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Fixed Point Iterative Schemes for Initial Shape Identification

M. Sellier

The question of interest in the present study is ”given a work-piece subject to prescribed loads, how to define its
initial shape such that the work-piece matches a prescribed geometry after deformation?”. This question is parti-
cularly relevant in forming processes where the tolerated mismatch between the deformed and desired geometries
may be lower than a Micron. To tackle this optimal shape design problem, a range of fixed point iterative schemes
is proposed, i.e. the next initial shape is deduced from the previous one by subtracting the error in the previous final
shape possibly corrected by an additional term. The required form of this additional, corrective term is revealed
through a convergence analysis of the schemes. The schemes are applied to a test problem and their performance
compared. The problem consists in designing the hole in a membrane such that its contour matches a prescribed
shape when the membrane is stretched by a given load.

1 Introduction

A question engineers often have to face is, ”given a set of loads applied to a solid body, what should be the initial
geometry so that the end geometry (after deformation) matches the prescribed one?”. The development of efficient
and accurate numerical techniques such as the finite element method and the well-established theory of optimal
shape design (Pironneau (1984); Sokolowski and Zolesio (1992)) allowed significant progress towards the solution
to such inverse problems. A popular approach consists in parameterizing somehow the contour of the work-piece,
defining an objective function related to the mismatch between the deformed and desired work-piece geometries
and applying the extensive theory of optimization in order to find the values of the parameters which minimize
the objective function. This approach has proven its applicability for the problem of pre-form or tool design in
the metal forging process (see Vieilledent and Fourment (2001); Sousa et al. (2002); Chung et al. (2003) and
references therein). Many authors favour gradient-based optimization techniques and the condition for the success
of these is the accurate and efficient evaluation of the sensitivities, i.e. the derivative of the objective function with
respect to the parameters. The sensitivity analysis may be performed using the finite difference method, the direct
differentiation method (Vieilledent and Fourment (2001); Sousa et al. (2002)) or the adjoint-state method (Chung
et al. (2003); Sprekels et al. (1996)). In many practical cases, the pragmatic user of a commercial code for the
computation of the deformations is bounded to the use of the finite difference method to compute the sensitivities,
and this approach is known for its lack of accuracy and efficiency (Chung et al. (2003)).

Another method introduced by Park et al. (1983) consists in starting from the desired work-piece geometry and
performing the deformation simulation in reverse. This concept was exploited with success by many authors (see
Zhao et al. (1995) and references therein). Despite its success, the implementation of this method in commercial
codes is difficult in practice making it out of reach of the widest engineering community.

The fixed point iterative method described in the present work offers an alternative which avoids the difficulty of
computing the sensitivities and is fully compatible with the usage of commercial codes. The idea is to ”test and
correct”. More precisely, the difference between the deformed and desired geometries at a given iteration gives the
input on how to correct the previous guess to the initial shape. How to define the difference between the deformed
and desired geometries and how to reflect this difference on the previous guess to the initial shape are important
and non-trivial questions which affect the success and the efficiency of the scheme. Such a method is used in
Jernberg (2003), for example, to find very efficiently the optimal tool geometry to compensate for the spring back
effect. A simple criterion based on the closest distance from the deformed to the desired geometry is used to correct
the previous guess to the design. Other more sophisticated correcting stages were recently derived by Shim and
co-workers in the context of the optimal blank shape design. These include the sensitivity method (Shim and Son
(2001)), the initial velocity of boundary nodes (INOV) method (Son and Shim (2003)) and the radius vector of
boundary nodes method (Shim (2004)).
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Figure 1: Sketch of the general forward problem.

A similar concept, based on a fixed point iterative scheme to update the location of a set of boundary points, was
exploited in Sellier (2005) to identify the required initial geometry in the context of high-precision glass forming.
This method proved its applicabilityand its efficiency, and was easily implemented in a commercial code. In spite
of the non-linear viscoelastic behaviour of the glass, only few iterations were required to reduce the mismatch
between the deformed and desired work-piece geometries below one Micron. A formal analysis explained the
good convergence property of the iterative scheme and revealed that the convergence can only be guaranteed when
the deformations are dominated by shear or volumetric strains.

The aim of the present work is to present a modified scheme which circumvents theoretically this restriction.
The main idea remains essentially the same but a corrective term is added for the update of the boundary points
locations. The next two sections are devoted to the description of the geometric shape optimization problem under
consideration and the fixed point iterative scheme. An analysis of the convergence of the scheme follows and the
required form of the corrective term is derived. The performance of the schemes is then compared and conclusions
are drawn.

2 Description of the Forward Problem

As illustrated on Figure 1, a linear elastic membrane perforated by a hole of contour ΓH is stretched by a prescribed
set of load. The membrane is a 2L0×2L0 square, and the contour of the perforated hole is sought so that it matches
a circle of radius R0 when the membrane is deformed. The geometry shown on Figure 1 corresponds precisely
to the one presented by Alberty and co-workers (Alberty et al. (2002)) and the solution to the forward problem
is obtained using the Matlab implementation for P1 and Q1 finite element provided by the authors. Only a short
overview of the theoretical background is reported here for completeness, and further details can be found in
Alberty et al. (2002). The problem considered is a plane stress one and the two components of the displacement
vector U = (Ux, Uy) ∈ H1(Ω), subject to Neumann boundary conditions on ΓN ∪ ΓH and Dirichlet boundary
conditions on ΓD, must satisfy the following Navier-Lamé equations,

(λ + µ)(∇divU) + µ∆U = 0 in Ω , (1)

(λtr(ε(U))I + 2µε(U)) · n = g on ΓN ∪ ΓH , (2)

U = W on ΓD , (3)

where λ and µ are the Lamé constants, ε(U) = 1

2

(

∇U + (∇U)T
)

the infinitesimal strain tensor, g ∈ L2(ΓN ∪
ΓH) the applied traction and W ∈ H1(Ω) the imposed displacements. The body forces are neglected. Due to the
symmetries shown in Figure 1, only the upper right quarter is modelled. Only the plane strain problem is treated
in Alberty et al. (2002) so that the Lamé coefficients are related to the Young’s modulus E and the Poisson’s ratio
ν through λ = Eν/((1 + ν)(1 − 2ν)) and µ = E/(2(1 + ν)). The introduction of a ficticious Young’s modulus
E∗ = E(1 + 2ν)/(1 + ν)2 and Poisson’s ratio ν∗ = ν/(1 + ν) readily transforms the plane strain assumption into
a plane stress one without requiring any modification of the given program. The corresponding weak form of the
elasticity problem stated above is:
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Figure 2: (a) and (b): Map of the von-Mises stresses for the surface load g = 50j and g = 100j respectively on
the upper boundary.

Find U ∈ H1(Ω) such that for all V ∈ H1

D(Ω) := {V ∈ H1(Ω) : V = 0 on ΓD},

∫

Ω

ε(V) : Cε(U)dx =

∫

ΓN∪ΓH

g · Vds , (4)

where the elasticity tensor C is given by,

C =





λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ



 . (5)

Equation (4) is discretised using the standard Galerkin method and linear triangular elements. Each iteration of the
fixed point iterative scheme described in the following section produces a new contour of the hole, and re-meshing
is necessary. The freely available mesh generator Triangle is used to this end (Shewchuk (2002)). In order to
ensure the quality of the mesh, constraints of 30o on the minimum admissible angle and of 0.02 on the maximum
admissible triangle area are imposed.

Figure 2 illustrates the deformation of the membrane when the hole is a circle of radius
√

2, L0=3, E=2900 Pa and
ν=0.4. The membrane is stretched vertically so that g = βj on the upper boundary (j is the vertical unit vector) and
the rest of the boundary is traction free. To impose symmetry boundary conditions, the horizontal displacements
are imposed to vanish on {0}× [

√
2, 3] and the vertical ones on [

√
2, 3]×{0}. Figure 2 also shows the von-Mises

stress σV M computed as follows

σV M =
√

σ2
1

+ σ2
2
− σ1σ2 (6)

where σ1 and σ2 are the principal stresses equal to

σ1,2 =
σxx + σyy

2
±

√

(

σxx − σyy

2

)2

+ σ2
xy . (7)

A feature worth mentioning is the ”linearity” of the membrane’s response. As the load is doubled from 50 Pa to
100 Pa, the maximum value of the maximum von Mises stress also doubles from ∼ 250 to ∼ 500. One would
expect that the difficulty of the identification of the required initial contour becomes greater as the value of the load
increases since the deformed geometry defers more and more from the initial one.

3 Description of the Fixed Point Iterative Schemes

In order to describe the algorithm which tackles the inverse problem of identifying the required initial shape, the
notations are first detailed. A number of points are introduced on the contour ΓH of the perforated hole. These
points naturally correspond to the boundary nodes of the mesh. Let M d

1 , . . . , Md
L denote the L boundary nodes

of the desired contour of the hole after deformation, and M ini
1 , . . . , M ini

L denote the associated L boundary nodes
of the required initial contour (solution to the inverse problem). The M ini

i are found iteratively as the limit of a
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series of M j
i , where the superscript j denotes the iteration number. At each iteration, N j

i corresponds to the new
location of the node M j

i in the deformed configuration, and U
j
i is the associated displacement. The algorithm is

best described in pseudo-code notation as follows.

1. First iteration: use Md
i , i ∈ [1, L] as a first guess to M ini

i , i ∈ [1, L] and calculate the residual vector
∆1

i , i ∈ [1, L] the norm of which gives a measure of how far the node in the deformed geometry is located
from the desired location:
for i=1 to L {

OM1

i = OMd
i ; (8)

ON1

i = OM1

i + U1

i ; (9)

∆1

i = OMd
i −ON1

i ; (10)

} j=2;

2. The following iterations: update the previous estimate to M ini
i , i ∈ [1, L] and calculate the residual vector

∆
j
i , i ∈ [1, L]:

Do {
for i=1 to L {

OM
j
i = OM

j−1

i + ∆
j−1

i + B
j
i ; (11)

ON
j
i = OM

j
i + U

j
i ; (12)

∆
j
i = OMd

i −ON
j
i ; (13)

} j=j+1;}
While max(||∆j

i ||) > ε

Restated in simple terms, the initial guess for the required initial location of the boundary node is chosen to be the
location of the nodes of the desired hole contour. At each iteration the residual vector (∆j

i ) the norm of which
measures how far the deformed shape is located from the desired one is evaluated and added to the previous guess of
the required initial boundary node location. Bj

i is a corrective term which enlarges the range of applicability of the
scheme and shall be defined subsequently. If this corrective term vanishes, the intuitive scheme proposed in Sellier
(2005) and illustrated on Figure 3 is recovered. Since this scheme is entirely based on geometric consideration, it
does not depend on the material behaviour and should therefore be applicable regardless of the constitutive law.

4 Convergence Analysis

In order to assess the convergence properties of the scheme (i.e. will N j
i , i ∈ [1, L] converge to Md

i , i ∈ [1, L]
for increasing j, and if so, how fast?), it is necessary to note that as a consequence of the algorithm,

∆
j
i = U

j−1

i −U
j
i −B

j
i . (14)

This result is proven by simple algebraic manipulations as follows.
Eq. (13) gives

∆
j
i −∆

j−1

i = OMd
i −ON

j
i −

(

OMd
i −ON

j−1

i

)

.

Substitution of eq. (11) into eq. (12) and of eq. (12) into the previous equation yields

∆
j
i −∆

j−1

i = OM
j−2

i + ∆
j−2

i + B
j−1

i + U
j−1

i −
(

OM
j−1

i + ∆
j−1

i + B
j
i + U

j
i

)

,

but since according to eq. (11), OM
j−1

i = OM
j−2

i +∆
j−2

i +B
j−1

i , eq. (14) is recovered which proves the result.
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j
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At iteration (j − 1), the displacement of the node M j−1

i with coordinates (xj−1

i , yj−1

i ) can be found by Taylor
series expansion around Md

i with coordinates (xd
i , y

d
i ). Accordingly,

Ux
j−1

i = Ux

(

xd
i , y

d
i

)

+
∂Ux

∂x
|di
(

xj−1

i − xd
i

)

+
∂Ux

∂y
|di
(

yj−1

i − yd
i

)

+ h.o.t. , (15)

Uy
j−1

i = Uy

(

xd
i , y

d
i

)

+
∂Uy

∂x
|di
(

xj−1

i − xd
i

)

+
∂Uy

∂y
|di
(

yj−1

i − yd
i

)

+ h.o.t. , (16)

where
(

Ux
j−1

i , Uy
j−1

i

)

are the components of the displacement vector U
j−1

i , and it is understood that the spatial

derivatives of the displacement are taken at M d
i .

Similarly, at iteration (j), the displacement of the node M j
i can be written as follows:

Ux
j
i = Ux

(

xd
i , y

d
i

)

+
∂Ux

∂x
|di
(

xj
i − xd

i

)

+
∂Ux

∂y
|di
(

yj
i − yd

i

)

+ h.o.t. , (17)

Uy
j
i = Uy

(

xd
i , y

d
i

)

+
∂Uy

∂x
|di
(

xj
i − xd

i

)

+
∂Uy

∂y
|di
(

yj
i − yd

i

)

+ h.o.t. . (18)

Subtracting eq. (17) from eq. (15) and eq. (18) from eq. (16) gives,

Ux
j−1

i − Ux
j
i =

∂Ux

∂x
|di
(

xj−1

i − xj
i

)

+
∂Ux

∂y
|di
(

yj−1

i − yj
i

)

+ h.o.t. , (19)

Uy
j−1

i − Uy
j
i =

∂Uy

∂x
|di
(

xj−1

i − xj
i

)

+
∂Uy

∂y
|di
(

yj−1

i − yj
i

)

+ h.o.t. . (20)

Moreover, taking eqs. (11) and (14) into account and remembering that ∂Ux

∂x = εxx and ∂Uy

∂y = εyy, these equations
may be rewritten as

∆x
j
i = −εxx

d
i

(

∆x
j−1

i + Bx
j
i

)

− ∂Ux

∂y
|di
(

∆y
j−1

i + By
j
i

)

− Bx
j
i + h.o.t. (21)

∆y
j
i = −∂Uy

∂x
|di
(

∆x
j−1

i + Bx
j
i

)

− εyy
d
i

(

∆y
j−1

i + By
j
i

)

− By
j
i + h.o.t. (22)

where (∆x
j
i , ∆y

j
i ) and (Bx

j
i , By

j
i ) are the x-y components of the residual vector ∆

j
i and the corrective term B

j
i ,

respectively. If the corrective term vanishes, it is easy to show (see Sellier (2005)) that two extreme cases should
produce convergent schemes. The first one corresponds to deformations dominated by volumetric strains (i.e.
∂Ux

∂y � εxx < 1 and ∂Uy

∂x � εyy < 1), while the second is applicable when the deformations are dominated by the
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shear terms, i.e εxx � ∂Ux

∂y and εyy � ∂Uy

∂x . The scheme without a corrective term will be referred to as scheme

(I) in the following. A suitable choice for the corrective term B
j
i should allow for an improved convergence. One

immediately sees that if B
j
i is chosen such that

−εxx
d
i Bx

j
i −

∂Ux

∂y
|di
(

∆y
j−1

i + By
j
i

)

− Bx
j
i = 0 , (23)

−∂Uy

∂x
|di
(

∆x
j−1

i + Bx
j
i

)

− εyy
d
i By

j
i − By

j
i = 0 , (24)

equations (21) and (22) simply reduce to

∆x
j
i = −εxx

d
i ∆x

j−1

i and ∆y
j
i = −εyy

d
i ∆y

j−1

i , (25)

which clearly defines a convergent scheme providing the absolute value of the strains is smaller than one, which
is necessarily the case in small deformations. Note, however, that since the convergence analysis is based on the
Taylor expansion of the displacement field around M d

i and that only the first order terms are retained, its validity
is restricted to situations when M j

i is sufficiently close to Md
i . Thus, the algorithm only converges when the initial

guess is sufficiently close to the solution to the inverse problem. Equations (23) and (24) are rewritten in a more
readable form as follows

(

εxx
d
i + 1

)

Bx
j
i +

∂Ux

∂y
|di By

j
i = −∂Ux

∂y
|di ∆y

j−1

i (26)

∂Uy

∂x
|di Bx

j
i +

(

εyy
d
i + 1

)

By
j
i = −∂Uy

∂x
|di ∆x

j−1

i . (27)

Since εxx
d
i , εyy

d
i , ∂Ux

∂y |di and ∂Uy

∂x |di must be evaluated at Md
i , these can be computed in practice at the first iteration,

and therefore the system of equations (26) and (27) can be solved at each iteration for the two components of the
corrective vector B

j
i . We denote by scheme (II) the one with the corrective term which satisfies equations (26)

and (27) exactly.
Finally, a simple analysis of the orders of magnitude reveals that providing εxx

d
i � 1, εyy

d
i � 1, ∂Ux

∂y |di � 1 and
∂Uy

∂x |di � 1, the corrective vector reduces to B
j
i '

(

−∂Ux

∂y |di ∆y
j−1

i ,−∂Uy

∂x |di ∆x
j−1

i

)

and the latter scheme will be

referred to as scheme (III).

5 Results

5.1 Artificial Test with a Given Displacement Field

As a test case, a known and prescribed displacement field is considered, and we seek the initial geometry such that
the deformed one matches a disc of radius 0.01. The following displacement field is imposed:

U = (Ux, Uy) = (α(x + y), α(x − y)) . (28)

Of course, in this case an analytical solution to the inverse problem can be found analytically by solving the
following system of equations,

xd
i − xini

i = α
(

xini
i + yini

i

)

and yd
i − yini

i = α
(

xini
i − yini

i

)

, (29)

for (xini
i , yini

i ) with (xd
i , yd

i ) belonging to the circle of radius 0.01. This displacement field is, however, a good
candidate to assess the proposed method since the terms εxx, εyy, ∂Ux

∂y and ∂Uy

∂x will all have the same magnitude
equal to α, and this is precisely the situation when, according to the previous analysis, the convergence of scheme
(I) can not be guaranteed.

The benefit of the proposed scheme becomes clear in Figure 4 (a), (b) and (c). For an increasing value of α, the
difference in the convergence behaviour between scheme (II) and schemes (I),(III) becomes larger. For all values
of α, the convergence rate (||∆j

i ||/||∆
j−1

i ||) of scheme (II) is precisely equal to α in virtue of eqs. (25). It is much
worse for schemes (I),(III), and schemes (I),(III) even fail to converge for α = 0.9. As predicted by the previous
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Figure 4: (a), (b) and (c): Plot of max(||∆j
i ||) , i ∈ [1, L] against the iteration number (j) for α=0.1, 0.6 and 0.9,

respectively; (d): Initial and deformed geometries using scheme (II), α=0.9 and 100 boundary points (L = 100).
The arrows indicate the direction of increasing j. The figure also shows the desired geometry and the true required
initial geometry (analytical solution).

analysis, the addition of the approximated corrective vector (scheme (III)) is only worthwhile for small strains (∼
small α).

5.2 Membrane Hole Design

For the following case, more relevant from an engineering viewpoint, the required initial contour of the perforated
hole is sought such that it matches a circle of radius R0 =

√
2 when the membrane is stretched by the load g = βj.

A range of the value of β is considered in order to assess to which extent the schemes are applicable. It can be
anticipated that as the value of β rises, the deformation of the hole becomes greater and the difficulty of the inverse
problem increases. The material properties and boundary conditions are as described in section 2.

To implement scheme (II) and scheme (III), the nodal values of εxx
d
i , εyy

d
i , ∂Ux

∂y |di and ∂Uy

∂x |di must be evaluated.
Since only piecewise linear elements are used to described the displacement field, the components of the strain
tensor are piecewise constant and the following averaging is used to compute the nodal value of the strains

εxx
d
i =

∑Ne

k=1
Ae

kεxx
e
k

∑Ne

k=1
Ae

k

(30)

with analogous expressions for εyy
d
i , ∂Ux

∂y |di and ∂Uy

∂x |di . Ae
k is the area of one of the N e elements having the node

Md
i and εxx

e
k is the corresponding strain. It should be noted that the use of a mixed finite element formulation

would improve the estimate of the strains without doubt.

As illustrated in Figure 5 (a) and (b), no more than three iterations are necessary to reduce the mismatch between
the deformed hole contour and the desired one below the naked eye resolution. Results shown on Figure 5 (a)
and (b) are obtained with scheme (I), 17 boundary nodes (L = 17) and β=120. The scheme is insensitive to the
number of boundary nodes, and the number 17 is simply chosen in adequation with the desired mesh density of
the domain. Of course, at each iteration care must be taken that no node is introduced by the mesh generator on
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Figure 5: (a) and (b): Initial and deformed geometries respectively for β=120. The circles on Figure (b) indicate
the targeted hole geometry and scheme (I) is employed with 17 boundary points; (c) and (d): ||∆j

i || for i ∈ [1, 17]
and j ∈ [1, 10] obtained with scheme (I) and scheme (II) respectively.

ΓH and that the boundary nodes lie precisely on the location prescribed by eq. (11). Comparing the value of the
norm of the residual vector ||∆j

i || along ΓH obtained with scheme (I) (Figure 5 (c)) and scheme (II) (Figure 5 (d))
reveals the significant improvement allowed by the use of scheme (II) for this particular value of β. A decrease
of more than two orders of magnitude in the mismatch between the deformed and desired shapes is achieved. The
scheme (II) also appears to yield a more uniform distribution of the norm of the residual vector ||∆j

i ||.

A more complete picture is possible by considering Figure 6. The value of β is increased from 10 to 160 by
increments of 10 and the mean value of the norm of the residual vector ||∆j

i || along ΓH is computed along with
the standard deviation according to

meanj
(

||∆j
i ||
)

=

∑L
i=1

||∆j
i ||

L

stdj
(

||∆j
i ||
)

=

(

1

L − 1

L
∑

i=1

(

||∆j
i || − mean

(

||∆j
i ||
))2

)1/2

.

Figure 6 reports the best mean value from a total of 15 fixed point iterations and the corresponding standard
deviation for the three schemes. In all tested cases, no improvement of the solution was observed beyond 10
iterations. For β greater than 150, the convergence to the required initial shape worsens for all the schemes and this
value can be arbitrarily defined as the upper bound of the applicability range. Below this threshold, the mean value
of the residual is reduced by at least 2 orders of magnitude to 2× 10−4 (at the most) which would be good enough
in usual engineering terms. Beyond this threshold, strong oscillations of the solution are observed. Unexpectedly,
Figure 6 does not display a monotonous behaviour. As the load decreases, the convergence does not necessarily
become easier. For example, the mean distance between the deformed and desired shapes peaks for β=40 or β=80.
It should be noted, however, that the performance of the three schemes is almost indistinguishable over the load
range (β ∈ [0, 100]) since the values of the mean distance and standard deviation are almost identical. Scheme
(II) and scheme (III) outperform scheme (I) for larger deformations in the range β ∈ [100, 130] confirming the
benefit of adding at least an approximated corrective term for the update of the boundary nodes location.
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Figure 6: Best mean value from a total of 15 fixed point iterations and the corresponding standard deviation for the
three schemes.

6 Conclusions

This paper discusses the possibility of identifying the required initial shape so that the deformed one matches a
prescribed shape by means of a fixed point iterative scheme. It consists in using the desired work-piece geometry
as an initial guess to the required initial geometry and iteratively updating the locations of a set of boundary
points. Based on an analysis of the convergence properties of the scheme, a corrective vector for the update of the
boundary point locations is derived. The addition of the latter is shown to extend the applicability of the scheme
for the artificial test with a given displacement field and to improve the convergence for the membrane hole design.

This scheme could offer a valuable alternative to other approaches for initial shape identification based on sensi-
tivity analysis and optimization methods. At least four potential benefits may be outlined. No parameterization
of the work-piece geometry is required since an arbitrarily large number of boundary points can be selected. The
method is purely geometric and therefore its success does not depend on the type of constitutive law. The method
can easily be used in combination with a commercial code for the computation of the displacement field. The
question of how closely the deformed geometry matches the desired one (which is not necessarily a trivial one) is
easily answered thanks to the introduction of the residual vector the norm of which gives a clear measure of the
mismatch between the geometries.

Of course, these benefits come at a price which is the lack of robustness of the method as seen on Figure 6 where
the best norm of the residual vector unexpectedly peaks (still to an acceptable level) for some values of β. In the
view of the ease of implementation of the method, it should nevertheless constitute a first attempt to tackle such
inverse problems and prove a valuable engineering technique.
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