 − exp
(
−Δtn+1

τj

)

Δtn+1

τj

Dj :
[
En+1 − En

]
(X)

• update the total stress

Σn+1 = Σn+1
0 +

N∑

j=1

Hn+1
j (XI)

• calculate the viscoelastic stiffness tensor

Cvel,n+1
aniso = Cr +

N∑

j=1

Ψn+1
j Dj with Ψn+1

j =
1 − exp

(
−Δtn+1

τj

)

Δtn+1

τj

(XII)

Figure 8: Applied anisotropic viscoelastic composite model

Figure 9: Illustration of the inhomogeneous fiber orientation and applied boundary conditions

for ten seconds and then released. Symmetry boundary conditions are applied to the structure. It is assumed that
for each fiber-orientation in the macroscopic composite two elastic homogenization simulation have been carried
out to determine the effective unrelaxed and relaxed tangent matricesCu andCr. Furthermore, it has been incor-
porated that the normalized relaxation behavior of the composite is governed by the normalized matrix relaxation,
according to Section 3.1.
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For the isotropic viscoelastic model the relaxation coefficientsγj of the matrix material have been multiplied by

[
Cu

22

Cr
22

− 1

]
1
γ̃

with γ̃ =
N∑

i=1

γi (40)

in order to scale the behavior of the composite at least in the direction of loading, such that the normalized re-
laxation behavior of matrix and composites coincide. Here, the effective matricesCr andCu of the mean fiber-
orientation, i.e. fibers in a45◦ angle to the x-axis, are used.

Figure 10: Comparison of isotropic and anisotropic von Mises stresses

In Figure 10 the resulting von Mises stresses under applied displacements in longitudinal direction are compared.
These plots reveal that the anisotropy model yields a softer response and also a smoother stress distribution is
observed. Furthermore, the strains and stresses at the upper left corner of the structure in longitudinal direction are
compared in Figure 11. Due to the scaling, see equation (40), both approaches yield similar stresses in longitudinal
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Figure 11: Comparison of strains (left-hand side) and stresses(right-hand side) in longitudinal direction

direction. Remarkably, the anisotropic model yields a relaxation in the strains for applied constant displacements.
This observation is illustrated in more detail in Figure 12. In order to give an illustration which corresponds to the
results of measurements in true experiments, in Figure 13 the stress-strain diagramm in longitudinal direction is
given.

Finally, the resulting stresses in x-direction are compared in Figure 14. In contrast to the longitudinal stresses, here
the stress responses differ, due to the fact that the scaling of theγj has been carried out with respect to another
direction.

Thus, the condition that the normalized relaxation behavior of each component of the composite approaches the
normalized relaxation behavior of the matrix can only be guaranteed for the anisotropic approach.
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Figure 12: Comparison of displacement and strains in longitudinal direction for isotropic (left-hand side) and
anisotropic (right-hand side) model
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Figure 13: Stress-strain diagramm in y-direction
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Figure 14: Comparison of stresses in x-direction

5 Conclusion

In the current work an approach for the simulation of the macroscopic anisotropic viscoelastic behavior of fiber-
reinforced composites has been presented such that it can be implemented in standard finite element tools like
ABAQUS. An advantage of the applied method is that the local influence of the fibers like orientation and volume
fraction can be considered in the applied macro-scale finite element scheme. The influence of the fibers can be
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captured by elastic homogenization procedures in the preprocessing. Due to this preprocessing step the method is
currently limited to the linear case, nevertheless extensions to the non-linear case based on incermental schemes
are an open topic for further research. Thus, the developed method yields an efficient way to simulate time-
dependent macroscopic material behavior based on the local properties without a time consuming scale-transition
at computation time.
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