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Two Scale FE Simulation of Coated Forming Tools under
Thermo-Mechanical Loading

K.-H. Sauerland, R. Mahnken

Modern trends and challenges in manufacturing processes have led to an increasing complexity of hybrid forming
processes in the last couple of years. Besides the improvement of the thermo-mechanical process chain the appli-
cation of coated forming tools plays a crucial role in actual developments. Considering machining processes in
general the investigation of tools experienced a secondary role in the past. For example, in numerical simulations
of manufacturing processes tools are often modelled as rigid bodies. To remedy, this paper introduces a two scale
finite element model for the coating system of a coated hybrid forming tool. Within this concept individual coating
layers are considered on the mesocale and macroscopic results for the coating elements are obtained using vol-
ume averaging procedures. Two numerical examples using an implicit and an explicit integration scheme show the
capability of the model to be applied for a coated forming tool subjected to thermo-mechanical loading conditions.

1 Introduction

In the recent past the complexity of forming processes has increased by far due to the ongoing demand of high-
quality components produced under manufacturing conditions strongly related to the ambitious goals of energy
and cost efficiency. For example, two potential possibilities to enhance traditional hybrid forming processes are
improvements in the thermo-mechanical process chain (Steinhoff et al., 2005; Weidig et al., 2008) or application
of forming tools showing a higher complexity in their thermo-mechanical behavior. Considering the latter case
and generalizing it to other manufacturing processes like cutting, turning or milling, coated tools play an important
role in actual machining processes (Liu et al., 2009; Ucun and Aslantas, 2011). Besides the increasing complexity
of products and processes, additionally simulation methods have been improved in the last decades and have
become standard tools for investigation and analysis due to the upgraded availability of computational power.
Consequently, nowadays finite element simulations of workpieces, tools and machining processes have received
great attention and are actually applied for prediction of, e.g., microstructure evolutions, temperatures, cutting
forces, stresses or tool lifetimes. To motivate this paper, in the following the issues of phenomenological simulation
of bulk metal forming, multiscale methods and numerical simulation of coatings are discussed.

Phenomenological simulation of bulk metal forming processes has gained more and more attention in recent years,
since finite element software and computational hardware have been improved for several dimensions in the last
decades. Up to now, Lagrangian and Eulerian formulations, fixed meshed, adaptive refined meshed and element
free models, implicit and explicit integration schemes as well as linear and nonlinear solution procedures have
been developed at universities or in industry in order to focus on many different phenomena involved in bulk
metal forming. Intending to give a short survey on the large field of phenomenological simulations of these
processes, subsequently some publications using different approaches are addressed briefly. E.g. Li et al. (2001)
apply a Lagrangian formulation with remeshing and an implicit and explicit integration scheme for solution of the
nonlinear equations occurring during simulation of open die forging and forward extrusion processes. Contrary,
Lu et al. (2008) use an element free Galerkin method for the numerical simulation of cubic billet upsetting. In
addition, Xiong et al. (2005) perform numerical simulations of compression of cylindrical preforms using an
element free model as well as a model with a fixed finite element mesh. Moreover, Saanouni (2008) applies a fixed
finite element mesh for the two-dimensional simulation of sidepressing of cylindrical bars. To summarize the large
field of issues and applications, see for example Hartley and Pillinger (2006), phenomenological simulation of bulk
metal forming processes has become a kind of standard tool for process investigation, but the particular approaches
are quite different. Within the large amount of scientific publications particular topics as process modelling, tool
design, interface phenomena or material phenomena besides others are of main interest in current research.
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The increasing computational power in the last decades has also led to the development of multiscale methods
used for simulation of a wide range of components and processes. Within this field, a lot of scientific work has
been done by Geers et al. (Kouznetsova et al., 2001;Özdemir et al., 2008a,b). Kouznetsova et al. (2001) intro-
duce a micro-macro strategy suitable for modelling of the mechanical response of heterogeneous materials at large
deformations and non-linear history-dependent material behavior. Within this strategy there is no need to specify
the homogenized constitutive behavior, since this behavior is determined through the detailed modelling of the
microstructure.Özdemir et al. (2008a) propose a multiscale analysis method for heat transfer in heterogeneous
solids. The introduced method extends a two scale computational homogenization approach, which is applied for
the stress analysis of multi-phase solids under purely mechanical loading. Further,Özdemir et al. (2008b) apply a
two scale thermo-mechanical analysis framework for heterogeneous solids based on computational homogeniza-
tion techniques. The proposed framework does not require explixitely determined homogenized material proper-
ties, since no constitutive equations are required on the macrolevel. Additionally, multiscale methods have been
applied extensively by Miehe et al. (Miehe and Koch, 2002; Miehe and Dettmar, 2004). Miehe and Koch (2002)
investigate algorithms for the computation of homogenized stresses and overall tangent moduli of microstructures
undergoing small strains. In this context, three classical types of boundary conditions are investigated, in particular
linear displacements, constant tractions and periodic displacements combined with antiperiodic tractions. Further,
Miehe and Dettmar (2004) introduce an approach for modelling of the overall macroscopic response of periodic
granular materials based on a numerically evaluated micro-to-macro transition. In this approach a homogenized
macro-continuum with locally attached microstructure is considered, representing an aggregate of discrete solid
granules which possibly come into contact. Furthermore, many other works have been published in the past few
years concerning multiscale modelling (Allen, 2001; Feyel and Chaboche, 2000; Bobzin et al., 2006). Allen (2001)
applies homogenization principles to continuum damage mechanics. Results show a damage evolution law on the
macroscale being no longer necessary, since the damage parameters resulting from the homogenization process
are direct results of the micro-mechanical solution on the smaller scale. Feyel and Chaboche (2000) use a new
multiscale behavior model based on a multilevel finite element (FE2) approach to take into account heterogeneities
in the behavior between fibre and matrix of long fibre SiC/Ti composite materials. Results show that macro-
scopic constitutive equations are no longer necessary, if the FE2 method is applied in combination with parallel
computation, thus leading to a finite element simulation of the microstructure and on the macroscopic scale in an
appropriate time. Bobzin et al. (2006) investigate advanced homogenization strategies in material modelling of
thermally sprayed thermal barrier coatings. Results show homogenization for periodic structures combined with a
multiperiodical approach reducing significantly the calculation time compared to the homogenization based on the
physical equivalence.

In recent years many scientific works have been published concerning finite element simulation of coatings. Here,
one part is addressed to the coating formation, as the coating process affects the coating microstructure influencing
the thermo-mechanical properties of the final coating system. E.g. Lugscheider et al. (2006) investigate numer-
ically the coating formation of atmospheric plasma sprayed partially yttria stabilized zirconia. To this end they
perform a microscopic particle impact simulation and a macroscopic coating formation simulation. In addition,
Feng et al. (2000) investigate the impact of a metal droplet onto a solid surface with different surface roughnesses
using the finite element method. They apply a model based on the Lagrangian method with an automatic adaptive
remeshing technique allowing for large deformations. Contrary, Wenzelburger et al. (2004) investigate the residual
stress formation during thermal spraying. For this purpose they perform a heat transfer analysis followed by a ther-
mal stress analysis of an aluminum tube with internal coating. Besides the investigation of the coating formation
another part is addressed to the simulation of already coated parts and components. A detailed overview over the
numerical treatment of coatings and surface modification technologies is given by Mackerle (2005). E.g. Xie et al.
(2006) investigate the stress and cracking behavior of plasma sprayed thermal barrier coatings. To this end they
introduce a viscoplastic material model with a non-associative flow rule for constitutive modelling of the ceramic
thermal barrier layer. Liu et al. (2009) investigate the effects of coated tools on high speed orthogonal machining.
In the applied finite element model a perfect plastic workpiece and a rigid tool are considered. Ucun and Aslan-
tas (2011) perform numerical simulations of an orthogonal machining process using multilayer and single-layer
coated tools. Again, the cutting tool is modelled as rigid body.

In this work we introduce a two scale FE model for coated forming tools under thermo-mechanical loading. Our
intention is to combine the issues of phenomenological simulation of bulk metal forming, multiscale modelling
and numerical simulation of coatings into one common research project. Moreover, we want to direct the main
focus on the coated forming tool, since machining tools experienced a secondary role in the past. To this end we
apply an elastic and an elasto-viscoplastic material model for the forming tool substrate, which is a large extention
compared to other works using a rigid tool substrate. Additionally, a two scale model is applied for the coating
system considering several individual layers with different thermo-mechanical behavior models on the mesolevel.
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In general for two scale formulations often FE2 is applied, see e.g. Feyel and Chaboche (2000);Özdemir et al.
(2008a,b). One main disadvantage of FE2 models are large computing times leading to high computational costs.
To remedy, in our work we use a two scale model with one finite element over the coating thickness aiming
for consideration of different material models for different coating layers.In the following the thermo-mechanical
coupled two scale framework is outlined with particular emphasis on scale transitions and constitutive equations
on the mesoscale. After that, remarks on numerical implementation are briefly outlined and finally two numerical
examples are illustrated using an implicit and an explicit solution strategy.

2 Thermo-Mechanical Coupled Two Scale Framework

A two scale model is applied to the coating system of the coated hybrid forming tool, which consists of a
macroscale and a mesoscale. A schematic representation of the two scale character is illustrated in Figure 1
with basic conceptions adopted byÖzdemir et al. (2008a,b). The idea consists of a discretization of the complete
coating system within one finite element over the thickness on the macroscale. For each integration point of the
macro finite elements representing the coating a representative volume element (RVE) of the mesoscale is attached
(see Figure 3). On the mesoscale within this RVE the particular coating layers are considered with possible dif-
ferent constitutive models and different material parameters. Of course, appropriate boundary conditions have
to be transferred from the macrolevel onto the RVE of the mesolevel and, regarding the opposite case, suitable
homogenization procedures have to be applied for determination of macroscopic results from the constitutive re-
sponses on the mesoscale. For description of the thermo-mechanical coupled two scale model in the following the
macroscopic and mesoscopic boundary value problems (BVPs) and thermodynamic consistent scale transitions are
introduced.

Mesomodel,
RVE

Macro FE for
coating

MacromodelCoated forming tool

Integration
point

Locali-
zation

Homo-
genization

Substrate

Coating

Const.
response

Figure 1: Schematic representation of two scale model

2.1 Macroscopic Thermo-Mechanical Coupled BVP

In a thermo-mechanical coupled problem the basic macroscopic mechanical and thermal variables are the linear
strain tensorε and the thermal field vectorm

1. ε(u) = sym
[
∇u(x)

]
2. m = ∇Θ(x), (1)

which are defined by the displacement fieldu, by the position vectorx and by the temperatureΘ. In Eq. (1)∇ is
the macroscopic gradient operator and in the sequel of the paper∇∙ indicates the macroscopic divergence operator.
The governing equations are the balance of linear momentum and the balance of energy summarized by

1. ∇ ∙ σ + ρf = ρü 2. ρr − ∇ ∙ q + σ : ε̇ = ρė. (2)
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In Eq. (2)σ = σT is the stress tensor,ρ is the density,f is the vector of body forces,r is a heat source,q is the
heat flux vector ande is the internal energy. The dot above a scalar, vector or tensor indicates the derivative with
respect to time. Mechanical boundary conditions are given in accordance to Figure 2 by

1. u = ub on ∂Bu 2. t = σ ∙ n on ∂Bσ , (3)

and thermal boundary conditions yield

1. Θ = Θb on ∂BΘ 2. q = q ∙ n on ∂Bq . (4)

Moreover, for the solution of the macroscopic BVP initial conditions must be given, however, not specified in
this paper. In a phenomenological macroscopic framework usually a thermodynamic potential is postulated which
finally leads to constitutive equations describing the thermo-mechanical behavior of the material of interest. Here,
following e.g. Schr̈oder (2009), a representative volume element is attached at each macroscopic integration point
x, see Figure 3.

a)

x x
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∂BΘ

∂Bσ ∂Bq

n
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Figure 2: Macroscopic boundary conditions for a) mechanical problem, b) thermal problem

a)
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Θ, qε, σ
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∂RVE ∂RVE
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Figure 3: Attached RVE associated to a) mechanical quantities, b) thermal quantities

2.2 Mesoscopic Thermo-Mechanical Coupled BVP

In accordance to the macroscopic BVP on the mesoscale the basic mesoscopic mechanical and thermal variables
are the linear strain tensorε and the thermal field vectorm

1. ε(u) = sym[∇u(x)] 2. m = ∇Θ(x), (5)

which are defined by the displacement fieldu, by the position vectorx and by the temperatureΘ. In Eq. (5)∇ is
the mesoscopic gradient operator and in the sequel of the paper∇∙ indicates the mesoscopic divergence operator.
The governing equations are the balance of linear momentum and the balance of energy summarized by

1. ∇ ∙ σ + ρf = ρü 2. ρr − ∇ ∙ q + σ : ε̇ = ρė. (6)

In Eq. (6)σ = σT is the stress tensor,ρ is the density,f is the vector of body forces,r is a heat source,q is
the heat flux vector ande is the internal energy. For the solution of the mesoscopic BVP boundary conditions
and initial conditions must be given, however, not specified in this paper. Considering thermodynamic consistent
material models on the mesoscale besides the governing equations summarized in Eq. (6) additionally the entropy
inequality

−ρė + Θρη̇ + σ : ε̇ −
q ∙ m

Θ
≥ 0 (7)

must be satisfied. Therefore, Eq. (7) is further elaborated in subsection 2.4.

87



2.3 Scale Transitions

For linking between the macroscopic variables{ε, σ, Θ, q} and the mesoscopic variables{ε, σ, Θ, q} a general-
ized macro-homogeneity condition is postulated, see e.g. Hill (1963); Lee and Sundararaghavan (2009); Maugin
(1992); Ostoja-Starzewski (2002); Schröder (2009)

σ : ε̇ + q ∙ ṁ =
1
V

∫

RVE

σ : ε̇ dV +
1
V

∫

RVE

q ∙ ṁ dV. (8)

A simple assumption which satisfies Eq. (8) is obtained by setting

1. σ = σ = const. 2. q = q = const. (9)

This assumption leads to the so-called Reuss- or Sachs-bounds. Elaborating Eq. (8) leads to

σ : ε̇ + q ∙ ṁ = σ :
1
V

∫

RVE

ε̇ dV + q ∙
1
V

∫

RVE

ṁ dV (10)

and finally to

1. ε =
1
V

∫

RVE

ε dV 2. m =
1
V

∫

RVE

m dV. (11)

Alternatively, another simple assumption which satisfies Eq. (8) is obtained by setting

1. ε = ε = const. 2. m = m = const. (12)

This assumption leads to the so-called Voigt- or Taylor-bounds. Elaborating Eq. (8) leads to

σ : ε̇ + q ∙ ṁ =
1
V

∫

RVE

σ dV : ε̇ +
1
V

∫

RVE

q̇ dV ∙ ṁ (13)

and finally to

1. σ =
1
V

∫

RVE

σ dV 2. q =
1
V

∫

RVE

q dV. (14)

In addition to the above two assumptions of course different kinds of boundary condition can be applied, for
example periodic boundary conditions, see e.g. Suquet (1985).

2.4 Mesoscopic Entropy Inequality

In order to get a thermodynamically consistent model, we proceed with the Clausius-Duhem inequality (7) on the
mesoscale. Using the well-known Legendre-transformation between the internal energye and the Helmholtz free
energyΨ

Ψ = e − Θη (15)

the Clausius-Duhem inequality (7) becomes

1
ρ
σ : ε̇ − Ψ̇ − ηΘ̇ −

q ∙ m
ρΘ

≥ 0. (16)

Let the Helmholtz free energy be given by

Ψ = Ψ[εel, V i, Θ], (17)

whereV i is is a vector of scalar and tensorial hardening internal variables of strain type. Then, using the additive
decomposition of the strain tensorε = εel + εin considering an elastic partεel and an inelastic partεin the
Clausius-Duhem inequality results into

σ

ρ
: ε̇in −

(
∂Ψ
∂εel

−
σ

ρ

)

: ε̇el −

(
∂Ψ
∂Θ

+ η

)

Θ̇ −
∂Ψ
∂V i

: V̇ i −
q ∙ m
ρΘ

≥ 0. (18)
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By standard arguments (Truesdell and Noll, 1965) the following potential relations result from Eq. (18)

1. σ = ρ
∂Ψ
∂εel

, 2. η = −
∂Ψ
∂Θ

. (19)

In this wayσ andη can be regarded as thermodynamical forces. Next, considering isotropic and kinematic harden-
ing, by introduction of the hardening internal variablesα andβ for V i we define further thermodynamical forces
by

1. R = ρ
∂Ψ
∂α

, 2. X = ρ
∂Ψ
∂β

. (20)

In Eq. (20)R is the isotropic hardening stress andX is the kinematic hardening stress tensor. Then, with dissipa-
tive terms

1. Di = σ : ε̇in − Rα̇ − X : β̇, 2. DΘ = −
1
Θ

q ∙ m (21)

the Clausius-Duhem inequality (18) is rewritten as

Di + DΘ ≥ 0. (22)

A stronger condition of this inequality is introduced by setting both parts greater than zero, which results into

1. Clausius-Planck inequality:Di ≥ 0

2. Heat conduction inequality:DΘ ≥ 0.
(23)

A common approach for the heat flux vector in Eq. (21.2) is given by Fourier’s law

q = −λthm, (24)

with λth being a non-negative heat conduction coefficient. Consequently, the heat conduction inequality is satis-
fied.

In a general setting it becomes necessary to formulate evolution equations

1. ε̇in = ε̇in[σ, R, X, εin, α, β, Θ]

2. α̇ = α̇[σ, R, X, εin, α, β, Θ]

3. β̇ = β̇[σ, R, X, εin, α, β, Θ]

(25)

which are in accordance with the Clausius-Planck inequality (23.1), such that the model under consideration be-
comes thermodynamically consistent. In this work the evolution equations (25) are briefly summarized in the next
subsection. For more thermodynamic background see e.g. Chaboche (1997); Mahnken and Schlimmer (2005);
Mahnken (2010).

2.5 Mesoscopic Heat Conduction Equation

The heat conduction equation can be derived in a standard way from the energy equation (6.2). Taking into account
Eq. (15), (17), (19) and (20) yields

∇ ∙ q = σ : ε̇ + ρr − ρΘ̇η − ρΘη̇ − σ : ε̇el − Rα̇ − X : β̇ + ρΘ̇η. (26)

Finally, using the resulting relation from (19.2) and (17)

ρη̇ = −
∂σ

∂Θ
: ε̇el −

∂R

∂Θ
α̇ −

∂X

∂Θ
: β̇ − ρ

∂2Ψ
∂Θ2

Θ̇, (27)

one gets the heat conduction equation

ρcpΘ̇ + ∇ ∙ q = σ : ε̇in − Rα̇ − X : β̇ + Θ
∂σ

∂Θ
: ε̇el + Θ

∂R

∂Θ
α̇ + Θ

∂X

∂Θ
: β̇ + ρr (28)

with the heat capacity

cp = −Θ
∂2Ψ
∂Θ2

. (29)
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2.6 Derivation of Macroscopic Heat Conduction Equation

The macroscopic heat conduction equation is derived by homogenization of Eq. (28), thus leading to

1
V

∫

RVE

ρcpΘ̇ dV +
1
V

∫

RVE

∇ ∙ q dV =
1
V

∫

RVE

σ : ε̇in dV −
1
V

∫

RVE

Rα̇ dV −
1
V

∫

RVE

X : β̇ dV

+
1
V

∫

RVE

Θ
∂σ

∂Θ
: ε̇el dV +

1
V

∫

RVE

Θ
∂R

∂Θ
α̇ dV +

1
V

∫

RVE

Θ
∂X

∂Θ
: β̇ dV +

1
V

∫

RVE

ρr dV.

(30)

Applying Eq. (12.1) and (14) and the definitions for the macroscopic heat sourceρr and for the macroscopic
internal energyρe (Maugin, 1992)

1. ρr =:
1
V

∫

RVE

ρr dV 2. ρe =:
1
V

∫

RVE

ρe dV 3. ρ =:
1
V

∫

RVE

ρ dV (31)

yields

ρė + ∇ ∙ q = σ : ε̇ in −
1
V

∫

RVE

Rα̇ dV −
1
V

∫

RVE

X : β̇ dV

+
1
V

∫

RVE

Θ
∂σ

∂Θ
: ε̇el dV +

1
V

∫

RVE

Θ
∂R

∂Θ
α̇ dV +

1
V

∫

RVE

Θ
∂X

∂Θ
: β̇ dV + ρr.

(32)

Using the definitions for the macroscopic isotropic and kinematic dissipative terms

1. Rα̇ =:
1
V

∫

RVE

Rα̇ dV 2. X : β̇ =:
1
V

∫

RVE

X : β̇ dV (33)

and the definitions for the macroscopic thermo-mechanical coupling parts

1. Θ
∂σ

∂Θ
: ε̇ el =:

1
V

∫

RVE

Θ
∂σ

∂Θ
: ε̇el dV

2. Θ
∂R

∂Θ
α̇ =:

1
V

∫

RVE

Θ
∂R

∂Θ
α̇ dV

3. Θ
∂X

∂Θ
: β̇ =:

1
V

∫

RVE

Θ
∂X

∂Θ
: β̇ dV

(34)

finally leads to the macroscopic heat conduction equation

ρė + ∇ ∙ q = σ : ε̇ in − Rα̇ − X : β̇ + Θ
∂σ

∂Θ
: ε̇ el + Θ

∂R

∂Θ
α̇ + Θ

∂X

∂Θ
: β̇ + ρr. (35)

2.7 Constitutive Equations on Mesoscale

Within the applied multiscale model the constitutive equations are formulated on the mesoscale leading to possible
different material models for different layers of the coating system shown in Figure 1. Therefore, the following
subsections summarize briefly the material models being applied in the latter numerical examples.
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2.7.1 Thermo-Elastic Material Model

The most simple material model applied in this work is a thermo-elastic material model. Thermo-elastic material
behavior is summarized by

1. Ψ = Ψel + Ψth = 1
2ρεel : Cel : εel − 1

ρεel : Cel : εth

2. ε = εel + εth, εth = αthΘ1

3. σ = Cel :
(
εel − εth

)

4. Cel = K1 ⊗ 1 + 2GIdev

5. κel = [G,K,αth].

(36)

Eq. (36.1) states Helmholtz free energy and Eq. (36.2) yields the additive decomposition of the total strain tensor
using the elastic strain tensor and the thermal expansion strain tensorεth. Further, Eq. (36.3) defines the stress
tensor following (19.1), Eq. (36.4) constitutes the elasticity tensorCel using the second-order unit tensor1 and the
deviatoric part of the fourth-order unit tensorIdev and Eq. (36.5) summarizes the material parameters, in particular
the shear modulusG, the bulk modulusK and the coefficient of thermal expansionαth.

2.7.2 Thermo-Elasto-Viscoplastic Material Model

The thermo-elasto-viscoplastic material model is an extension of the thermo-elastic material model. Thermo-
elasto-viscoplastic material behavior is summarized by

1. Ψ = Ψel + Ψvp + Ψth = 1
2ρεel : Cel : εel + 1

2ρ (H3α
2 + H1β : β) − 1

ρεel : Cel : εth

2. ε = εel + εvp + εth, εth = αthΘ1

3. σ = Cel :
(
εel − εth

)
, X = H1β, R = H3α

4. ε̇vp = 3
2γn, n = σdev−X

||σdev−X ||

5. Φ =
√

3
2 ||σ

dev − X|| − R − Y0, Φ∗ = Φ + H4
2H3

R2 + H2
2H1

X : X

6. γ =
〈

Φ
Kλ

〉m

7. Ẋ = H1ε̇
vp − H2Xγ, Ṙ = H3γ − H4Rγ

8. κvp = [G,K, Y0,Kλ,m,H1, H2, H3, H4, α
th]

(37)

In addition to the thermo-elastic material model Eq. (37.3) defines further thermodynamical forcesX andR. Eq.
(37.4) constitutes the flow rule using the flow factorγ and the flow directionn defined by the deviatoric part of the
stress tensorσdev and by the back stress tensorX. Further, Eq. (37.5) yields the overstress functionΦ considering
a von Mises type flow condition and the plastic potentialΦ∗. The flow factor is obtained by Eq. (37.6), Eq. (37.7)
represents the evolution equations for kinematic and isotropic hardening stresses and Eq. (37.8) summarizes the
material parameters, in particular the yield strengthY0, Kλ andm related to rate-dependency,H1 andH2 related
to kinematic hardening andH3 andH4 related to isotropic hardening.

2.7.3 Thermo-Elasto-Viscoplastic Material Model with Damage

The thermo-elasto-viscoplastic material model with damage is an advanced thermo-elasto-viscoplastic material
model, which was originally applied for the simulation of strength difference effects in elasto-plasticity for adhesive
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materials (Mahnken and Schlimmer, 2005; Mahnken, 2010). Within this framework

1. Ψ = Ψel + Ψvp + Ψth = 1
2ρεel : Cel : εel + q

ρ

(
ev + 1

b
e−bev

)
+ 1

2ρHe2
v − 1

ρεel : Cel : εth

2. ε = εel + εvp + εth, εth = αthΘ1

3. σ = Cel :
(
εel − εth

)
(38)

describes Helmholtz free energy, the concept of additive decomposition of the strain tensor for a geometrical linear
theory as well as thermo-elastic material behavior. Furthermore,

1. Φ = Jeff
2 − 1

3ϕ

2. ϕ = Y 2 − a1Y0I
eff
1 − a2(I

eff
1 )2

3. Ieff
1 =

I1

W
, Jeff

2 =
J2

W

4. I1 = 1 : σ, J2 = 1
21 : (σdev)2

5. Y = Y0 + R(ev)

6. R(ev) = q(1 − e−bev ) + Hev

(39)

defines the yield functionΦ, which depends on the first invariant of the stress tensorI1, on the second invariant of
the deviatoric stress tensorJ2, on an isotropic hardening stressR driven by a strain-like internal variableev and
on an independent scalar damage variableW . In order to account for a non-associative flow rule, additionally a
plastic potential is introduced by

1. Φ∗ = J2 − 1
3ϕ∗

2. ϕ∗ = Y 2 − a∗
1Y0I1 − a∗

2I
2
1

(40)

with the same mathematical structure as the yield function. For evolution of the viscoplastic strain tensor, the rate
equation given by

1. ε̇vp = γ ∂Φ∗

∂σ
= γσdev + γg1

2. g = 1
3 (a∗

1Y0 + 2a∗
2I1)

(41)

is derived from the plastic potential. Additionally, the plastic multiplier is obtained from

γ = Kλ 〈Φ〉m . (42)

In order to formulate a rate equation for the strain-like internal variableev the expression of equivalence of dissi-
pated power as constituted by

ėvY = σ : εvp ⇒ ėv =
1
Y

σ : εvp =
γ

Y
(gI1 + 2J2) (43)

is postulated. This leads to an additive decomposition of the strain-like internal variable according to

ėv = ėv
vol + ėv

dev =
γ

Y
gI1 + 2

γ

Y
J2. (44)

The independent scalar damage variableW is decomposed multiplicatively according to

W = W vol ∙ W dev. (45)

The undamaged case is described byW = 1 and the damaged case is described byW = 0. The deviatoric part is
postulated considering

W dev =

{
1, if edev

v ≤ edev

exp(∗wdev(edev − edev
v )ndev

), if edev
v > edev

, (46)
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whereedev is a threshold value andndev is an exponent. Using the additional material parameterswdev andddev

an additional scalar damage value is introduced by

∗wdev =






edev
v − edev

ddev wdev, if edev
v ≤ edev + ddev

wdev, if edev
v > edev + ddev

. (47)

Analogously, volumetric softening is introduced according to

W vol =

{
1, if evol

v ≤ evol

exp(∗wvol(evol − evol
v )nvol

), if evol
v > evol

(48)

with

∗wvol =






evol
v − evol

dvol wvol, if evol
v ≤ evol + dvol

wvol, if evol
v > evol + dvol

. (49)

Furthermore, another dependent damage variable is introduced by

D = 1 − W. (50)

Finally, the vector of material parameters is given by

κvpd = [G,K, Y0, H, b, q, a1, a
∗
1, a2, a

∗
2,Kλ,m, edev, wdev, ddev, ndev, evol, wvol, dvol, nvol, αth]. (51)

2.8 Remarks on Thermal Material Model

For all layer materials and for the substrate of the forming tool the thermal constitutive material model considers
Fourier heat conduction, see Eq. (24). For implicit calculations using the elasto-viscoplastic material model with
damage for one or more specific layers of the coating system the dependent damage variableD is incorporated into
the thermal constitutive model with respect of simulating a modified heat flux through a partially damaged coating
layer. This idea is adopted from̈Ozdemir et al. (2010), who model a reduction in effective conductivity resulting
from a partially open cohesive crack. In our work the implementation considers a reduced volume of the damaged
layer according to

V red = (1 − D)2 ∙ V (52)

leading to a reduced influence of the damaged layer on the homogenization process of the macroscopic heat flux.

3 Remarks on Numerical Implementation

This section briefly illustrates the implementation of the two scale finite element model for numerical simulation
of coated hybrid forming tools using an implicit solution strategy. The two scale model is defined using the umat-
interface of the commercial finite element software Abaqus/Standard.

Following standard integration procedures in finite element techniques a strain-driven algorithm is considered,
where the total strainn+1ε and initial valuesnεvp,n γ,n ev are given at each time stepnt. Then it is the object
to find the corresponding quantitiesn+1εvp,n+1 γ,n+1 ev at timen+1t consistent with the respective constitutive
equations and to update the stressesn+1σ. Additionally, the algorithmic tangent modulin+1C = ∂σ/∂ε must
be updated for application of a Newton method for iterative solution of the global equlibrium problem on the
mesolevel. A detailed description of the applied integration schemes for the particular material models is given in
Mahnken (1999); Mahnken and Schlimmer (2005); Mahnken (2010) and therefore will not be elaborated further
in this paper.

After updating the stresses, history variables and the algorithmic tangent moduli on the mesolevel their macro-
scopic counterparts are calculated using Eq. (14.1) at timen+1t for n+1σ and

C =
1
V

∫

RVE

C dV (53)
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at time n+1t for n+1C. Due to the quite simple geometry of the RVE shown in Figure 4 the stresses and the
algorithmic tangent modulus on macro level are finally calculated by

1. σ =
1
H

nL∑

i=1

hiσ, 2. C =
1
H

nL∑

i=1

hiC. (54)

hiH

1

i

nL

Figure 4: Representative volume element of coating system

Here it should be remarked that within the applied finite element code the material parameters{αth, ρ, λth, cp}
can only be specified in terms of their macroscopic counterparts{α th, ρ, λ th, cp}, except for{λth, cp} when
simulating the modified heat flux through a partially damaged coating layer for implicit calculations. This leads to
the restrictions

1. αth = α th = const. 2. ρ = ρ = const.

3. λth = λ th = const. 4. cp = cp = const.
(55)

4 Numerical Examples

The ensuing subsections show two numerical examples with application of the two scale approach for coated
forming tools onto the coating elements. In the applied two scale approach the Taylor-assumption (12) is used.
The coating system of the coated forming tool under investigation consists of a metallic NiCr layer and a porous
ceramic Al2O3 layer applied by thermal spraying, and finally a Cr-CrAlN layer is applied using physical vapor
deposition. Since no experimental data for the layer materials are available up to now in the numerical examples
artificial material parameters are utilized. Nevertheless, the elasto-viscoplastic material model with damage is
applied with respect to simulate the material behavior of the porous ceramic layer.

The first example uses an implicit solution strategy due to model the modified heat flux through a partially damaged
coating layer using an additional user-subroutine for the thermal constitutive behavior. The second example uses
an explicit solution strategy due to model coating failure by element deletion caused by a damaged coating layer
using a user-defined element deletion criterion.

Here it should be remarked that the dissipative terms and the thermo-mechanical coupling terms in the heat con-
duction equation (28) are neglected in the numerical examples. Moreover internal heat sources are unregarded on
the mesoscale, thus leading to the resulting heat conduction equation

−∇ ∙ (−λth∇Θ) = ρcpΘ̇. (56)

Due to the neglection of the thermo-mechanical coupling terms a staggered solution strategy is applied. Within
this strategy first the thermal problem is solved for a small temperature increment and then the mechanical solution
is updated.

4.1 Coated Steel Volume Element

The example model consists of a viscoplastic steel substrate with a coating system built-up of three coating layers.
The steel substrate is a cube with a side length of 10 mm for each lateral side and a heigth of 9 mm (see Figure 5).
The coating system is a rectangular plate with a side length of 10 mm for each lateral side and a thickness of 1 mm.
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On the mesolevel, the coating system is built-up of an elastic layer, a viscoplastic layer and a viscoplastic layer
with damage. The individual layer thicknesses are 0.3 mm, 0.1 mm and 0.6 mm, respectively. Since the Taylor
assumption is applied in the two scale model the order of the layers has no influence on the numerical results.
The mechanical material parameters are summarized according to Table 1. The first line states the mechanical
material parameters used for the substrate and the subsequent lines state the mechanical parameters used for the
coating layers. Since thermal expansion strains are not considered in this example the values for the coefficients
of thermal expansion are omitted in Table 1. For the substrate and for the coating the density is chosen constant
with 7 850 kg/m3. Further, for the substrate the conductivity is chosen constant with 25 W/mK and specific heat is
chosen constant with 460 J/kgK. The individual layer conductivities are 25 W/mK for the elastic and viscoplastic
layer and 1 W/mK for the viscoplastic layer with damage indicating that this layer should represent a thermal
barrier layer (TBL). For all layer materials specific heat is chosen constant with 460 J/kgK. The simulation is
carried out twice with two different sets of parameters for the damage model of the TBL. If damage parameter set
A is used damage is not activated in this example and if damage parameter setB is used damage is activated in this
example. For connection between the substrate element and the coating element a tie constraint is applied. In the
implicit thermo-mechanical coupled simulation two loading steps are applied, first a mechanical loading step for
1 s for possible damage activation in the TBL and then a thermal loading step for 9 s for investigation of possible
different heat fluxes through the coating system with and without damage activation in the TBL. According to
Figure 5 the mechanical loading is realized by a predetermined displacement of 1.2 mm of the top surface of the
coating element, while the bottom surface of the substrate and all vertical surfaces of the substrate and of the
coating are fixed in normal directions. The thermal loading is realized by a predetermined surface temperature of
the top surface of the coating element of 1 000◦C, while the starting temperature of the whole model is 20◦C. The
substrate and the coating are discretized each with one standard hexahedral element with linear geometric order
and with thermal and mechanical degrees of freedom (C3D8T).

a)

u = 1.2 mm

10 mm 10 mm

10 mm

b)

Θ = 1 000◦C

ΘN

coating withnL = 3

substrate

Figure 5: Coated steel volume element, a) geometry and mechanical loading, b) thermal loading (on boundary
conditions see text)

Table 1: Steel volume element: mechanical material parameters with damage parameter setB

κvp : G [MPa] K [MPa] Y0 [MPa] Kλ [MPa] m [-] H1 [MPa] H2 [MPa] H3 [MPa] H4 [MPa]
80 769 175 000 930 10−9 2 73 393 128 -28 261 128

κel : G [MPa] K [MPa]
83 076 180 000

κvp : G [MPa] K [MPa] Y0 [MPa] Kλ [MPa] m [-] H1 [MPa] H2 [MPa] H3 [MPa] H4 [MPa]
80 769 175 000 930 10−9 2 73 393 128 -28 261 128

κvpd : G [MPa] K [MPa] Y0 [MPa] H [MPa] b [-] q [MPa] a1 [-] a∗
1 [-] a2 [-]

69 231 150 000 400 800 3 500 0.2 0.2 0.3

a∗
2 [-] Kλ [MPa] m [-] edev [-] wdev [-] ddev [-] ndev [-] evol [-] wvol [-]
0.3 10−9 2 0.002 2 000 10−9 3 0.002 2 000

dvol [-] nvol [-]
10−9 3
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Results of the two simulations with and without damage activation are illustrated according to Figure 6. Figure 6 a)
shows increasing values of the volumetric and deviatoric parts of the internal strain-like variable of the TBL leading
to increasing values of the volumetric and deviatoric parts of the dependent damage variableD for the simulation
with damage activation using damage parameter setB. Finally, the dependent damage variableD reaches values of
over 90 % at the end of the simulation. Additionally, Figure 6 b) compares the macroscopic temperature evolution
at positionΘN introduced in Figure 5 b) with and without activation of mesoscopic damage in the TBL. Without
damage activation the maximum temperature reads 720◦C at the end of the simulation and with damage activation
the maximum temperature reads 870◦C at the end of the simulation. To summarize, damage of the TBL leads to
higher temperatures in the substrate.
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Figure 6: Steel volume element, a) internal variableev and dependent damage variableD of TBL with damage
activation, b) macroscopic temperature evolution atΘN with and without damage activation

4.2 Coated Hybrid Forming Tool

The example model consists of an elastic substrate with a coating system built-up of two coating layers. The
geometries of the substrate and the coating are illustrated in Figure 7. The substrate has a thickness of 9 mm
and the coating has a thickness of 1 mm. On the mesolevel, the coating system is built-up of an elastic layer
and a viscoplastic layer with damage. The individual layer thicknesses are 0.2 mm and 0.8 mm, respectively.
The mechanical material parameters are summarized according to Table 2. The first line states the mechanical
material parameters used for the substrate and the subsequent lines state the mechanical parameters used for the
coating layers. The parameters for the damage model of the viscoplastic layer with damage are chosen in a
way that there is damage activation in the example model. For the substrate and for the coating the density is
chosen constant with 7 850 kg/m3, the conductivity is chosen constant with 25 W/mK and specific heat is chosen
constant with 460 J/kgK. For connection between substrate and coating a tie constraint is applied. In the explicit
thermo-mechanical coupled simulation two loading steps are applied, first a thermo-mechanical loading step for
1 s and then another thermo-mechanical loading step for 1 s. Since this example is quasi-static, a constant mass
scaling factorf = 1000 is applied to the whole model for both loading steps due to decrease the calculation
time. According to Figure 7 b) the mechanical loading is realized by a homogeneous predetermined pressure of
400 MPa applied to the light grey and dark grey region on the forming surface in the first loading step. In the second
loading step a pressure of 600 MPa is predetermined on the dark grey region indicating inhomogeneous mechanical
loading conditions. Additionally, according to Figure 7 b) the thermal loading is realized by a homogeneous
predetermined temperature of 400◦C applied to the light grey and dark grey region on the forming surface in the
first loading step. In the second loading step a temperature of 600◦C is predetermined on the dark grey region
indicating inhomogeneous thermal loading conditions. Aiming to achieve a realistic bearing the bottom surface of
the substrate is fixed in normal direction. The starting temperature of the whole model is 20◦C. Furthermore, in
this explicit calculation a user-defined element deletion criterion is applied. Elements are deleted, if the dependent
damage variableD exceeds 60 %. The substrate is discretized with 11 880 hexahedral standard elements with linear
geometric order and with thermal and mechanical degrees of freedom (C3D8T) and the coating is discretized with
3 960 elements of the same type.

Results of the simulation are illustrated in Figure 8 and Figure 9. Figure 8 left shows the distribution of temperature
and Figure 8 right shows the distribution of von Mises stress during the second loading step. Additionally, Figure
9 left illustrates the distribution of the deviatoric part of the internal variableedev

v and Figure 9 right illustrates the
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a)

10 mm

A:A

15 mm

R5

A A
65 mm

b)

15◦

80 mm

Figure 7: Coated hybrid forming tool, a) geometry, b) area for thermal and mechanical loading (on boundary
conditions see text)

Table 2: Hybrid forming tool: mechanical material parameters

κel : G [MPa] K [MPa] αth [1/K]
80 769 175 000 20×10−6

κel : G [MPa] K [MPa] αth [1/K]
69 231 150 000 12×10−6

κvpd : G [MPa] K [MPa] Y0 [MPa] H [MPa] b [-] q [MPa] a1 [-] a∗
1 [-] a2 [-]

69 231 150 000 400 500 1 0 0.4 0.4 0.6

a∗
2 [-] Kλ [MPa] m [-] edev [-] wdev [-] ddev [-] ndev [-] evol [-] wvol [-]
0.6 10−9 2 0.0005 5×106 0.0001 3 0.0005 5×106

dvol [-] nvol [-] αth [1/K]
0.0001 3 12×10−6

distribution of the dependent damage variableD. Since the temperature is directly specified in terms of thermal
boundary conditions applied onto the top surface of the coating resulting temperatures are between 20◦C (initial
condition) and 600◦C (boundary condition). Maximum resulting von Mises stresses occur below the loaded area
of the coating in the substrate, since this material is modelled purely elastic, thus leading to higher stresses in the
substrate than in the coating. Of course results for the deviatoric part of the internal variableedev

v and for the
dependent damage variableD are only obtained for the coating, since this material is modelled using the elasto-
viscoplastic material model with damage. Maximum values for the damage variable are smaller than 60 % since
elements with values exceeding this barrier are deleted. To summarize, the inhomogeneous thermal and mechanical
boundary conditions lead to an inhomogeneous mechanical stress and strain fields, thus leading to inhomogeneous
element deletion indicating failure of the coating system. Failure begins in that region, which is loaded maximum
and then it follows the path of the loaded circle until finally large parts of the coating have failed.
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Figure 8: Hybrid forming tool, left: evolution of temperature, right: evolution of von Mises stress, a), b) at the
beginning of step 2, c) to j) during step 2, k, l) at the end of step 2
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Figure 9: Hybrid forming tool, left: evolution of deviatoric part of internal variableedev
v , right: evolution of

dependent damage variableD, a), b) at the beginning of step 2, c) to j) during step 2, k, l) at the end of step 2
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5 Summary and Conclusions

A two scale finite element model for coated hybrid forming tools has been introduced, which considers several
individual coating layers on the mesoscale. On the macroscale the coating system is discretized within one finite
element over the complete coating thickness, thus leading to a reduction of computational costs. Scale transitions
for the thermal and for the mechanical problem are outlined, e.g. using Taylor assumptions for the localization pro-
cess and volume averaging procedures for the homogenization process. The applied mechanical material models
on the mesoscale are briefly outlined and the incorporation of a mesoscopic damage variable into the macroscopic
thermal material model for modelling a modified heat transfer through a partially damaged layer in an implicit
setting is introduced. Remarks on numerical implementation are briefly outlined and two numerical examples are
addressed using an implicit and an explicit solution strategy. Results show the capability of the proposed model to
be applied for coated forming tools subjected to thermo-mechanical loading conditions.

Our future work is directed to parameter identification for the individual coating layers considering a particular
coating system applied onto the substrate of the forming tool. Another goal is the finite element simulation of
an industrial hybrid forming process using the introduced two scale framework for coated forming tools. Finally,
experimental validation of the simulation will be carried out and lifetime estimation of the coated hybrid forming
tool will be performed using numerical results as input quantities for thermo-mechanical fatigue (TMF) tests.
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Weidig, U.; Hübner, L.; Steinhoff, K.: Bulk steel products with functionally graded properties produced by differ-
ential thermo-mechanical processing.Steel Research, 79, (2008), 59 – 65.

Wenzelburger, M.; Escribano, M.; Gadow, R.: Modeling of thermally sprayed coatings on light metal substrates:
Layer growth and residual stress formation.Surf. Coating Tech., 180-181, (2004), 429 – 435.

Xie, W.; Jordan, E.; Gell, M.: Stress and cracking behavior of plasma sprayed thermal barrier coatings using an
advanced constitutive model.Comput. Struct., 83, (2006), 574 – 587.

Xiong, S.; Liu, W.; Cao, J.; Li, C.; Rodrigues, J.; Martins, P.: Simulation of bulk metal forming processes using
the reproducing kernel particle method.Mater. Sci. Eng. A, 419, (2005), 50 – 58.

Address:Dipl.-Ing. Kim-Henning Sauerland and Prof. Dr.-Ing. Rolf Mahnken, M.Sc., Lehrstuhl für Technische
Mechanik, Universiẗat Paderborn, D-33098 Paderborn.
email: sauerland@ltm.upb.de; mahnken@ltm.upb.de.

101


