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On the Multi Scale Modeling of Textile Reinforced Concrete

B. Zastrau, I. Lepenies, M. Richter

Textile reinforced concrete (TRC) is a composite of textile structures made of multi-filament yarns (rovings) within
a cementitious matrix. Experimental investigations of textile reinforced concrete specimens show very complex
failure mechanisms on different length scales. Therefore mechanical models on the micro, meso and macro scale
are introduced. The paper presents an overview on a hierarchical material model of TRC on three scales – the so
called Micro-Meso-Macro-Prediction-Model. While on the micro scale the individual filaments of the fiber bundles
are distinguished to determine an effective roving behavior within the mesoscopic model of the cementitious bulk
material with rovings as reinforcement, models on the meso scale are used to predict the macroscopic response of
the composite material.

1 Introduction

Textile reinforced concrete is a new kind of a cementitious composite. In contradiction to short fiber reinforced
concrete the reinforcement is an open textile structure made of continuous AR-glass or carbon rovings. One of the
biggest advantages of TRC is the quasi-ductile behavior after matrix cracking, which is important for applications
in civil engineering. This is due to the crack bridging of the rovings and the debonding of the roving-matrix-
interface.

Figure 1. Textile reinforced concrete plate in 4-point-bending test
(length l = 600 mm, width w = 300 mm, thickness t = 8 mm)

Figure 1 illustrates the ductile behavior of TRC impressively, knowing that the behavior of the matrix as well as
the glass yarns are very brittle by there own. The open reinforcement structure – so called lay-ups (cp. fig. 2) – is
leading to a crack pattern with very small crack openings in conjunction with small crack spacings. Furthermore an
optimization of the roving orientation and the roving size regarding to the expected stresses in the final structural
member is possible.
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Figure 2. Textile reinforced concrete: a) multiaxial textile structure b) embedded roving (155 tex)
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The behavior of TRC is characterized by complex damage and failure mechanisms on different material length
scales. Beside the delamination of whole plies macroscopic matrix cracking occurs due to tension. Moreover the
individual filaments of a roving can fail. Therefore a hierarchical material model is introduced [Lepenies et al.
(2003); Lepenies (2007)], cp. fig. 3.

2 Multi Scale Analyses

Multi scale analyses (MSA) can be classified in two kinds of approaches, the hierarchical and the simultaneous
MSA. Within a hierarchical MSA the model parameters of the macroscale are determined by means of homoge-
nization associated with micromechanical field variables. Here a scale transition takes place. After the determina-
tion of effective elastic properties of the composite material no more microscopic analyses are necessary for the
application of the macroscopic model.

On the other hand the simultaneous MSA – also called concurrent or integrated MSA – solves the models on all
scales at the same time. Therefore the macroscopic model is affected by the response of the microscopic model
and vice versa. This occurs, if a macroscopic stress redistribution takes place due to the non-linear behavior of the
micro models. Hence, according to the given problem class the appropriate MSA has to be choosen.

2.1 A Hierarchical Multi Scale Analysis for TRC

The proposed Micro-Meso-Macro-Prediction-Model (MMM-PM) for TRC consists of three scales – the micro, the
meso and the macro scale. On the micro scale the individual filaments are resolved, whereas on the meso scale only
an effective roving is considered. The scale transition from the micro to the meso scale leads to an effective roving
behavior. On the meso scale the multi-axial textile structure – made of rovings – is considered within the matrix.
Therefore a macroscopical homogeneous material with initial and induced anisotropy has to be simulated. In order
to characterize the relevant damage and failure mechanisms the bond between the reinforcement vs. matrix and
the transverse matrix cracking is additionally considered on the meso scale. The aim is to predict the macroscopic
behavior by means of the homogenization of the mesoscopic response of the simulated material region MR or
the representative volume elementRVE. Based on given effective strains on the macro scale appropriate boundary
conditions are applied on the mesoscopic region.
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Figure 3. Idealizations of TRC on the micro, meso and macro scale

In the following we are giving a brief overview of the developed submodels of the MMM-PM on the individual
scales and their interaction within the multi-scale framework. Starting with the filament bundle models on micro
scale we discuss the influence of the cross sectional shape of the roving on the overall performance of TRC. On
the meso scale the non-linear interaction between the reinforcement and the matrix is modeled with a slip-based
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semi-analytical bond model. Here the effective roving behavior – derived from the micro model – is considered
during the roving pullout after the matrix failure. Homogenization methods are developed and applied to the meso
model to determine an effective behavior on the macro scale. Here an analytical homogenization model based on
ESHELBY’s solution of a elastic inclusion embedded in a homogeneous matrix is used to capture the linear elastic
part. The non-linear part due to the matrix cracking is modeled by means of the developed semi-analytical bond
model on the meso scale.

2.2 TRC on the Micro Scale

Due to the small diameter of the filaments and the partial impregnation of the roving a detailed study of the load
transfer mechanism on the micro scale under consideration of individual filaments and adhesive cross linkages
has been investigated. Starting from detailed finite element models of the micro structure an equivalent filament
bundle model (mFBM) has been developed, derived from classical fiber bundle models (FBM), cp. [Lepenies et al.
(2007)]. Classical fiber bundle models neglect the real interactions between the filaments. After failure of a single
filament due to axial loading of the bundle the released stress is redistributed to the other filaments either by means
of a global or a local redistribution rule. These models are quite powerful in order to get an effective response of
fiber bundles without high numerical costs. Due to the shear bond between reinforcement and matrix the classical
FBM is enhanced by a superposed non-uniform stress profile. Sleeve filaments are stressed more than the core
filaments due to the partial impregnation of the roving with cement [Maeder and Plonka (04)]. This effect can be
reduced by applying a coating to the roving, cp. fig. 4a and 4b.
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Figure 4. Stress profiles in the roving: a) uncoated b) coated rovings c) successive failure process of the
roving (620 tex) due to filament failure

Hence the distance of a filament to the matrix affects the stress level of the filament. During the production process
of TRC the loose fiber bundle changes its cross sectional shape. The cross section flattens the more filaments are
combined to a roving. Therefore the aspect ratio of the bundle has to be taken into account, cp. fig. 4c.

In terms of cementitious composite engineering the stress profile is of interest to develop an optimal roving-matrix
system according to the demands of application. The used FBM is based on a simple mechanical model for the
individual filaments, cp. fig 5.
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Figure 5. FBM: a) undamaged configuration b) damaged configuration

The stress of one filament σfil(r),

σfil(r) = Efilεfil = Efil
v

lv(r)
, (1)

is simply related to the assigned length lv at the position r in the roving, where Efil is the YOUNGs modulus and εfil
is the strain of the filament according the pullout displacement v. The stress profile within the roving is modeled
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by means of the variation of free lengths lv of the filaments. All filaments are stretched by the same displacement
v. The overall force F due to the half crack opening displacement v is given by

F (v) =
∫

σ(r)dA =

R∫

r=0

E
v

lv(r)
dA . (2)

The limitation on a parabolic stress profile in a circular roving leads to the analytical solution

F (v) = v
πR2

0 E

4lv
ln




lmax

lmax −4lv

(
R

R0

)2


 , (3)

with 4lv = lmax − lR. Figure 6a shows the derived roving behavior with different stress profiles. Assuming a
parabolic stress profile over the roving cross section a transition from brittle to ductile behavior is recognized, if
the stress ratio lmax/lR is equal to the EULERian number e. Therefore the larger the stress difference between the
core filament and the sleeve filament the more ductile the roving behaves. The amount of failed filaments within
the roving increases in conjunction with a softer response of the roving. The aspect ratio of the roving cross section
affects the ductile-brittle transition point TP as well, cp. fig. 6b. The roving cross section is approximated by means
of superellipses, cp. section 3.

1,0

 2  4  6  8  10  12  14  16  18

l R
l m

a
x

a :b

1,7
2,0

2,7
3,0

4,0

5,0

1
¼

 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

F
/
F

0

v/v
R

lmax/lR= 1.00
lmax/lR= e
lmax/lR= 8.00

Fmax(lmax/lR=8)

FR(lmax/lR=e)=Fmax(e)

FR(8)

F0=FR(lmax/lR=1)=Fmax(1)

b)a)

b
a

TP

/
T

P

Figure 6. Theoretical roving behavior a) F (v)-relations with variation of the stress profiles b) ductile-brittle
transition point TP with variation of the aspect ratio of the roving cross section

Figure 7a shows a realization f of glass filament failure stresses βz,fil. Because of the random strength over the
roving cross section according to the distribution function P, the effective roving behavior is based on 10000 FBM
simulations with random property mapping. Figure 7b shows the determined mean force-strain relations (F (ε))
for an embedded roving under tension for an assumed stress profile, roving shape and filament strength distribution
exemplarily. Furthermore the damage evolution DA of the effective roving cross section Arov related to the roving
strain ε is determined:

Arov(ε) = (1−DA(ε))A0
rov . (4)

This function is important in order to determine the maximal transferable bond stresses within the roving from
experimental results, cp. section 4.

2.3 Bond Models

In order to simulate the bond behavior of the composite, the differential equation of the bond problem in eq. (5)
has to be solved for the function of the slip s(x) along x

d2s(x)
dx2

=
u

(EA)∗
τ [s(x)], (5)
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Figure 7. Effective roving behavior: a) filament strength distribution b) F (ε) and DA(ε) relations

with the circumference u of the roving and the overall axial stiffness (EA)∗, cp. eq. (6). A so called slip based
approach assumes a dependency of the shear stress τ within the interface on relative displacement (slip) s of the
reinforcement (index r) against the matrix (index m). The overall axial stiffness is given with

1
(EA)∗

=
1

ErAr
+

1
EmAm

, (6)

where E and A stand for the YOUNGs modulus and the cross sectional area, respectively.

The bond relation τ(s) depends amongst others on the mixture of the cementitious matrix, the fiber sizing and
fiber coating leading to a different interface transition zone (ITZ). Thus, for each change of the system a new bond
relation has to be determined. Unfortunately the interface properties are not measurable by experiments. Only a
force F related to a pullout displacement v for single filament pullout tests or for roving pullout tests are available.

The bond relation can be determined indirectly from the experimental measured force-displacement relation F (v).
Often finite element analyses are used to determine the bond relation. In [Richter (2005)] a multi-linear approxi-
mation of the desired function τ(s) is used, which leads to a piecewise analytical closed form solution of eq. (5).
This avoids time intensive solutions of PDE systems. Here we are using only the solution of a piecewise constant
bond law τ(s) for small intervals ∆x (interface length L = Σn

i ∆xi)

s (x) =
1
2

τu

(EA)∗
x2 +

(
Nr,0

ErAr
− Nm,0

EmAm

)
x + s0. (7)

Nr,0 and Nm,0 are the normal forces of the roving and the matrix at the boundary x = 0 of the interval ∆x. Starting
with the boundary condition at the stress free end of the reinforcement allows for a straight forward solution of
the slip distribution s(x), the shear stress τ(x) and normal force Nr(x) along the embedded length L, whereas the
interface debonding as well as the roving pullout are considered.
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Figure 8. F (v)-relations of pullout test of uncoated and coated filaments a) detail of the debonding stage
b) complete force-displacement relation

Within an optimization process the error between experimental and simulation results is minimized, to get an
optimal approximation of τ(s). Figure 8 shows the measured and the simulated force-displacement curves of a
single glass filament (df = 0.015 mm) in a pullout test (L = 1 mm) with different interface properties. The only
unknown in eq. (5) is the bond relation τ(s). For an uncoated and a coated filament the identified bond laws are
given in fig. 9.
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Figure 9. Pullout test a) boundary condition b) identified bond laws for uncoated and coated glass filaments
in fine grained concrete matrix

The developed semi-analytical bond model works for relevant boundary conditions in terms of the available exper-
imental setups, cp. fig. 10. A single sided pullout (fig. 10/I) of a reinforcement is characterized by a debonding
stage and a final total pullout stage of the reinforcement out of the embedding matrix. In case of a so called pull
through (fig. 10/II) the interface between the matrix and the reinforcement keeps constant, if the reinforcement
protrudes at the unpulled end. Finally in a tension test with multiple cracks a typical boundary condition is given
by a slip of zero in conjunction with a tensile force between two matrix cracks (fig. 10/III), such that there will be
no displacement of the reinforcement relative to the matrix.
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Figure 10. Different pullout boundary conditions

Prestressed rovings and pressure dependent friction laws for the interface are easily adoptable in the mechanical
model. The application to pullout tests with cyclic loading demands for the implementation of damage and/or
plastic material laws for all components of the composite. The presented model considers the inelastic behavior
according fig. 11.
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Figure 11. Bond relations: a) with damage behavior b) with elasto-plastic behavior c) with elasto-plastic
damage behavior

3 Roving Approximation on the Meso Scale

The shape of the roving cross section is approximated by means of superellipses on the meso scale:
∣∣∣x
a

∣∣∣
r

+
∣∣∣y
b

∣∣∣
r

= 1 , (8)
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with the semi-major axis a, semi-minor axis b and the rational exponent r. The parameter r controls the angularity
of the roving shape, where r = 2 describes an ellipse and r À 2 approximates a rectangle, as it is shown in fig. 12.
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Figure 12. Approximation of roving cross sections with superellipses a) influence of the parameter r
in eq. (8), b) roving cross sections

On the meso scale the successive failure of the roving is modeled on the basis of the idealized roving in fig. 13.
Beside of a compact roving with an effective material law additional interfaces are considered. The uncoated roving
tends to fail from the outer filaments towards the center of the roving. Furthermore, microscopic investigations of
coated rovings show clusters of filaments, cp. fig. 13c and fig. 13d.
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Figure 13. Idealized subdivided rovings a) compact model b) layer model c) zone model d) mixed model

4 Roving Pullout

In order to model the bond behavior of fiber bundles, the effective load carrying behavior including the successive
failure of the roving has to be taken into account. Due to experimental difficulties in single sided roving pullout
tests a tension specimen with a single crack is considered. This double sided pullout test avoids the clamping
problems of the multi filament yarn. Only the embedded length and the amount of reinforcement are different
to the finally predicted tension tests with multiple matrix cracking. Up to the maximum pullout load both sides
of the specimen can be treated equally like in the single sided pullout test, but the post peak behavior combines
the pullout of the roving from one side with the partial pull back of the roving on the other side of the specimen.
Without the knowledge of the inelastic deformation in the interface no unique solution of the pullout problem can
be found, but it is possible to determine bounds assuming perfect elastic and perfect rigid bond conditions.

The longer the embedded length of the roving the more force can be transferred between the roving and the matrix.
Hence, the stress in the roving will increase, which leads to a successive failure of the filaments. The stiffness of
the composite gets further reduced because of the activation of weaker slip planes within the roving. Evaluating the
force-strain behavior by means of the FBM in section 2.2 the determination of the bond quality within the roving
is possible.

Figure 14 shows a typical force-displacement relation of a glass roving pullout test. Here the bound of a perfect
elastic interface is considered. The length of the debonded roving interface Ldebonded, i. e. that part of the interface
L in which shear stresses due to occurring slip are induced, increases with increasing v. According to the micro
mechanical roving simulation the reduction of the effective cross section A in eq. (4) is known. Therefore only the
change of the bond quality τ(s) in eq. (9) of the activated slip levels within the roving has to be determined:

τ(s) = (1−Dτ (ε))τ0(s). (9)

The reduction of the effective roving cross section is denoted with (1 − DA(ε)), whereas the bond relation τ(s)
of an inner slip interface is related to the bond relations of the outer interface τ0(s) with the factor (1 −Dτ (ε)).
The determined functions Dτ (ε) and DA(ε) can be understood as damage functions in a framework of the damage
mechanics. Here they reduce the reference shear strength and the reference cross-sectional area respectively.
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5 Effective Macroscopic Behavior of TRC

5.1 Determination of the Elastic Properties of TRC

Up to the formation of the first matrix crack the material behavior is approximately linear-elastic, but in general
anisotropic, depending on the considered textile structure:

〈σ〉Y = C∗ : 〈ε〉Y . (10)

The volume average 〈¤〉 of a quantity ¤ with respect to the domain Y is defined with

〈¤〉Y =
1
V

∫

Y
¤ dV , (11)

the notation ¤∗ denotes the equivalent coarse scale quantity of the fine scale quantity ¤. The type of material
symmetry and the associated independent elastic material parameters of the effective elasticity tensor C∗,

C∗ = C∗ijkl ei ⊗ ej ⊗ ek ⊗ el (12)

on the macro level are determined by means of analytical and numerical homogenization techniques. The macro-
scopic quantities are determined by subjecting the considered domain Y to boundary conditions that satisfy HILLs
energy conditions

〈σ〉Y : 〈ε〉Y = 〈σ : ε〉Y . (13)

Basis of the analytical homogenization is the micro-mechanical solution of the average strain in a single inclusion
embedded in an elastic matrix according to [Eshelby (1957)]. In the case of ellipsoidal inclusions the strain in the
inclusion is constant and with the ESHELBY tensor Sα of inclusion α the overall elasticity tensor C∗ can be written
as

C∗ = C +
n∑

α=1

fα

(
(Cα − C)−1 + Sα : C−1

)−1
. (14)

Herein C and Cα are the elasticity tensors of the concrete matrix and the textile inclusion α depending on the given
elastic properties of the n constituents. Further fα, α = {1, 2, . . . , n} are the volume fractions of the inclusions
in each roving direction. This solution neglects any interaction between the inclusions and is called the dilute
solution. In extension of this solution for multi-directional reinforcements an effective field approximation (EFA)
is used [Mori and Tanaka (1973)]. This approach considers the interaction between the different orientated rovings
in an average sense. Now the different orientated rovings α are assumed to be in a matrix (volume fraction fm) with
the still unknown average matrix strain 〈εm〉. This problem can be solved analytically and leads to an equation for
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the direct computation of the overall elasticity tensor, cp. [Richter (2005)]:

C∗ = C +
n∑

α=1

fα (Cα − C) :



Kα +

n∑

β=1,β 6=α

fβ

(
Kβ − fβ1

)−1
: (Kα − fα1)





−1

(15)

with
Kα = (fm + fα)1− fmSα :

(
1− C−1 : Cα

)
. (16)

The following components of the effective elasticity tensor are calculated with equation (15), assuming isotropic
behavior of the textile reinforcement and the concrete matrix. In the following we considered a biaxial textile
structure with 5% fiber volume fraction in each roving direction for an AR-glass-TRC and Carbon-TRC, cp. fig.
15a. Figure 15a and b show the graphical representations of the effective elasticity tensors of TRC in the cases of
AR-glass and carbon reinforcements, cp. [Böhlke and Brüggemann (2001)]. The corresponding components Cpq

in VOIGT-notation are given in equations (17) and (18) (pq = {11, 22, 33, 12, 13, 23}):

[C∗pq

]ARG-TRC =




36 710 7 769 8 083 0 0 0
7 769 36 710 8 083 0 0 0
8 083 8 083 35 702 0 0 0

0 0 0 14 294 0 0
0 0 0 0 14 197 0
0 0 0 0 0 14 197




N

mm2
, (17)

[C∗pq

]C-TRC =




44 745 8 069 8 648 0 0 0
8 069 44 745 8 648 0 0 0
8 648 8 648 37 591 0 0 0

0 0 0 15 998 0 0
0 0 0 0 15 665 0
0 0 0 0 0 15 665




N

mm2
. (18)

Equation (15) leads to the effective linear-elastic orthotropic elasticity tensor in the special case of biaxial roving
orientations. The relative differences of the magnitudes of the components differ depending on the relative stiffness
of the reinforcement. For the given fiber fraction of 5% the AR-glass structure leads to a quasi-isotropic effective
elasticity tensor, whereas the carbon structure induces an anisotropy (orthotropy) with 20% difference in stiffness.
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Figure 15. Graphical representation of the effective elasticity tensors of TRC a)RVE with biaxial reinforce-
ment b) AR-glass-TRC, c) Carbon-TRC

After exceeding the elastic limit of the composite first the matrix fails. Here the inelastic behavior is captured only
uniaxial with the MMM-PM.

5.2 Simulation of the Inelastic Behavior of TRC due to Tensile Loading

In the following we consider a so called normal reinforced TRC specimen with coaxial loading and reinforcement
directions. After formation of the first matrix crack the rovings are bridging the cracks. In contradiction to the
double sided pullout test the amount of rovings is sufficiently high, which leads to further matrix cracks. Figure 16
shows the mesoscopic model.
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Figure 16. Considered stresses of TRC model on the meso scale

The number of cracks, the crack widths and the crack spacings depend on the transferable shear stress between
roving and matrix. According to the determined bond law and the shape of the roving a critical bond length Lc can
be found, which is large enough to lead to a critical stress state within the matrix for further crack development.
Therefore the final crack pattern shows a crack spacing between Lc and 2 Lc. If the specimen is very large the
mean crack spacing tends to 1.34 Lc. But this theoretical mean value is of minor importance to the considered
200 mm long specimen with an average crack spacing of about 10 mm. Therefore the bounds for Lc and 2 Lc are
calculated for comparison with experimental results, cp. fig. 16.
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Figure 17. TRC in tension test with varying amount of rovings a) macroscopic stress-strain relation b) pic-
ture of the tension specimen with macro crack pattern

Figure 17 shows the predicted behavior of a tension specimen with varying numbers of textile lay-ups. One lay-up
(ply) consists of 22 rovings. Increasing the number of lay-ups from 2 to 5 leads to higher ultimate loads combined
with changes in the stiffness. The simulation results are plotted as curves for L = 1.34 Lc and an additional shaded
areas according its upper boundaries of 2 Lc and its lower boundaries of 1 Lc.

One important result of the tension test simulation is the influence of the post cracking behavior of the fine grained
concrete. In tension tests of steel reinforced concrete this effect is normally neglected, but in TRC the crack
bridging over the crack face of the concrete is necessary because of the small crack widths at higher reinforcement
percentage. In the case of 2 lay-ups the effective stress-strain response is nearly tri-linear. The elastic part (stage I),
the crack developing range (stage IIa) and the final crack opening range (stage IIb) are clearly distinguishable.
With increasing number of lay-ups the final macro crack pattern of the TRC specimen is completed at lower
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macroscopic strains [Lepenies (2007)].

The prediction of the ultimate load differs from experimental results. The actual model neglects the scatter of the
roving strength in the specimen. Therefore the experimental observed relative rotation of the specimen parts was
not simulated during the final failure. The strength of the weakest roving determines the strength of the whole
specimen in a tension test, because of the progressive failure process after the first roving breaks.

6 Conclusions

The presented hierarchical material model – the Micro-Meso-Macro-Prediction Model (MMM-PM) – of TRC is an
assembly of simplified, efficient micro-, meso- and macroscopic models. A micro mechanical analysis simulates
the fiber bundle behavior taking the non-uniform stress profile within the roving into account. Based on the
derived effective roving model the matrix crack bridging of the rovings is modeled on the meso scale. Additional
characteristic model parameters are determined from results of standard pullout tests to simulate the effective
macroscopic behavior of TRC for different number of rovings. The presented model predicts the macroscopic
material behavior of TRC by means of simulation of the relevant damage and failure mechanisms on the finer
resolved scales using homogenization and localization methods for scale transition and scale integration. Results
from macroscopic tension tests are used for model validation, whereas the model parameters are determined from
independent experimental data.
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