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On the Mathematical Simulation of the Measuring of the Intraocular
Pressure by Maklakov Method

S.M. Bauer, A.G. Lyubimov, P.E. Tovstik

Maklakov’s method for measurement of the intraocular pressure (IOP) is based on approach, in which an eyeball
is modeled as a thin-walled spherical liquid-filled shell. Measuring the IOP one estimates the diameter of the
circular contact area of the cornea and the tonometer. In the clinic special tables are used to estimate the IOP
relating to the measured diameter. However nowadays the calculating of such tables is based on the empirical
values of the IOP. In the present paper the mathematical simulation of the measuring of the intraocular pressure
by Maklakov method is considered.

1 Maklakov’s Method and Physical Background

To measure the intraocular pressure (IOP) A.N. Maklakov (Maklakov, 1984) proposed to apply the load P (usually
P = 5 or 10 g) to the cornea, that eventually deforms under this load. The proposed method is realized in Maklakov
tonometers, where a flat-bottomed load is applied to the cornea and then the diameter, d, of a circular contact area of
cornea and tonometer is measured. Each tonometer is supplied with special tables which are lately used to estimate
the IOP corresponding to the measured value of the diameter,d. The tables to determine the IOP are calculated in
analysis of the changes in the internal pressure in the thin-walled shell under the loading. It is assumed that the
elastic properties of the shell are homogeneous and one-parametric, i.e. they depend on the only constant that is
the same for all patients. The value of this constant is determined in analysis of the values of the IOP calculated,
estimates or measured by different methods.

In 1920-1930, when methods of the measurement of the IOP were developed, the analysis of stress-strain state
in shells was a difficult problem. It explains why for estimation of the change in the IOP inside a loaded shell it
was assumed that this value was equal to the change of the IOP in the unloaded shell with the additionally injected
volume of liquid ∆V . Here ∆V is the volume of the spherical segment with a base equals to the contact area of the
cornea and the tonometer. Presumably, this main assumption based on incompressibility of the vitreous body was
firstly formulated by P. Romer. This assumption is used until nowadays to calculate the tables for calculation of the
IOP and to develop different methods for the measuring of the IOP (Nestorov et al., 1974). With this assumption
the pressure in the shell before loading (actual intraocular pressure) p0 is given by relation (Bauer et al., 2000)

p0 = pt −
Eh

2πR4(1 − ν)
∆V = pt − K∆V, pt =

4P

πd2
, K ≡

Eh

2πR4(1 − ν)
(1)

where pt is the tonometric pressure, P is the load, d is the diameter of the contact area, R is the radius of the
shell, h is the shell thickness, E is Young’s modulus, ν is Poisson’s ratio and ∆V is the volume of liquid injected
into the shell called in ophthalmology ”the volume of corneal indentation”. It follows from (1), that, if the main
assumption is realistic, then with two tonometric tests with different weights one could find the IOP inside the
unloaded shell p0 and the constant K for the elasticity relations for the shell material. From clinical point of view
the simulation of the eye shell with the elastic shell helps to estimate the individual IOP and the elastic properties
of sclera. Such method of the measurement of the IOP was proposed by P. Romer as an empirical method, but it
was not later elaborated apparently since the obtained values of the IOP agreed not so well with other empirical
data. Anyway it is hard to say what was the real reason, but the development of methods of the measurement of the
IOP went another way. In 1937 Friedenvald proposed the ratio that differed from (1) ratio, for which the pressure
in the unloaded shell p0, the tonometric pressure pt and the volume of injected in the shell liquid ∆V are related
as:

ln p0 = ln pt + A∆V, A = const. (2)
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The term A in equation (2) is called the ocular rigidity. Ocular rigidity is sometimes called scleral rigidity because
when an internal pressure increase stretches the eye, it is largely the sclera that is stretched. Relation (2) agrees
with (1). If the changes in the volume ∆V and the pressure ∆p = pt − p0 are relatively small with respect to the
initial values p0 and V = 3

4πR3 then we denote

A =
K

p
'

K

p0
. (3)

It follows from (3) that in the general case the ocular rigidity A and therefore the IOP obtained due to (2) in two
tonometric tests with different weights may depend on both the initial IOP and the weight. It is important that both
methods for the estimation of IOP based on either (1) or (2) use same model of an eye and the main assumption on
∆V , but for this model (1) is an exact relation and relation (2) is approximate. For real conditions ∆V/V ∼ 10−3,
∆p/p0 ∼ 10−1 and therefore, the difference in the values of IOP and constant K is about 10 %.

Nevertheless the tonometry developed in the way characterized by relation (2). However in both approaches the
difficulties are similar: the calculated values of IOP do not agree well enough with those obtained in the other
tests. That is why there were attempts to refine relation (2). For example, in calculation of ∆V it was assumed
in Nestorov and Vurgaft (1972), that the contact area included the narrow layer of a tear. Therefore the current
tables for calculation of the IOP though based on the eye shell model described above are in fact the collections of
empirical data based on the hundred years experience of the eye study. Nevertheless the model itself and the main
assumption on the value ∆V are still the ground of such tables. It should be noted that in making the tables the
geometrical and elastic properties of the model are supposed to be fixed. However, the geometrical parameters of
an eye are approximately constant, but the elastic properties essentially vary for different people and change with
age, different pathologies of vision or after surgery. For example, in Iomdina (2000), it was reported that Young’s
modulus for sclera may vary in the range E ∼ 1 − 45 MPa. Therefore the IOP obtained due to the tables may
differ for a patient from the real IOP. It is interesting to estimate the possible error in the measurement of the IOP.
Below the solution of mechanical model problem is discussed. The eye is modeled as a thin-walled shell and the
effect of the elastic properties of shells on the diameter of the contact area is considered.

2 The Equation of the Axisymmetric Deformation

The eye is modeled with two spherical segments (see Fig. 1).

Figure 1: The eye shell before deformation (a) and after deformation (b)

These two segments shell is filled with almost uncompressible liquid under pressure p0. The spherical segment
of radius R models sclera (segment A0F0B0 in Fig. 1a), and all variables associated with this part are denoted
with the index s. The small segment (segment A0C0D0B0 in Fig. 1a) is a model of the cornea, and the variables
corresponding to this part of the shell are marked with r. It is assumed that under the load the sclera deforms in
such a way that the central angle for the contact line, ϕs is constant

A0B0 = 2R0
s
sin ϕs = 2R0

r
sin ϕr. (4)

and the spherical segment modeling sclera remains a spherical segment with the new radius, Rs. It is also supposed
that Young’s modulus for cornea is significantly less than Young’s modulus for sclera (Es >> Er) and the cornea
is modeled as a soft shell. Later means that it does not resist the bending deformations. Under these assumptions
the deformations in cornea are large and the cornea takes the form represented in Fig. 1b.
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The pressure p is connected with load P by relation

P = pS, S = πr2
d
, rd =

CD

2
,

where S is the contact area of the cornea and the tonometer.

Let s0 is the length of generatrix, r0 is the distance between a point on the middle surface and the axis of rotation
before deformation and 0 ≤ s0 ≤ sb

0 = R0
r
ϕr. Let point sd

0 corresponds to the point D, the boundary of the
contact area.

The equations of equilibrium of the shell and the geometrical relations on the part DB, i.e. for sd ≤ s0 ≤ sb have
a form (Chernykh et al., 2002)

(r0T1)
′

− T2 cosϕ = 0, ϕ0 = s0

R0
r

, r0 = R0
r
sin ϕ0,

−T2 sin ϕ − r0ϕ
′T1 + l1rp = 0, ε2 = r

r0

− 1, T2 = νrT1 + Erhrε2 + T0(1 − νr),

r′ = l1 cosϕ, l1 = 1 + ε1, ε1 =
(T1−T0)(1−ν

2

r
)

Erhr
− νrε2,

(5)

′ =
d

ds0

where hr is the cornea thickness, T1 and T2 are the tangential stress-resultants after the loading, T0 is the stress-
resultant in the initial state, ϕ is the angle between the normal to the shell and the axis of the rotation after
deformation, ε1, ε2 are additional deformations of the shell, related to the stress-resultants as

T1 − T0 =
Erhr(ε1 + νrε2)

1 − ν2
r

, T2 − T0 =
Erhr(ε2 + νrε1)

1 − ν2
r

, T0 =
p0R

0
r

2
.

The main unknown values in system (5) are functions T1, r, ϕ. The rest values could be express through the main
ones due to (5).

On the section under tonometer (0 ≤ s0 ≤ sd) ϕ = 0 holds and the system (5) has the following form

(r0T1)
′

− T2 = 0, r′ = l1. (6)

For arbitrary radius of the contact area rd we should seek a solution of systems (5) and (6), which satisfies the
following conditions: (i) the solution of systems (5) and (6) should be limited at the point s0 = 0, (ii) functions
T1, r and ϕ should be smooth at the point D, i.e.

r(sd) = rd,

and at the point B

r(sb) = rb, rb = R0
s
sin ϕs

(

1 +
(1 − νs)R

0
s
(p − p0)

2Eshs

)

, (7)

where rb is obtained from the condition of the sclera deformation and hs is the thickness of sclera.

To evaluate the value rb first we should estimate the decreasing of the volume ∆V under the section ACDB after
the loading by tonometer

∆V = π

∫ sb

0

(

r2
0 sinϕ0 − r2l1 sin ϕ

)

ds0.

This decreasing of the volume should be equilibrated by extension of sclera and compressions of the vitreous body
under the increasing the pressure

∆V1 = Λ(p − p0), Λ =
3(1 − νs)R

0
s

2Eshs

Vs +
1

K
(Vs + Vr).
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Here Λ is pliability of the eye under the increasing pressure, K is modulus of the volume stiffness of the vitreous
body (for uncompressible vitreous body 1/K = 0), Vs and Vr are the volumes of the segments A0C0D0B0 and
A0F0B0 correspondingly

Vs =
πR0

s

3

3
(2 + 3 cosϕs − cos3 ϕs), Vr =

πR0
r

3

3
(2 − 3 cosϕr + cos3 ϕr).

In systems (5),(6) the values of P , rd, p are given (see (4)), and p0, sd, ∆V could be found.

For numerical solution of systems (5) and (6) it’s convenient to introduce function p∗

p∗ =

{

0 for r < rd,
p for r ≥ rd,

then system (6) is a part of system (5).

System (6) has a pecular point s0 = 0.

The asymptotic analysis of the system shows that in neighbourhood of that point

T1(s0) = T10 + O(s2
0), ϕ = 0, r = r1s0 + O(s3

0), r1 = 1 +
(1 − νr)(T10 − T0)

Erhr

,

where T10 is constant.

Taking into account this expansions and arbitrary values p0 and T10 we can solve numerically system (6), then
changing the value T10, satisfying condition (7), and changing the value p0 we obtain the equality ∆V = ∆V1.

3 Results

In Table the results of calculations due to this model are represented for following parameters: load P = 5 g,
central angle for the contact line ϕr = 38o, modulus of the volume stiffness of the vitreous body K = 100 MP,
Young’s modulus Er=1.2 MPa and Poison’s ratio νr = 0.5 for cornea, the radius of the unloaded cornea Rr = 8
mm. For sclera hs=1 mm, Rs=12 mm, νs = 0.45. Young’s modulus for sclera (Es = 6 MPa, Es = 12 MPa) and
thickness of cornea hr = 0.5 mm, hr = 0.3 mm are shown in the table. Values p and p0 are given in mm Hg.
d = 2rd is the diameter of the contact area. The corresponding data of calibrating tables for elastotonometer are
represented in the last column.

hr = 0.5 hr = 0.3 hr = 0.5 hr = 0.3 Nesterov and
d p Es = 6 Es = 6 Es = 12 Es = 12 Vurgaft (1972)

3.5 38.2 36.7 35.6 35.6 34.9 50.7
4.0 29.3 27.5 26.8 26.3 25.5 36.9
4.5 23.1 21.1 20.4 19.7 18.9 27.1
5.0 18.7 16.4 15.7 14.7 13.9 20.0
5.5 15.5 12.7 12.1 10.7 10.0 15.2
6.0 13.0 9.7 8.9 7.3 6.6 11.2

One can see that the calculated intraocular pressure depends on parameters of cornea and sclera, and the change of
Young’s modulus for shells effects more essential than the change of the cornea thickness.

For load P = 10g the results of calculations give better agreement with the data in calibrating tables. In Fig. 2
the results of calculations are represented for hs=1 mm, hr=0.5 mm, Rs=12 mm, Rr = 8 mm, Er=1.2 MPa. The
labels 1 and 2 correspond to different Young’s modulus of sclera.
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Figure 2: The numerical results vs. data in the calibration tables
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