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Hyperelastic Description of Polymer Soft Foams at Finite Deformations

M. Schrodt , G. Benderoth, A. K̈uhhorn, G. Silber

Soft foams are gaining importancy as materials for mattresssystems and seat cushions in such areas as aircraft
and automotive industries and in the field of medical care. This study will demonstrate that a strain energy func-
tion of finite hyperelasticity for compressible media proposed by Hill (1978), Storakers (1986) and Ogden (1972)
is applicable to describe the elastic properties of open cell soft foams. This strain energy function is implemented
in the FE-tool ABAQUS and proposed for high compressible soft foams. To determine this constitutive equation,
experimental data from a uniaxial compression test are used. As the parameters in the constitutive equation are
linked in a non-linear way, non-linear optimisation routines are adopted. Moreover due to the inhomogeneities
of the deformation field of the uniaxial compression test, the quality function of the optimisation routine has to be
determined by an FE-tool. The appropriateness of the strainenergy function is tested by a complex loading test.
By using the optimised parameters the FE-simulation of thistest is in good accordance with the experimental data.

1 Introduction

The optimisation of mattress systems and seat cushions is becoming more and more important in such areas as
aircraft, automotive industries and medical care. Due to the great variety of designable mechanical properties and
the low cost of production, soft foams are more widely used for such systems. In spite of the more frequent usage
of soft foams, there are very few publications concerning their mechanical behaviour. According to DIN 7726, soft
foams are considered as a two-phase system where a gas (e.g. air) is dispersed in a continuous solid matrix (cell
structure) (Lenz, 1999).

For the mechanical description of hard foams, there are three articles from Renz (1977), Renz (1978) and Czysz
(1986) where the last author describes Polyurethan soft foam by Hooke elasticity. Presently, non-linear models for
soft foams are in general based on a hyperelastic approach for compressible media with a particular strain energy
function. Most of these approaches are based on a strain energy function for incompressible media proposed by
Ogden (1972) which is extended to the compressible case by the third invariant of the deformation gradient. In most
of these models the deformation gradient as well as the strain energy is splitted in a volumetric and a isochoric part
(Simo and Taylor, 1991), which leads in the case of large deformations, to nonphysical effects according to a study
by Eipper (1998). Additionally, there are ambitious continuum models based on a detailed description of the inner
structure of the foam. Ehlers and Markert (2001) apply a theory of mixtures of multiphase materials based on a
continuum mechanical theory of porous media to soft foams, whereby the solid-fluid-problem can be solved. Wang
and Cuitino (2000) introduce a hyperelastic continuum model based on the description of the tension/compression
and bending loading of a single cell and on an irregular shaped open cell structure. An analysis based on an
FE method for open cell Polyurethan soft foams was carried out by Mills and Gilchrist (2000) using the a strain
energy function for high compressive soft foams (so-calledHyperfoam) has been implemented in the FE-program
ABAQUS (Hibbitt et al., 2000a), (Hibbitt et al., 2000b). Butthis study comprises only parameter studies compared
with experimental data and no stringent parameter identification was done. Additionally, for the volume strain the
important parameterβ was ruled out so that the appropriateness of the model for theexamined material becomes
questionable.

The objective of this study is to apply an implemented strainenergy function “Hyperfoam” in ABAQUS to describe
the mechanical properties of soft foams. This will be done byadequate experiments and a stringent parameter
identification. The identification is carried out by non-linear optimisation routines where the simulation of an
uniaxial compression test is used to solve the quality function. The parameter vector derived in such a way is
used for the simulation of an indenter test. The comparison of this simulation with the experimental data shows
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the appropriateness of this strain energy function. The investigation is restricted to the elastic properties of the
foams only, thus these properties are separated from the inelastic ones by suitable experiments with holding times.
Furthermore, the Mullins (1969) effect is eliminated by a cyclic preprocess of the test specimen at the beginning
of each experiment.

2 Experiments

Figure 1: Buckling of a cubic test specimen at a uniaxial compression test

Test specimens of polyurethane soft foam called SAF 6060 were provided by a Swiss soft foam producer (Foam
Partner Fritz Nauer AG). The test specimens are cubes with a quadratic cross section of 200 by 200 mm and a
height of 50 mm randomly taken out of a complete mattress. Theused test specimens differ in geometry from
a standard one (100 mm by 100 mm by 100 mm) because cubic test specimens show buckling at the uniaxial
compression test (see Figure1). The tested foam shows an open cell structure and has a density of 60 kg/m3 and a
compression load deflection of 6 kPa. All forces shown in the figures are pressure loads.

Laboratory tests show a significant dependency of the mechanical behaviour of the foams on temperature and
humidity (Figure 2), thus all tests were carried out at constant climatic conditions (20 ˚ C temperature and 50%
humidity).
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Figure 2: Tests of the climatic dependency of the material properties for SAF 6060.

Beside the material’s dependency on temperature and humidity, it shows a combination of elastic and inelastic be-
haviour. To separate these properties, a testing procedureproposed by James and Green (1975) and Van den Bogert
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and de Borst (1994), successfully applied by Hartmann et al.(2003) and Lion (1996) for rubber like materials, was
also used here.
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Figure 3: MULLINS effect of a test specimen

Cyclic preprocess: To eliminate the Mullins (1969) effect (Chagnon et al., 2002) (see Figure 3) a procedure con-
sisting of a strain-controlled cyclic deformation of 70% with a strain rate of 0.2 s−1 followed by a load discharge
was applied. This cycle was redone 16 times (see Figure 4).

 0
 

5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100  120  140  160

D
is

p
la

c
e

m
e

n
t 

[m
m

]

Time [s]

 0

 50

 100

 150

 200

 250

 300

 350

 0  20  40  60  80  100  120  140  160

A
x
ia

l 
F

o
rc

e
 [
N

]

Time [s]

Figure 4: Cyclic preprocess with constant displacement amplitude and force relaxation

Experiments with holding times: After a recovery phase of 16 hours a step-by-step deformation with a constant
strain rate of 0.2 s−1 was applied to each test specimen. After each deformation step a holding time of 180 min
was applied to the specimen (see Figure 5). During this holding time the material responded with a relaxation.
This procedure ought to ensure that the responding force hasreached an equilibrium state so that the termination
points of relaxation represent the equilibrium state of thematerial (Ehlers and Markert, 2001). The holding time
ensures that the time derivative of the stress was close to zero. Despite the fact that the stress rate was almost zero,
the relaxation process was still ongoing (see e.g. Figure 7). For the sake of performing a managable experiment,
a termination of three hours for each step was taken. All the termination points of the holding time generated
an equilibrium stress-strain curve. The difference between the termination of the deformation steps and its corre-
sponding equilibrium point is called overstress. After performing the final deformation step an unloading phase
was applied. This process was exactly the reverse of the loading process (Figure 5). For getting an appropriate data
set for the parameter optimisation, different intervals for the holding points over the deformation course have been
chosen. Figure 3 shows that the slope of the deformation course is up to a value of displacement of 4 mm much
steeper than in the following sections. Thus holding pointsat 1, 2 and 4 mm were chosen. For larger displacement
values a constant interval of 4 mm was taken.

Two different types of tests were carried out. A uniaxial compression test and a test with an indenter (a cylinder
with a spherical calotte of 50 mm diameter at its end (Figure 6)).
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Figure 5: Experiment with holding times, loading and unloading path for holding time experiments and force
response with relaxation

Figure 6: Test Configurations

To establish a homogeneous deformation field, the shear stresses between the two plates on top and bottom side
and the test specimen at the uniaxial compression test has tobe eliminated. This turned out to be rather difficult to
achieve. For having defined boundary conditions, the test specimen were fixed at the two plates (Figure 6). The
boundary condition causes a reversible bulge at the edges ofthe test specimen while being tested.

To generate a spatially defined deformation field, an indenter type test was carried out. In this test a spherical
calotte (diameter of 50 mm) is pushed down into the test specimen, where the penetration depth and the associated
normal force was measured during the penetration process.

3 Constitutive Equation

3.1 General Constitutive Equation for Hyperelastic Materials

According to the results of the empirical analysis, the considered soft foams show a compressible viscoelastic
material behaviour. To describe this phenomenon, a viscoelastic constitutive equation is usually adopted. In
general, viscoelastic models decompose the total stress tensorS into an (elastic) equilibrium stress partSG and
an overstress partSOV representing the memory property of the material. Thus the stress tensor can be written
asS = SG + SOV (see Hartmann et al. (2001)). This study will exclusively deal with the elastic properties
of soft foams according to the empirically attained stress-strain curves of the termination points after a distinct
holding time (see the last section). For such a description,constitutive equations for hyperelasticity are permissible
(Hartmann et al., 2003). For the sake of simplicity, the index G in the above formula will be left out for further
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discussion.

Hyperelastic materials represent a subset of (CAUCHY-) elastic materials characterised by an elastic potential
(strain energy function). The stress tensor can be generated by the derivation of the strain energy function with
regard to the strain tensor. The basis therefore is the equation of mechanical energy

ẇ = JS · ·D with J = detF (1)

wherew is the strain energy function,F the deformation gradient,S the CAUCHY stress tensor andD the strain
rate tensor

D =
1

2
F

−T · Ċ · F−1 (2)

with the right CAUCHY-GREEN tensorC (a dot above the symbol means the material time derivative).Due to
the principle of objectivity,w has to be a scalar-valued non-negative tensor function of the right stretch tensorU
or the right CAUCHY-GREEN tensor

w = w (U) = w (C) =

{

> 0 for C 6= I

= 0 for C = I
(3)

According to (3) in the undeformed state (reference configuration (C = I) the strain energyw is always zero and
for the deformed state (current configuration (C 6= I) the strain energy always has to be non-negative (w > 0).
Inserting (3) into (1) by regarding (2) results in the most general structure of the constitutive equation for non-linear,
hyperelastic, anisotropic material behaviour (Green and Adkins, 1970):

S = 2 J−1
F ·

∂w (C)

∂C
· F T (4)

3.2 Strain Energy Function for Highly Compressible Polymers

For describing the mechanical behaviour of highly compressible polymers, the following strain energy function
has been proposed by Hill (1978) and Storakers (1986)

w =

N
∑

k=1

2
µk

α2

k

[λαk

1
+ λαk

2
+ λαk

3
− 3 + f(J)] (5)

whereµκ andακ are material parameters andf(J) a volumetric function, which has to fulfil the restrictionf(1) =
0. Using (5) one gets for the spectral representation of (4)

S = 2J−1

3
∑

i=1

N
∑

k=1

{

µk

αk

[

λαk

i +
1

αk

J
∂f (J)

∂J

]

nini

}

(6)

with the eigenvaluesλi of the right stretch tensorU and the eigenvectorsni of the left stretch tensorV . A possible
form of the volumetric functionf(J) is given by Storakers (1986)

f(J) =
1

βk

(

J−αkβk − 1
)

(7)
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whereβk are additional material parameters. Thus one gets 3N material coefficientsαk, βk and µk (k =
1, 2, ..., N ) which in general have to be determined by appropriate tests. Additionally the initial shear modulus
and compression modulus are defined by (Hibbitt et al., 2000a)

µ0 :=

N
∑

i=1

µi and κ0 :=

N
∑

i=1

2

(

1

3
+ βi

)

µi (8)

There is also a relation given between the Poisson’s ratiosνi and the parametersβi

νi =
βi

1 + 2βi

respectively βi =
νi

1 − 2νi

i = 1, 2, ...., N (9)

For the particular caseβi =: β = const, ν is the classical Poisson’s ratio. For the parameters in (6) and (7)
certain restrictions have to be fulfilled (extensively discussed in Reese (1994)). According to Hill (1978) and
Storakers (1986) the following unequalities shall always be valid (the second unequality holds for the particular
caseβi =: β = const only)

µkαk > 0 (k = 1, 2, ...., N)(no sum) and β > −
1

3
(10)

3.3 Force-stretch-relation for the Uniaxial Compression Test

Considering a homogeneous deformation state the deformation gradient is

F (t) = λ1 (t) e1e1 + λ2 (t) e2e2 + λ3 (t)e3e3 (11)

with the stretches

λ1 = λ2 =
a (t)

a0

, λ3 =
h (t)

h0

, J = λ2
1λ3 =

[

a (t)

a0

]2
h (t)

h0

(12)

wherea0 anda(t) are the angle lengths andh0 andh(t) are the heights of a test specimen in the undeformed and
deformed state.

If the specimen is loaded only in the 3-direction according to the homogeneous deformation there is no stress in 1-
or 2-direction. Thus according to (6) by obeying (7)2 and (12) the stress state has the following form:

σ33 (λ1, λ3) = 2
(

λ2
1λ3

)

−1
N
∑

k=1

µk

αk

[

λαk

3
−

(

λ2
1λ3

)

−αkβk

]

0 =
N
∑

k=1

µk

αk

[

λαk

1
−

(

λ2
1λ3

)

−αkβk

]

(13)

If a specimen is loaded by a single loadK in the 3-direction, the stress in the 3-direction by regarding the equilib-
rium condition will beσ33 = −K/(ab) ≡ −K/a2. Thus the final relation for the uniaxial loading is

K (λ1, λ3) = −2a2
(

λ2

1λ3

)

−1
N

∑

k=1

µk

αk

[

λαk

3
−

(

λ2

1λ3

)

−αkβk

]

(14)

and the following implicit relation holds for the stretchesin 1- and 2-directionλ1 andλ2 due to (13)2
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f (λ1, λ3) =

N
∑

k=1

µk

αk

[

λαk

1
−

(

λ2

1λ3

)

−αkβk

]

= 0 (15)

For the particular caseN = 1 and usingα1 := α, β1 := β, µ1 := µ one can derive an explicit relation betweenλ1

andλ3

λ1 = f (λ3) = λ
−

β

1+2β

3
and finally λ2

1λ3 = λ
1

1+2β

3
(16)

Equation (16) allows a separation of the material parameterβ from the rest and can be used for a separate analysis
of β (see Storakers (1986)). By using (16)λ1 can be eliminated from (9) in the caseN=1. Thus the final form of
the force-stretch-relation (8) reads (N = 1)

K (h) = 2
µ

α
a2

0

[

(

h

h0

)

−α
1+3β

1+2β

− 1

]

(

h

h0

)α−1

≡ 2
µ

α
a2

0

(

λ
−α

1+3β

1+2β

3
− 1

)

λα−1

3
(17)

On the basis of the expression (17) the importance of restriction (10)2 is evident, because forβ = −1/3 the value
of K would be always zero for arbitrary stretchesλ3.

4 Parameter Optimisation

The basic aim is to describe the elastic properties of the material by the constitutive equations (6) and accordingly
(14), (15) or (17), so that these functions reproduce the empirical data in an appropriate way. This is obtained by
using a quality functionΦ of the following form

Φ :=
1

n

√

√

√

√

n
∑

i=1

[f (h;α1, ....., αN ) − fi (hi)]
2 !
=min (18)

wheref(h;α1, . . . , αN ) is the model withh the independent variable, theα1, . . . , αN are arbitrary model param-
eters andfi andhi are the measured values. In this particular case, the model is the constitutive equation (17) with
the displacement coordinateh and the axial forcef as independent and dependent variable,µj , αj andβj are the
model parameters. The values for thefi andhi were taken from the measured data of the uniaxial compression
test described in Section 2.

Optimisation routines: As most of the parameters within the constitutive equations appear in a non-linear way,
for minimising the quality function (18) a non-linear optimisation routine has to be used for this purpose. The
authors chose a stochastic and a deterministic routine. Thestochastic routine is a modified MONTE CARLO
routine called SIMULATED ANNEALING (Otten and van Ginneken, 1989). This routine was used to evaluate
the material parameters for the constitutive equation (17)for the uniaxial compression test.

A stochastic routine rather ensures to find the global minimum compared to deterministic routine at the expanse of
extensive usage of function evaluation. Thus for using the FE- program for the function evaluation, the determinis-
tic SIMPLEX STRATEGY (Nelder and Mead, 1969) was taken. Because of the particular boundary conditions of
the uniaxial compression test, the FE-program was used for determining the parameters of (6). As starting values
for this parameter determination the results of the fit for equation (17) were taken.

Both routines were coded by the authors according to algorithms given by Schwefel (1995).

5 Finite Element Simulation

To verify the appropriateness of the constitutive model describing the mechanical behaviour of soft foams, the
compression and the indenter type test as well have to be simulated by an FE-simulation.
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The indenter type and uniaxial compression test were solvedwith 8-node linear brick elements. The bottom surface
of the foam was constrained inx-, y- andz-directions, whereas the top surface was only restricted inx- andz-
directions. A constant displacement was imposed to represent the testing scenario. In the case of the indenter
test, the indenter itself was modelled as a rigid body. A constant friction coefficient of 0.75 was used between the
indenter surface and the foam surface with the same constraints for the bottom surface as in the uniaxial load test.
For the sake of comparison between the experimental data andthe results of the FE-simulation in the case of the
uniaxial loading, the sum of the resulting forces in loadingdirection at surface nodes was taken. For the case of
the indenter test, the resulting force of the rigid body in loading direction was used.

6 Results

Figure 7 shows the experimental results of the uniaxial compression test. It can be seen, that even holding times
of 180 min are too short, since the overstresses are not completely relaxed. Hence, there is a very small hysteresis
defined by the termination points of relaxation (the equilibrium points are only reached in an asymptotic sense).
To take this fact into account, two different sets of data were taken for the optimisation process:

1. the interval of termination points

2. the mid-points of the relaxed stresses of the hysteresis
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Figure 7: Optimisation results of the uniaxial compressiontest with different parameter sets (N = 1, N = 2),
experimental data with holding times (dashed line), termination points of relaxation (open circles).

Parameter analysis. The first analysis concerns the parameter optimisation according to the force-stretch-relation
(17) in the caseN=1 and (14) and (15) in the caseN=2 for the uniaxial compression test. The results are given in
Table 1 and Figure 7.

Table 1: Parameter sets for the uniaxial compression test

Mid-Point Interval
N=1 N=2 N=1 N=2

Quality Function 3.63 3.62 6.76 6.76
µ1 = µ [MPa] 0.85710−2 0.48110−2 0.83110−2 0.47910−2

α1 = α 0.198102 0.198102 0.198102 0.198102

β1 = β 0.10510−1 0.14510−1 0.10910−1 0.13910−1

µ2 [MPa] 0.36010−2 0.35110−2

α2 0.198102 0.197102

β2 0.65010−2 0.65710−2
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It can be seen from Table 1 that the quality function for the used data set show almost no difference in the case
N = 1 andN = 2. Furthermore the differences of the values of the parameters for the different cases (Mid-Points
and Interval) are also negligible. This is also documented by almost congruent curvatures in Figure 7.

Table 2: Optimised parameter sets for the uniaxial compression test by the analytical solution (Numerical Fit) and
FE-solver (FE Fit)

Numerical Fit FE Fit
µ [MPa] 0.83110−2 0.90710−2

α 0.198102 0.213102

β 0.10910−1 0.84910−2

Figure 8: FE-simulation of the indenter test in a deformed state. The grey-scale indicates the reaction force between
the indenter and the foam

FE-Simulation. Table 2 shows a comparison of the parameter determination for the uniaxial compression test
derived from eq. (17) and an FE-simulation of this test. Figure 9 gives the results of this comparison between the
experimental data of the indenter test (termination points) and the FE-simulation based on the constitutive equation
(5) by using the parameter sets from the “FE Fit” of Table 2. The graph for the simulation apparently lies within
the termination points of the indenter tests. Figure 8 showsthe FE-simulation of the indenter test in a deformed
state.

7 Conclusion and Discussion

The objective of this study was to investigate the appropriateness of a strain energy function for finite hyperelas-
ticity proposed by Hill (1978), Storakers (1986) and Ogden (1972) to describe the elastic properties of soft foams.
This strain energy function is implemented in the FE-program ABAQUS for highly compressible foams in a very
similar form. To accomplish this goal the following three important steps were carried out:

1. Carrying out appropriate experiments

2. Performing a parameter identification of the constitutive equation

3. Performing a complex test loading experiment, simulating this experiment with a FE-tool by using the opti-
mised parameter set and comparing the results with the experimental data
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Figure 9: a. Comparison of the optimisation processes (Numerical Fit and FE Fit) by the uniaxial compression
test (termination points), b. comparison of the experimental data of the indenter test and the FE-Simulation with a
parameter set derived from the uniaxial compression tests.

The differing geometrical dimensions of the used test specimen from the standard cubes guarantee that the empiri-
cal tests are not influenced by the boundary conditions of thetest specimens (buckling). The purpose of this study
was to characterise the elastic properties of soft foams so that the elastic properties had to be separated from the
inelastic ones by appropriate experiments. This was obtained by a cyclic preprocess to eliminate the MULLINS
effect and approximate experiments after a recovery phase of 16 hours with a stepwise loading and unloading of
the test specimen. At each load step a holding time of 180 min was kept. But even at this time period of constant
deformation the overstress is not completely relieved. This is indicated by the gap of the lower and upper termina-
tion point of each loading step. Thus there is a range of uncertainty for the course of the elastic force displacement
relation of the foam. This uncertainty was investigated by doing the parameter optimisation using the termination
points for each step and the arithmetic mean of the holding points as well. The results of the two identification
procedures are almost equal regarding the numerical valuesof the parameters (see Table 1). Table 1 also shows
that there is almost no difference in the figures of the quality function for the different formulation of the strain
energy function used here forN = 1 andN = 2. Thus for the examined materials there is no difference inusing the
mid-points or the lower and upper termination points for theparameter identification or settingN = 1 or N = 2 in
the strain energy function.

In spite of the inhomogeneity of the deformation field in the uniaxial compression test caused by the boundary
conditions (see Section 2) the FE-simulation does not provide a different result for the fit compared to the numerical
one (see Figure 7 and Table 2). This probably indicates that the inhomogeneity of the deformation field is not a
significant one.
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Figure 10: Comparison between the parameter optimisation for the constitutive equation (17) forβ = 0 (dashed
line) andβ 6= 0 (solid line) being optimised using data from the uniaxial compression test.
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The parameterβ is not negligible as done by Mills and Gilchrist (2000). All parameter optimisations, regardless
of whether the quality function was calculated using (17) orthe FE-tool,β was significantly different from zero.

Beside this fact, if an optimisation is done for a parameter set withβ = 0 the results as shown in Figure 10 indicate
that such a parameter set underestimates the reaction forceof the foam at large deformations. For the foams
examined in this study this effect is tolerable. Whether thisis also tolerable for different foams is arguable.

The appropriateness of the used strain energy function for describing the elastic properties of the examined soft
foams is given if a complex loading scenario can be simulatedwith the parameter set derived from a simple
load scenario. This complex scenario was generated by an indenter type test (see Figure 8). The result of the
comparisons is given in Figure 9. The FE-simulation resultslie in the corridor generated by the lower and upper
termination points of the indenter test.
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Reese, S.:Theorie und Numerik des Stabilitätsverhaltens hyperelastischer Festkörper. Ph.D. thesis, TH Darmstadt,
(1994).

Renz, R.:Zum z̈ugigen und zyklischen Verformungsverhalten polymerer Hartschaumstoffe. Ph.D. thesis, TH Karl-
sruhe, (1977).

Renz, R.: Modellvorstellungen zur Berechnung des mechanischen Verhaltens von Hartschaumstoffen. In:
Schaumkunststoffe. Fachverband Schaumkunststoffe e.V, Düsseldorf, (1978).

Schwefel, H. P.:Evolution and Optimum Seeking. Wiley & Sons, New York, (1995).

Simo, J. C.; Taylor, R. L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and nu-
merical algorithms.Computer Methods in Applied Mechanics and Engineering, 85, (1991), 273–310.

Storakers, B.: On material representation and constitutive branching in finite compressible elasticity.J. Mech. Phy.
Solids, 34 No 2, (1986), 125–145.

Van den Bogert, P. A. J.; de Borst, R.: On the behaviour of rubberlike materials in compression and shear.Arch.
Appl. Mech., 64, (1994), 136–146.

Wang, Y.; Cuitino, A. M.: Three-dimensional nonlinear open-cell foams with large deformations.Journal of the
Mechanics and Physics of Solids, 48, (2000), 961–988.

Addresses:

M. Schrodt, G. Benderoth, G. Silber: FH Frankfurt, University of Applied Sciences, Institute for Material
Science, Nibelungenplatz 1, D-60318 Frankfurt/Main

email:schrodt@fb2.fh-frankfurt.de
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