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Optimal Design of Stiffened Cylindrical Shells Based on an Asymptotic
Approach

S. B. Filippov

The linear differential equations describing the free vibrations of ring-stiffened thin cylindrical shells are solved
with the help of asymptotic techniques. The received approximate formulas are used for the evaluation of optimal
parameters corresponding to the maximal fundamental frequency of the ring-stiffened shell with given mass.

1 Introduction

The fundamental vibration frequency is an important characteristic of a thin-walled structure. A simple way to
raise the fundamental frequency to avoid resonance is to increase the thickness of the structure. However in this
case the mass of the structure also increases. An optimal design of thin-walled structure lets to raise its frequency
without the increase of its mass. The optimal design of a stiffened shell is a rather complicated problem. The
method based on an asymptotic approach permits creating simple algorithms for the calculation of the optimal
parameters. The results obtained in Filippov (1997, 1999) show that the replacement of a cylindrical shell by the
optimal stiffened cylindrical shell with the same mass can increase the fundamental vibration frequency several
times more.

In Filippov (1997, 1999) and almost in all studies of ring-stiffened shells, including Yang and Zhou (1995); Wang
and Swaddiwudhipohg (1999), the rings have been considered as circular beams (beam model). Such traditional
formulation of the problem permits estimating the optimal area of the ring cross-section, but does not permit to
find the optimal form of the cross-section. If the cross-section is a rectangle, then the fundamental frequency
increases monotonically with the increase in the ratiok = b/a, whereb anda are the width and the thickness of
the ring. However, for large values ofk, the ring must be considered as a thin plate (plate model). The evaluation
of the fundamental frequency of the ring-stiffened shell with the help of asymptotic method for large values ofk
is presented by Filippov and Haseganu (2003).

In this paper the beam and plate models are used for the approximate calculation of the optimal values of the
parameter for the shell and ring with rectangular cross-section. An algorithm for the evaluation of the optimal
parameters corresponding to the maximum value of the fundamental vibration frequency of the ring-stiffened shell
with a given mass is developed. I particular, the optimal values of the parameterk are obtained.

2 Two Models

To compare two models of a ring we consider the vibrations of a thin cylindrical shell stiffened at one edge by
a ring with rectangular cross-section. We take the radiusR, of the cylindrical shell as a characteristic length,
introduce the local coordinatess ∈ [0, l], ϕ ∈ [0, 2π] on the middle surface of the shell and denoteu, v, w the
components of the displacement (see Figure 1).

After the separation of variables

u(s, ϕ) = u(s) cos mϕ v(s, ϕ) = v(s) sin mϕ w(s, ϕ) = w(s) cos mϕ (1)

the non-dimensional equations describing the free vibration of the cylindrical shell can be written in the following
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Figure 1. Cylindrical shell stiffened by ring

form

T ′1 + mS + λu = 0 S′ −mT2 + Q2 + 2H ′ + λv = 0 Q′1 + mQ2 − T2 + λw = 0
Q1 = M ′

1 + 2mH Q2 = −mM2 M1 = h2(ϑ′1 + νmϑ2)/12
M2 = h2(mϑ2 + νϑ′1)/12 H = h2(1− ν)ϑ′2/12 T1 = u′ + ν(w + mv)

T2 = w + mv + νu′ 2S = (1− ν)(v′ −mu) ϑ1 = −w′ ϑ2 = mw + v

(2)

where (′) denotes the derivative with respect to the axial coordinates, λ = 4π2σρf2R2E−1 is the frequency
parameter,σ = 1 − ν2, ν is Poisson’s ratio,E is Young’s modulus,ρ is the mass density,f is the vibration
frequency,T1, T2, S, Q1, Q2, M1, M2, H are the dimensionless stress-resultants and stress-couples,ϑ1 andϑ2

are the angles of rotation of the normal,h is the dimensionless shell thickness.

Let the edge of the shells = 0 is clamped, i.e.

u = v = w = ϑ1 = 0 for s = 0 (3)

Assuming, that the thickness of the ringa is small andk = b/a ∼ 1, whereb is the width of the ring, we consider
the ring as a circular beam and can use at the shell edges = l the approximate boundary conditions obtained in
Filippov (1999):

mS −Q1 + σ
F

h
m2(mv + w) = 0 mQ1 − S + σ

J

h
m4(mw + v) = 0 T1 = 0 M1 = 0 (4)

whereF = ab andJ = ab3/12 are the area and the moment of inertia of the ring cross-section.

In this case for the evaluation of the dimensionless frequency parameterλ and the vibration modes we have the
boundary value problem (2)–(4).

If the parameterk is large, we have to use another model for the ring and consider it as an annular thin plate. The
non-dimensional equations describing the transverse flexural vibrations of the circular plate have the form

(spQ1p)′ + mQ2p + λspwp = 0 spQ1p = (spM1p)′ −M2p spQ2p = −mM2p + 2Hp

spM1p = a2[spϑ
′
1p + ν(mϑ2p + ϑ1p)]/12 spM2p = a2(mϑ2p + ϑ1p + νspϑ

′
1p)/12

Hp = a2sp(1− ν)ϑ′2p/12 ϑ1p = −w′p spϑ2p = mwp

(5)

Here (′) denotes the derivative with respect to the radial coordinate,sp ∈ [1, 1+b], wp is the transverse displacement
(deflection),Q1p, Q2p, M1p, M2p, Hp are the dimensionless stress-resultants and stress-couples,ϑ1p andϑ2p are
the angles of rotation of the normal.

The tangential (in plane) vibrations of the plate are described by the following equations:

(spT1p)′ − T2p + mSp + λspup = 0 spS
′
p + 2Sp −mT2p + λvp = 0

spT1p = spu
′
p + ν(mvp + up) spT2p = up + mvp + νspu

′
p

2spSp = (1− ν)(spv
′
p −mup − vp)

(6)

whereup andvp are the tangential components of the displacement,T1p, T2p, Sp are the dimensionless stress-
resultants.
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At the circumferences = l, sp = 1, the continuity conditions

w = up u = −wp v = vp ϑ1 = ϑ1p

hQ1 = aT1p hT1 = −aQ1p hS = aSp hM1 = aM1p

(7)

have to be satisfied.

We assume that the edge of the platesp = 1 + b is free, and impose the boundary conditions

T1p = Q1p = Sp = M1p = 0 for sp = 1 + b (8)

To find λ using the plate model of the ring one has to solve equations (2), (5) and (6) taking into account the
boundary condition (3), (7) and (8).

The boundary value problems for the plate and the beam models have been solved in Filippov and Haseganu
(2003). In Figure 2 one can see the effect ofk on the value of fundamental vibration frequencyf in Hz. The
parameters of the shell and the ring take on the following values:a = h = 0.01, l = 2.5, b = ka, ν = 0.3,
R = 10 in, E = 3 · 107 psi,ρ = 0.00073 lb· s2/in4.
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Figure 2. Fundamental frequency of the cylindrical shell stiffened by ring vs.k = b/a

Curve 1 represent the results of the numerical integration of the equations (2), (5) and (6) with the boundary
condition (3), (7) and (8). Curve 2 plots approximate valuefb of fundamental frequency obtained by the solution
of the boundary value problems (2)–(4). Curve 3 shows the first asymptotic approximationfp according to the
plate model which is near to the fundamental frequency of the plate with a clamped edgesp = 1 and the free edge
sp = 1 + b.

The casek = 0 corresponds to the free shell edges = l. Fork < 15 the frequencyfb increases withk, because
increases the stiffness of the beam. Ifk > 15 thenfb varies slowly since the stiffness of the beam is so large that it
change do not have an essential influence onfb. For such values ofk the frequencyfb is near to the fundamental
frequency 400 Hz of the cylindrical shell with freely supported edges = l, corresponding to infinite stiffness.

Fork < 25 the annular plate is narrow and its fundamental frequency is higher thanfb. Therefore, the fundamental
frequencyf is close tofb. Further increasingk results in the decrease of the fundamental frequencyf , approaching
to fp, since fork < 25 the plate is wide and its fundamental frequency is under the fundamental frequencyfb.

For smallk both the shell and the plate vibrate while the circumferential wave number satisfies the inequality
m > 1. For largek only the plate vibrates (the shell is practically motionless) and vibrations are axisymmetric
(m = 0).

The numerical results show that the fundamental frequency of the cylindrical shell stiffened by the ring,f(k),
takes on the maximum value for somek = k∗. This optimal valuek∗ is not very much different from the value
corresponding to the crossing point of curves 2 and 3 (see Figure 2). Therefore, the approximate value ofk∗ is the
root of the equation

fb(k) = fp(k) (9)
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We use farther equation (9) to calculate the optimal parameters for the cylindrical shell stiffened by any number of
rings, because it is easier to findfb andfp than exact value of the fundamental frequency.

3 Asymptotic Method for Analysis of Plate Model

The results presented in Filippov and Haseganu (2003) show that for largek the low-frequency vibrations of the
cylindrical shell stiffened at the edge by the plate are axisymmetric (m = 0). In the casem = 0 the system of
ordinary differential equations (2) splits into the system

h2

12
d4w

ds4
+ ν

du

ds
+ w = λw

d2u

ds2
+ ν

dw

ds
= −λu (10)

describing axisymmetric vibrations of the cylindrical shell and the equation

d2v

ds2
+ 2(1 + ν)λv = 0 (11)

describing torsional vibrations. An analogous splitting takes place for system (6), describing the tangential vibra-
tions of the annular plate. Therefore, form = 0 we obtain two separate boundary-value problems for axisymmetric
and torsional vibrations. We consider only axisymmetric vibrations because the frequencies of torsional vibrations
are higher than the frequencies of axisymmetric vibrations.

The equations, describing the axisymmetric vibrations of the annular plate, have the following form

a2

12
∆2wp = λwp ∆wp =

1
sp

d

dsp

(
sp

dwp

dsp

)
(12)

sp
d2up

ds2
p

+
dup

dsp
− up

sp
= −λup (13)

Equations (12) describe the flexural vibrations of the plate, while equations (13) describe the vibrations in the plane
of the plate.

The solutions of equations (10)–(13) satisfy the following boundary conditions

u = w = ϑ1 = 0 for s = 0 (14)

w = up u = −wp ϑ1 = ϑ1p hM1 = aM1p

hQ1 = aTp hT1 = −aQ1p for s = l sp = 1 (15)

T1p = M1p = Q1p = 0 for sp = 1 + b (16)

We assume thata ¿ 1 andh ¿ 1 and use for the solution the boundary-value problem (10)–(16) the asymptotic
method depicted in Filippov and Haseganu (2003). Let seek the solutions of system (10) in the form

w = w0 + w1 + w2 u = u0 + u1 + u2 (17)

Herew0 andu0 are the solutions of the momentless system

ν
du

ds
+ w = λw

d2u

ds2
+ ν

dw

ds
= −λu (18)

The functions

w1 = hα
2∑

j=1

Cje
rjs/h1/2

w2 = hα
4∑

j=3

Cje
rj(s−l)/h1/2

u1 = −hα+1/2ν

2∑

j=1

Cj

rj
erjs/h1/2

u2 = −hα+1/2ν

4∑

j=3

Cj

rj
erj(s−l)/h1/2

(19)
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whereCj are the arbitrary constants,

rj = g exp
(

5π

4
− πj

2

)
i j = 1, 2, 3, 4 i2 = −1 g = σ1/4 (20)

describe the boundary effect. The functionsu1 andw1 decrease rapidly away from the shell edges = 0. The
functionsu2 andw2 are very small everywhere except near the edges = l.

The low-frequency vibrations correspond toλ ∼ a2. The form of asymptotic solution depends on the ratioh/a.
The caseh = a is considered in Filippov and Haseganu (2003). In this caseα = 1, and in the first approximation

u0 = u1 = w0 = w1 = up = 0 (21)

Therefore, in the first approximation we obtain the boundary-value problem for equation (12) with the boundary
conditions

wp = ϑ1p = 0 for sp = 1 M1p = Q1p = 0 for sp = 1 + b (22)

corresponding to the clamped plate edgesp = 1 and free edgesp = 1 + b.

This result explains why for largek the fundamental frequency of the cylindrical shell stiffened by the ring ap-
proaches the fundamental frequency of the plate with the clamped edgesp = 1.

The caseh5/2 ∼ a3 is of great importance in asymptotic analysis. In this case formulae (21) remain valid,α = 1/2,
and fors = l, sp = 1 in the first approximationwp = 0,

w2 = 0 ϑ1p = ϑ1 =
dw2

ds
aM1p = hM1 = h3 d2w2

ds2
(23)

It we substitute (19) into (23), we get

C3 + C4 = 0 ϑ1p = r3C3 + r4C4 M1p = h5/2(r2
3C3 + r2

4C4) (24)

It follows from (24) that

aM1p = cpϑ1p cp =
√

2gh5/2 (25)

This boundary condition corresponds to the elastic supported edge. Therefore, in caseh5/2 ∼ a3 we have the
following boundary conditions for equation (12):

wp = 0 aM1p = cpϑ1p for sp = 1 M1p = Q1p = 0, for sp = 1 + b (26)

whereaM1p ∼ a3, cp ∼ h5/2, ϑ1p ∼ 1.

If a3 ¿ h5/2 then conditions (26) have the form (22). In particular,a3 ¿ h5/2 if a = h. If a3 À h5/2, then
M1p(1) = 0 and the two first conditions (26) transform into the boundary conditions, corresponding to the simply
supported edgesp = 1.

The solution of equation (12) can be written in the form

wp(sp) = C1I0(γsp) + C2J0(γsp) + C3K0(γsp) + C4Y0(γsp) γ = λ1/4 (27)

HereI0, J0, K0 andY0 are Bessel functions. Substituting (27) into (26) permits us to determine the arbitrary
constantsCk and the frequency parameterλ.
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4 Approximate Methods for Analysis of Beam Model

Let us consider the low-frequency vibrations of a thin cylindrical shell. One can obtain an approximate solution
for equations (2) by means of the asymptotic method expounded in Bauer et al. (1993). For the shell with simply
supported edges the first approximation of asymptotic method yields

λ =
σα4

m4
+

m4h2

12
(28)

whereα is the eigenvalue for the boundary value problem

d4w

ds4
− α4w = 0 (29)

w =
d2w

ds2
= 0 for s = 0 s = l (30)

The boundary value problem (29) and (30) has the nonzero solutionsw = sin αns, if αn = πn/l, n = 1, 2, . . .
The lowest frequency parameterλ1 corresponds toα1 = π/l. Taking into account that the parameterm ∼ h−1/4

is large we obtain from (28) the approximate formula

λ1 = 2α2
1

√
hσ/12 (31)

Let us consider next a thin cylindrical shell with simply supported edges, stiffened at the parallelssj = jl/(n+1),
j = 1, 2, . . . , n by n identical rings of rectangular cross-section (see Figure 3, wheren = 5). The rings have the
thicknessa and the widthb = ka.
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Figure 3. Ring-stiffened cylindrical shell

In this case the asymptotic method for the low-frequency vibrations in the first approximation givesn+1 equations

d4w(j)

dx4
− α4w(j) = 0 j = 1, 2, . . . , n + 1 (32)

The functionw(j) is the normal deflection of the shell part lying between the rings or between a ring and the shell
edge.

If the parameterk is not large we can use the beam model for the rings. We assume that the rings and the shell are
made of the same material andmax(a, b) ∼ h3/4. Then the boundary conditions for equations (32) on the parallels
s = sj , derived in Filippov (1999), can be written in the form

w(j+1) = w(j) dw(j+1)

ds
=

dw(j)

ds

d2w(j+1)

ds2
=

d2w(j)

ds2

d3w(j+1)

ds3
=

d3w(j)

ds3
+ cw(j) (33)

wherec = a4k3m8/(12h).

The boundary conditions on the shell edgess = 0 ands = l have the following form:

w(1) =
d2w(1)

ds2
= 0 for s = 0 w(n+1) =

d2w(n+1)

ds2
= 0 for s = l (34)
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The eigenvaluesα of the boundary value problem (32)–(34) satisfy the equationG(α) = 0, whereG(α) is a
determinant of order2n with elements depending on the parametersm andc.

We can find the least values ofλ from the formula

λi(c) = min
m

(
σα4

i (m, c)
m4

+
h2m4

12

)
(35)

whereαi(m, c) are the roots of the equationG(α) = 0, i = 1, 2, . . .. The casec = 0 corresponds to the non-
stiffened shell. In this caseαi = πi/l0, and one can use (31) for the evaluation ofλ1(0).

Some of the rootsαi, namely the rootsα∗q = qπ(n + 1)/l, q = 1, 2, . . ., satisfyG(α) = 0 for any c > 0. As
follows from (35),

λ∗ = λ1(0)(n + 1)2 (36)

is the lowest frequency parameter independent onc.

Let λ1(c) denote the smallest of theλi(c). The functionλ1(c) increases while inequalityλ1(c) < λ∗ holds. The
valuec∗ for which

λ1(c∗) = λ∗ (37)

is called the effective stiffness of the ring. Forc > c∗ we have the equalityλ1(c) = λ∗.

It is possible to apply the Rayleigh’s method for the approximate evaluation of the eigenvalueα1. The Rayleigh’s
formula may be written in a dimensionless form:

α4
1 = (I1 + I2)/I0 I1 =

∫ l

0

(
d2w

ds2

)2

ds I2 = c

n−1∑

i=1

w2(si) I0 =
∫ l

0

w2 ds (38)

Substituting into (38) the first vibration mode of the non-stiffened shell,w1 = sin(πs/l), and taking into account
the formula

n−1∑

i=1

sin2(πi/n) = n/2,

we obtain

α4
1 =

(π

l

)4

+
c(n + 1)

l
(39)

Hence,

λ1(η) ' λ1(0)(1 + η)1/2 η = κc κ =
12cσ(n + 1)

lh2m8
(40)

Formula (40) is valid for allη such thatη ≤ η∗ = κc∗. The formulae (37) and (40) yield an approximate expression
for the effective stiffness:

η∗ ' (n + 1)4 − 1 (41)

It follows from (36) and (40) that

λ1(η)
λ1(0)

'
{

(1 + η)1/2 0 ≤ η ≤ η∗

(n + 1)2 η > η∗
(42)

From (42) we deduce that the fundamental vibration frequency increases with the reinforcement of the shell. The
stiffened shell has the massMs = M0 + Mb, whereM0 is the mass of non-stiffened shell, andMb is the mass of
the rings. Therefore, the stiffened shell is heavier than the non-stiffened shell. It is more interesting to compare the
vibration frequencies for the stiffened and non-stiffened shells of equal mass.
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If the non-stiffened cylindrical shell has the thicknessh0, then its mass isM0 = M(h0) = 2πR3h0ρl. We assume
that the stiffened shell has a thicknessh < h0 and a massMs = M(h) + Mb = M0, whereMb = 2πR3ρna2k is
the mass of the rings.

Using (42) we get

r2
b =

f2
b

f2
0

'
{

d(1 + η)1/2 0 ≤ η ≤ η∗

d(n + 1)2 η > η∗
(43)

wherefb and

f0 =
1

2πR

√
Eλ1(0)

σρ
(44)

are the fundamental frequencies of the stiffened and non-stiffened shell respectively andd = h/h0. The values of
the parameters of the stiffened shell for which the functionrb attains its maximumr∗b are called optimal values.
For sufficiently smallh0 we obtainr∗b = (n + 1)

√
d∗, whered∗ is a root of the cubic equation

d3 − q(d− 1)2 = 0 q = σkl(n + 1)/(h0n
2η∗) (45)

The optimal values ofd anda ared∗ anda∗ =
√

(1− d∗)h0l/nk.

The dependence ofr∗b onn andk for a shell with parametersl0 = 4, h0 = 0.01 andν = 0.3 is shown in Figure 4.
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Figure 4. The ratior∗b = f∗b /f0 vs. k = b/a and number of ringsn

The functionr∗b increases withn andk. We can not use the asymptotic method for largen. For largek instead of
the beam model we must use the plate model.

5 Evaluation of the Optimal k

To estimate the optimal valuek = k∗ for the thin cylindrical shell with simply supported edges, stiffened byn
identical rings we use equation (9) in the form

rb(k) = fb/f0 = fp/f0 = rp(k) (46)

Herefb andf0 can be found from (43) and (44). To obtainfp we solve the boundary-value problem (12), (26).
Since every plate is joint with the two cylindrical shells we replace the constantcp in boundary conditions (26) by
constant2cp.

At first we choose some valuek = k0 and findr∗b , a∗ andb∗ = ka∗. Then, for the plate with the parametersa = a∗

andb = b∗, we solve the boundary-value problem (12), (26) and estimaterp. If r∗b > rp (r∗b < rp), we choose
somek < k0 (k > k0) and repeat the same procedure until the equalityr∗b = rp is fulfilled with the necessary
precision. Thus, instead of the set of curves in Figure 4, corresponding to differentk, we obtain the curve (see
Figure 5), corresponding to the more exact solutionr∗ = f∗/f0 and the optimalk = k∗.
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Figure 5. The ratior∗ = f∗/f0 vs. number of ringsn

The values of the optimal parameters of the stiffened shell for different numbers of rings,n, are given in the Table
1, whereh∗ is the optimal thickness of the stiffened shell (the thickness of the non-stiffened shell of equal mass

n h∗ a∗ k∗ 1 + b∗ f∗/f0

1 0.00979 0.00439 43.6 1.192 1.98
2 0.00905 0.00894 23.9 1.213 2.85
4 0.00528 0.0362 3.61 1.131 3.63
6 0.00316 0.0446 2.29 1.102 3.93
8 0.00213 0.0442 2.01 1.089 4.15
10 0.00154 0.0424 1.88 1.080 4.32

Table 1. The optimal parameters

is h0 = 0.01), a∗ is the optimal thickness of the ring,1 + b∗ is the optimal outer radius of the plate (the inner
radius is equal to 1),f∗ is the fundamental frequency of the stiffened shell with the optimal parameters,f0 is the
fundamental frequency of the non-stiffened shell.

The thicknessh∗ decreases as the numbern increases. Forn < 6 the increase inn causes a rapid increase ina∗

andf∗/f0 and a rapid decrease ink∗. Forn > 6 the functiona∗(n), f∗/f0(n) andk∗(n) vary slightly.

6 Conclusions

In the current paper the rings of the ring-stiffened shell have been considered as beams and as annular thin plates.
As a consequence, the problem becomes more complicated in comparison with problems analyzed in Filippov
(1999). However, the new approach permits obtaining more exact and realistic solutions by means of asymptotic
integration methods. It was shown that the replacement of a non-stiffened cylindrical shell by the optimal stiffened
cylindrical shell with the same mass can increase the fundamental frequency of a structure more than four times.
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