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Abstract

In one of the last stages of paper production the surface of the paper is refined in calenders. The paper is compressed
in the nip by rollers which sometimes tend to exhibit self-excited vibrations. These vibrations may lead to wear
and dramatically reduce the durability of the expensive rollers. The reason for the self-excited vibrations is to be
found in the interaction of the rollers with the paper. The interaction process in the nip is very complex and has
not been completely understood from a mechanical point of view. The purpose of this paper is to develop simple
mechanical models of the nip which can lead to an explanationof the phenomenon.

1 Introduction

The process of paper calendering is one of the last steps in paper production. In the nip between two calender rolls,
the coarse paper is heated and compressed in order to refine its surface, making it suitable for modern printers or
further applications. A detailed description of the process can be found in (1). Due to the interaction of the paper
and the rollers, self-excited vibrations may arise, leading to wear and decreasing the durability of the rollers.

Different excitation mechanisms are proposed in the literature. One line of reasoning suggests self-excited vibra-
tions due to delay terms in the equations of motion caused by wear (cf. (2) and the references therein). Another
explanation is sought in the occurrence of nonconservativeforces in the nip, transferring energy from the rotation
of the rollers to vibrations of the system.

Taking into account nonconservative forces in the nip, self-excitation can be substantiated without heuristic wear
models. In (3; 4) BROMMUNDT aims in this direction and models the rollers as rotating elastic rings. Using a
simple paper model and assuming slip between the paper and the rollers, the nonlinear equations of motion of the
system are derived and self-excitation is shown by numerical integration of the equations of motion.

The purpose of this paper is to develop models which allow fora systematic stability analysis, without having to
perform a numerical integration of the equations of motion.In a first step, the rollers are modeled as rigid cylinders
and the paper is considered as inextensible in the horizontal direction. This causes slip between the paper and the
rollers, yielding a similar excitation mechanism as in (3; 4). Since it is doubtful weather slip between the paper
and the rollers is a realistic assumption, a paper model which allows for shear deformations is considered in a next
step. It is shown that self-excitation is possible in this case as well.

2 Single rigid roller with inextensible paper

In this section, a single rigid roller in frictional contactwith inextensible paper is considered (Figure 1). In a first
step for symmetry reasons a model of only one rigid roller in contact with the paper web is considered and the
velocity of the mid surface of the paper is prescribed. As a consequence all parameters correspond to half of the
paper thickness. The roller is supported by two prestressedlinear springs (stiffnesskx, ky, prestressFx0, Fy0) and
rotates at constant angular velocityΩ. The paper, represented by an elastic foundation (bedding coefficientkby),
moves at constant velocityv in horizontal direction (Figure 2). Each material point characterized by the coordinate
ξ on the surface of the paper undergoes displacementsu(ξ, t) perpendicular to the neutral inextensible fibre of the
paper only. A shear deformation of the paper is thus neglected. The points in the nip are characterized by the
coordinates defined in Figure 1. In the nip, the paper is compressed and then leaves the nip at its narrowest point,
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Figure 1: Rigid roller in contact with idealized paper

maintaining its minimum thicknesshmin. The truncation at the end of the nip takes care of the plasticdeformation
of the paper.

In order to keep the model simple, the deformation process ofthe paper in the nip is modeled as quasi-stationary.
This means that the forces acting on the roller are calculated from a stationary process arising in the current
dynamical state of the system. This assumption is justified taking into account the fact that the period of the
vibration is about seventy times the time a material point ofthe paper spends in the nip. The ratio is calculated
from the parameters used for the calculations in section 3 with a paper velocity of 800 m/s and a frequency of the
resulting unstable mode of approximately 30 Hz. For a frequency of 200 Hz, the period of the vibration is still
over ten times larger than the time a material point of the paper spends in the nip. Therefore the stationary process
is reached almost instantaneously (i.e. in a small fractionof the time a point spends in the nip). Regarding the fact
that the nip angle is about one degree, this is also intuitively clear. Without the assumption of a quasi-stationary
process, the equations of motion would not only depend on thecurrent state of the system but also on the loading
history of the elements of the paper after entering the nip.

The two coordinates of freedomx andy of the roller center are measured from the prestressed steady state con-
figuration characterized by a paper thicknessh0 at the narrowest point of the nip. The thickness of the paper at a
point defined by the coordinates in the nip is given by

h(s, y) = r + hmin −
√

r2 − s2 (1)

where

hmin = h0 + y (2)

is the thickness at the end of the nip. The relations=r sinα yields

h(α, y) = h0 + r(1 − cos α) + y (3)

and withh(α̂, y)=h1 one obtains

cos α̂ = 1 −
h1 − h0 − y

r
. (4)

Excluding shear deformations of the paper there is at most one point of vanishing relative velocity between the
paper and the roller, as follows from kinematical reasons. If the relation

ẋ + Ωr cos αst = v (5)

v

kby

u(ξ, t)

ξ

Figure 2: Paper model (inextensible and without shear deformation)
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Figure 3: Contact forces between the roller and the paper

holds for some value ofαst with 0<αst <α̂, this does in fact correspond to a point of vanishing relative velocity
in the nip. At all other contact points between roller and paper there is sliding friction and the relative velocity
determines the direction of the friction forces (cf. Figure3). In the regionα<αst indicated by the subscripta the
roller activelydrives the paper; in the regionα>αst indicated by the subscriptp the roller is driven by the paper
(p stands for a rollerpassivelydriven by the paper).

Using COULOMB’s law, the distributed contact forces at a contact point in the nip parameterized byα can be
calculated from a force balance at a segment of the paper as

Na =
kby

(

h1 − h
)

cos α + µ sin α
, Ra = µNa , (6a)

Np =
kby

(

h1 − h
)

cos α − µ sin α
, Rp = µNp . (6b)

From NEWTON’s law, the equations of motion of the roller can be derived as

mẍ + kxx = Fx0 +

∫ αst

0

Na(sin α − µ cos α)r cos α dα

+

∫ α̂

αst

Np(sin α + µ cos α)r cos α dα , (7a)

mÿ + kyy = Fy0 +

∫ α̂

0

kby

(

h1 − h
)

r cos α dα , (7b)

where the distributed contact forces were summed over the nip by integration. The forces acting at the point of
sticking do not change the value of the integral, since they occur on a set of measure zero.

To determine the stability of the trivial solution, the equations of motion are linearized with respect tox, y, ẋ, ẏ
around the steady state configuration. From (4) and (5) one obtains the functionŝα(y), αst(ẋ) and the boundaries
of the integrals in (7) have to be differentiated according to LEIBNIZ ’s rule. For the case0<αst(0)<α̂(0), i.e. in
which a point of vanishing relative velocity exists in the nip, the linearized equations of motion read

[

m 0
0 m

][

ẍ
ÿ

]

+

[

fd 0
0 0

][

ẋ
ẏ

]

+

[

kx kbyrfk1

0 ky + kbyr sin α̂0

][

x
y

]

=

[

0
0

]

(8)

with the abbreviationŝα0 = α̂(0), αst0 =αst(0) and

fd = µkby

h1 − h0 − r(1 − cos αst0)

Ω

cos αst0 + cos 3αst0

sin αst0

(

cos αst0 − µ2 sin αst0

) , (9a)

fk1 =

∫ αst0

0

sin α − µ cos α

cos α + µ sin α
cos α dα +

∫ α̂0

αst0

sinα + µ cos α

cos α − µ sin α
cos α dα . (9b)
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It is interesting to note that a positive semidefinite damping matrix arises due to the derivative of the integral
boundariesαst. The damping term is absent if the relative velocity betweenthe paper and the roller does not
vanish at any point in the nip. In this case the linearized equations of motion are

[

m 0
0 m

][

ẍ
ÿ

]

+

[

kx kbyr fk2

0 ky + kbyr sin α̂0

][

x
y

]

=

[

0
0

]

(10)

with

fk2 =

∫ α̂0

0

sinα ∓ µ cos α

cos α ± µ sin α
cos α dα , (11)

where the upper sign holds for the roller actively driving the paper, i.e.v <Ωr cos α, and the lower sign holds for
the roller being passively driven by the paper, i.e.v>Ωr cos α over the whole nip.

Both, (8) and (10), feature a one-sided coupling due to the truncation of the paper at the end of the nip and due
to the fact that the contact forces depend exclusively ony and not onx. The asymmetry of the stiffness matrix
holds even forµ=0. This shows that the nonconservative character of the restoring term is not exclusively due
to friction but originates from the relative motion of the material points of the paper and the roller which contact
each other in the nip. This is a major difference compared to models in which the nip is modeled as a single spring
connecting two material points leading to symmetric matrices.

Considering exactly the present equations of motion, instability of the trivial solution, i.e. self-excitation, only
occurs for (10) if the diagonal elements of the stiffness matrix are equal. Double eigenvalues then arise leading
to JORDAN blocks of the corresponding first order system. However, additional small coupling of the equations
of motion by damping or other neglected effects, can instantaneously cause instability. In this context we note
that we have not introduced damping in the suspension of the rollers which certainly will yield a coupling of the
linearized equations of motion. In this context, the model of a single rigid roller with inextensible paper might
indicate the origin of a possible self-excitation, but the restriction to one roller possibly hides important effects,
such as an additional coupling of the equations of motion. Therefore, an extended model consisting of two rollers
is considered in the following section.

3 Two rigid rollers with inextensible paper

The model depicted in Figure 4 consists of two rollers (radiiri, degrees of freedomxi, yi, i=1, 2) and the paper
web modeled as in the previous section. The speed of rotationof the rollers is prescribed byΩ1 andΩ2 respectively
and the velocity of the paper isvet with constant magnitudev.

In the steady state all displacements are zero, the centers of the rollers are aligned vertically and the paper has the
thicknessh0 at the end of the nip (s=0). In the dynamic case, the thicknesshmin of the paper at (s=0) follows
from

(x2 − x1)
2 + (r1 + r2 + h0 + y1 + y2)

2 = (r1 + r2 + hmin)2. (12)

The trigonometric functions of the angleα0 corresponding tos=0 are

tan α0 =
x2 − x1

r1 + r2 + h0 + y1 − y2
, sinα0 =

x1 − x2

r1 + r2 + hmin
(13)

and the thickness of the paper as a function ofs is

h = r1 + r2 + hmin −

√

r2
1 − s2 −

√

r2
2 − s2 . (14)

In the following, it will be convenient to express the paper thicknessh as a function of the anglesα1 andα2 as

h = hmin + r1(1 − cos(α1 − α0) + r2(1 − cos(α2 + α0))), (15)

whereα1 andα2 are defined in Figure 4 and are related tos by

s = r1 sin(α1 + α0) = r1(sin α1 cos α0 + cos α1 sin α0), (16a)

s = r2 sin(α2 − α0) = r2(sin α2 cos α0 − cos α2 sin α0). (16b)
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The angleŝα1 andα̂2 can be determined from (15) using the conditionh(α̂i)=h1 (i=1, 2).

In order to calculate the contact forces between the paper and the rollers sketched in Figure 5 one needs the
velocities of points on the surface of the roller given by

v1(α1) = ẋ1ex + ẏ1ey + Ω1ez × r1(− sin α1ex − cos α1ey), (17a)

v2(α2) = ẋ2ex + ẏ2ey − Ω2ez × r2(− sin α2ex + cos α2ey). (17b)

As in the previous section there is at most one point of vanishing relative velocity between each roller and paper
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Figure 4: Two rigid rollers in contact with idealized paper
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Figure 5: Contact forces between the rollers and the paper (Fbn denotes the force in the paper element)
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defined by the conditions

v1(αst1) · et = v, (18a)

v2(αst2) · et = v. (18b)

If at least one of these conditions is fulfilled for

−α0 < αst1 < α̂1, (18c)

α0 < αst2 < α̂2, (18d)

respectively, there is indeed a point of sticking between the paper and the corresponding roller, and the friction
force inverts its direction in the nip. The distributed contact forces can be calculated from a force balance at an
infinitesimal element of the paper and read

N1a =
Fbn(α1)

cos(α1 + α0) + µ sin(α1 + α0)
, R1a = µN1a, (19a)

N1p =
Fbn(α1)

cos(α1 + α0) − µ sin(α1 + α0)
, R1p = µN1p (19b)

for the upper and

N2a =
Fbn(α2)

cos(α2 − α0) + µ sin(α2 − α0)
, R2a = µN2a, (19c)

N2p =
Fbn(α2)

cos(α2 − α0) − µ sin(α2 − α0)
, R2p = µN2p (19d)

for the lower roller, where the subscriptsa andp refer again to the roller actively driving the paper and the roller
being passively driven by the paper, respectively. The expressionFbn(α) denotes the force in a paper element in
en-direction at positionα. It represents the material behavior of the paper and can be prescribed as an arbitrary
function of α. Having in mind the elastic foundation, a straightforward choice is the dependence on the paper
thickness

Fbn(α1,2) = f(h(α1,2)). (20)

The equations of motion then follow from NEWTON’s law. For the upper roller they are

m1ẍ1 + k1x x1 + d1x ẋ1 = F1x0 +

∫ αst1

−α0

(

N1a(sin α1 − µ cos α1)r1 cos α1

)

dα1

+

∫ α̂1

αst1

(

N1p(sin α1 + µ cos α1)r1 cos α1

)

dα1, (21a)

m1ÿ1 + k1y y1 + d1y ẏ1 = F1y0 +

∫ αst1

−α0

(

N1a(cos α1 + µ sin α1)r1 cos α1

)

dα1

+

∫ α̂1

αst1

(

N1p(cos α1 − µ sin α1)r1 cos α1

)

dα1. (21b)

For the lower roller they have a similar form. The equations of motion can be linearized around the steady state
equilibrium position for givenΩ1, Ω2 andv. With the vector of generalized coordinates

q=
[

x1 y1 x2 y2

]T
(22)

one obtains the functionsα0(q), α̂1,2(q) andαst1,2(q, q̇), which means that the integral boundaries in (21) have
to be differentiated in the linearization. The linearized equations of motion thus have the form

Mq̈ + Dq̇ + (K + N)q = 0 (23)

with constant coefficient matrices and the stability of the trivial solution can be studied using the exponential ansatz
q(t)= q̂eλt yielding the characteristic equation

det(λ2M + λD + K + N) = 0.

In the following, the parameters of Table 1 communicated byVAN HAAG (5) are employed, corresponding to the
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m1 = 6447 kg m2 = 16114 kg h1 = 150µm

ω1 = 2π · 17,3 1/s ω2 = 2π · 30,6 1/s h0 = 20µm

k1x = k1y = m1ω
2
1 k2x = k2y = m2ω

2
2 v = 800 m/min

d1x = d1y = 400 Ns/m d2x = d2y = 400 Ns/m µ = 0.5

r1 = 0,345 m r2 = 0,483 m kby = 8.5 · 1011 N/m

Table 1: Parameters communicated byVAN HAAG (5)
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Figure 6: Eigenvalues of the system with two rigid rollers for varying damping in the bearings (d0 refers to the
nominal value given Table 1 andd is the actual value)

case that the upper roller is completely driven by the paper,whereas the lower roller drives the paper and therefore
acts as a drive train for the calendering process. It is tacitly assumed that the neighboring calender stacks are
controlled such that a constant paper velocity is maintained. For a linear elastic material law of the paper, the stress
in the paper is given by

Fbn(s) = −kby

(

h(s) − h0

)

.

The linearized model can now be employed to draw the root locus of the system for varying parameters. From a
variation of the damping in the bearings aroundd1x = d1y = d2x = d2y = d0 (cf. Figures 6 and 7,d0 being the
reference value from table 1) it can be seen that higher damping in the bearings has a stabilizing effect, whereas the
eigenfrequencies of the system remain almost unchanged. A variation of the paper bedding stiffnesskby around
kby0 shows that higher stiffness has a destabilizing effect (Figure 8). Note that the system has another pair of
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Figure 7: Real part of the eigenvalues of the system with two rigid rollers for varying damping in the bearings (d0

refers to the nominal value given Table 1 andd is the actual value)

complex conjugate eigenvalues in the range of 200 Hz which has a negative real part and is omitted in the Figures
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for presentation purposes.

Summarizing this section, the extension of the model including two rollers yields a self-excitation mechanism
which is based on the frictional contact between the paper and the rollers and the plastic deformation of the paper.
Due to the inextensibility assumption of the paper, there are no shear deformations in the paper, so that there
is always slip (except at most at two single points) between the rollers and the paper. Similar friction-induced
instability mechanisms are known from many other applications, as for example the squealing of brakes.
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Figure 8: Real part of the eigenvalues of the system with two rigid rollers for varying paper stiffness (kby0 refers
to the nominal value given Table 1 andkby is the actual value)

4 Single roller with sticking condition

The assumption of inextensibility of the paper used in the last section is somewhat questionable, since the material
properties of the paper are not known in much detail. The purpose of this section is to demonstrate that the
excitation mechanism does not rely on the occurrence of slipbetween the rollers and the paper, but also occurs
under the sticking condition. The analysis is based on the system shown in Figure 1. The paper model depicted
in Figure 9 now includes extensibility in the horizontal direction, i.e. each material point characterized by the
coordinateξ in the undeformed configuration on the surface of the paper can undergo a displacementu1(ξ, t)
parallel and a displacementu2(ξ, t) perpendicular to the mid surface of the paper, which as before is assumed to
be inextensible and moves with constant velocityv. It is assumed that the paper and the roller stick together once
contact is established. As in the previous sections, the paper is truncated at the narrowest point of the nip (s=0)
and the deformation process is considered as quasi-stationary, since the transition through the nip happens on a
much faster time scale than the vibration of the roller.

The forces acting in a paper element are proportional to its deformation. A paper element in contact with the roller
at angleα has an upper point with position vector

pu = (x − r sinα)ex + (y − r cos α)ey (24)

and a lower base point at the mid surface of the paper given by

pl =

(

x − r sin α̂ + v
α̂ − α

Ω

)

ex − (r + h0)ey, (25)

v
kby

kbx u1(ξ, t)

u2(ξ, t)
ξ

Figure 9: Paper model (extensible)
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where the termv(α̂−α)/Ω represents the distance the base point has traveled inex-direction, while its counterpart
on the roller traveled from̂α to the positionα. In correspondence with (3), the deformation iney-direction is

h1 − (pl − pu) · ey = h1 − h0 − r(1 − cos α) + y

= h1 − h, (26)

whereas the deformation inex-direction is

(pl − pu) · ex = r(sin α − sin α̂) + v
α̂ − α

Ω
(27)

due to the sticking condition between the paper and the roller. Referring to (4),̂α is a function ofy only, so that also
the deformation of the paper is a function ofy only. This is a consequence of the assumption of the quasi-stationary
deformation process of the paper.

The equations of motion finally follow from NEWTON’s law by summing up all forces acting on the roller

mẍ + kxx = Fx0 +

∫ α̂

0

kbx

(

r(sin α − sin α̂) + v
α̂ − α

Ω

)

r cos α dα , (28a)

mÿ + kyy = Fy0 +

∫ α̂

0

kby

(

h1 − h
)

r cos α dα . (28b)

It should be noted that (28b) is identical to (7b). As for (7),the linearization of the equations of motion requires
the application of LEIBNIZ ’s rule, becausêα= α̂(y), and yields

[

m 0
0 m

][

ẍ
ÿ

]

+

[

kx kbxr fk3

0 ky + kbyr sin α̂0

][

x
y

]

=

[

0
0

]

(29)

with

fk3 = −
d

dy

∫ α̂(y)

0

(

r(sin α − sin α̂(y)) + v
α̂(y) − α

Ω

)

cos α dα

∣

∣

∣

∣

∣

y=0

= 1 −
h1 − h0

r
−

v

Ωr
. (30)

The present equations of motion for extensible paper with sticking condition are of the same mathematical form
as for the inextensible paper with friction between the paper and the roller (10). Therefore, both systems show
a similar stability behavior. In particular, instabilities arise for close eigenfrequencies of the system and small
additional coupling of the equations. In both (10) and (29) the couplingsfk2 andfk3 arise from the truncation at
the end of the nip which can be seen as an effect of the plastic deformation of the paper. The termfk2 in (10) only
contains an additional part originating from friction. Themodel with sticking condition can be easily extended to
a two roller model similarly as done in the case of sliding friction. Due to the similarity of the equations in both
cases, a qualitative change of the results is not to be expected. Therefore this step is not performed here.

5 Outlook and Conclusions

This paper deals with simple models for the explanation of self-excited vibrations of paper calenders. In contrast to
most of the literature, the excitation mechanism studied inthis paper does not rely on heuristic wear models leading
to time delays in the equations of motion. Inspired by the papers of BROMMUNDT (3; 4) the excitation mechanism
is explained by a refined modeling of the contact forces occurring in the nip which allow for a systematic stability
analysis of the linearized equations of motion. Two sourcesof instability are identified, which are dry friction
occurring in the slip regions, and plastic deformation of the paper as a second source. It is shown using rigid body
models, that also in the case of pure sticking between the paper and the roller, self-excited vibrations can arise.

In future work the models presented will be extended allowing for elasticity of the rollers. A first step in this
direction is to model the rollers as elastic rings and to assume point contact between the paper and the rollers. If
slip between paper and rollers is assumed, the structure of the equations of motion is the same as for continuous
models on brake squeal (6; 7). In order to model the excitation mechanism for self-excited vibrations also for
sticking between rollers and paper a refined modeling with anextended nip similar to the analysis performed in
section 4 will be required. The models presented in this paper may clear the way to a better understanding of self-
excited vibrations in calenders and to an identification of critical design parameters using refined calender models.
Such refined models should include coexisting sticking and slipping regions between the paper and the roller, and
a physically justified model of the paper’s plastic deformation.
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