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N. Hoffmann, S. Bieser, L. Gaul

A minimal model for mode-coupling friction induced instability with Coulomb-type frictional nonlinearity is set
up to investigate the applicability and quality of approximative methods to determine the limit cycles of unstable
system configurations. It turns out that - due to the multi-degree-of-freedom nature of the mode-coupling instability
- harmonic balance approaches yield reasonable results only if applied carefully, i.e. with respect to the special
effects of the nonlinearities under consideration. The Krylov-Bogoliubov-Mitropolsky approach yields good results
in a straightforward manner, the technique is however formally much more cumbersome.

1 Introduction

In a large number of mechanical systems self-excited structural vibrations occur as a consequence of structural
instabilities and nonlinear system properties. For self-excited friction induced oscillations essentially four different
instability mechanisms have been described in literature: First, a friction coefficient decreasing with relative sliding
velocity may lead to negative damping and consequently to an oscillatory instability of the steady sliding state.
Second, mode-coupling (sometimes also referred to as binary flutter or displacement dependent friction force
instability) may destabilize the steady sliding state also for constant friction coefficients. Third, sprag slip, and
fourth the follower force nature of the friction force have been identified as fundamental mechanisms for friction
self-excited vibrations. All of these mechanisms are amply described in literature (Spurr, 1961; Popp and Stelter,
1990; Ibrahim, 1994; Wallaschek et al., 1999; Gaul and Nitsche, 2001; Gasparetto, 2001; Hoffmann et al., 2002;
Hoffmann and Gaul, 2003), a further discussion is therefore not given here. Also when it comes to the systems’
nonlinearities, a lot of work has already been conducted, especially on the role of the nonlinearity inherent in
friction laws of e.g. the Coulomb type, also in combination with further structural nonlinearities.

Recently the mode-coupling instability has received some attention in the context of technical applications in in-
dustry. However, although the instability mechanism of the steady sliding state seems now to be understood rather
well (cf. e.g. to Hoffmann et al. (2002); Hoffmann and Gaul (2003)), the evolving dynamics in the nonlinear
regime has not yet received much attention. In technical applications the state-of-the-art procedure for modelling
and simulating the nonlinear effects of such self-excited vibrations usually consists in setting up large-scale non-
linear finite element (cf. e.g. to Allgaier et al. (2002)) or elastic multi-body models (e.g. Schroth (2003)) and
performing time integrations. Even with today’s computational capabilities, the corresponding computation times
often amount to values that make the application of this direct computational approach in everyday engineering
work unfeasible. The objective of the present work therefore is to evaluate alternative approximative techniques to
determine basically the amplitudes of the limit cycles that evolve from mode-coupling unstable systems. Of course
many approaches have been developed to analyze the dynamic behavior of nonlinear systems (cf. especially to the
text of Nayfeh and Mook (1995) for a comprehensive review), in the present context we will apply the simplest
techniques available, which are capable to capture the essential nonlinear features: Harmonic Balance and the
technique of Krylov-Bogoliubov-Mitropolsky.

The paper is organized as follows: First a simple two-degree-of-freedom model is introduced that may be taken as
a minimal model for a mode-coupling unstable system. Second two variants of the technique of Harmonic Balance
and the technique of Krylov-Bogoliubov-Mitropolsky are applied to the system to determine the finite-amplitude

185



limit cycles. The results are then compared and an outlook is given with respect to the applicability of approaches
like the ones considered for systems with considerably more degrees of freedom.

2 The Model Problem

For the present conceptual study it is sufficient to formulate a simple two-degree-of-freedom model and investigate
its stability behavior and limit-cycle dynamics. A graphical interpretation of the model used for the present work is
given in figure 1. The model may be thought of as a single point mass sliding over a conveyor belt, mainly held in
position by two linear springsk1 andk2 parallel and normal to the belt surface,k2 may be regarded as the physical
contact stiffness between the objects in relative sliding motion. Moreover, there is another linear spring k (oriented
at an oblique angle of45o relative to the normal direction) leading to off-diagonal entries in the model’s stiffness
matrix, which has already earlier turned out to be necessary for the appearance of mode-coupling instability, cf.
Hoffmann et al. (2002). For the friction a Coulomb model is assumed, where the frictional forceFt is proportional
to the normal forceFn exerted at the friction interface,Ft = µFn, whereµ is the kinetic coefficient of friction
taken to be constant.

Figure 1. Two-degree-of-freedom model.

Since the normal force at the friction interface is linearly related to the displacementx2 of the mass normal to the
contact surface, the following equations result:
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m 0
0 m

] (
ẍ1
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( −µk2x2sgn(vB − ẋ1)

Fn

)
, (1)

whereFn denotes a constant normal load,vB stands for the belt speed and linear viscous damping has been
assumed. Note that the present model does not capture the possibility of the sliding mass losing contact to the belt
(lift-off); it is assumed that the normal loadFn is always large enough to keep the mass in contact with the belt,
even when a limit-cycle state is reached.

Before applying approximative techniques to the equations considered it is helpful to take into account the effect
that the constant normal loadFn has on the system:Fn causes a static displacement of the mass, which can - by
setting all terms involving temporal derivatives to zero - easily determined as

x0
1 =

Fn(µk2 − k/2)
(k1 + k/2)(k2 + k/2) + (µk2 − k/2)k/2

,

x0
2 = − Fn(k1 + k/2)

(k1 + k/2)(k2 + k/2) + (µk2 − k/2)k/2
, (2)
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wherevB > 0 has been assumed. For the subsequent analysis now the deviation from this static equilibrium
position is introduced as

x′1 = x1 − x0
1, x′2 = x2 − x0

2. (3)

By inserting these relations into eq. (1) and subtracting eq. (2) the equations forx′1 andx′2 result (assuming
vB > 0), after some algebra, in a straightforward manner:

[
m 0
0 m

](
ẍ′1
ẍ′2

)
+

[
c1 0
0 c2

](
ẋ′1
ẋ′2

)
+

[
k1 + 1

2k − 1
2k + µk2

− 1
2k k2 + 1

2k

](
x′1
x′2

)

=
( −µk2(x0

2 + x′2) [sgn(vB − ẋ′1)− 1]
0

)
, (4)

Note that the non-linear right-hand-side term is non-zero only in the case of friction force reversal and then com-
pensates the forces leading to the static solution corresponding to the system’s homogeneous part. Since in the
following always the deviations from the static equilibrium position will be considered, the primes are from now
on again omitted from the variables.

To bring the equations into a more generic form it is convenient to divide by m and to use the relative (Lehr’s)
damping coefficientsDi = ci/(2ωim) with ω2

i = (ki + k/2)/m, i = 1, 2:
(

ẍ1

ẍ2

)
+

[
2D1ω1 0

0 2D2ω2

](
ẋ1

ẋ2

)
+

[
ω2

1 − k
2m + µ(ω2

2 − k/2m)
− k

2m ω2
2

] (
x1

x2

)

=
( −µ(ω2

2 − k/2m)(x0
2 + x2) [sgn(vB − ẋ1)− 1]

0

)
. (5)

In the context of the present work the focus lies on a fundamental conceptual analysis rather than on parameter
studies. Therefore the analysis is, from now on, restricted to the parameters

ω2
1 = 22.5 s−2, ω2

2 = 23.0 s−2, k/2m = 5 s−2, Fn = 9.81 N, D1 = 1.05× 10−2, D2 = 1.04× 10−2,

unless otherwise stated. These values have been chosen to be close to parameters that can be identified from
realistic technical applications.

Performing a simple eigenvalue analysis of the homogeneous part of eq. (5) for small vibration amplitudes (i.e. of
the left-hand-side of eq. (5)) yields the stability characteristic of the system, as shown in figure 2, where complex
eigenvalues are denoted byλ = σ + iω.

Figure 2.Spectral characteristics of the model system. Imaginary (ω) and real (σ) parts of the resulting
eigenvaluesλ = σ + iω corresponding to oscillation frequency and growth rate.

For friction coefficientsµ < 0.28 the system is characterized by two stable eigenmodes. Atµ = 0.28 a merging
of modes takes place and for only slightly larger friction coefficients an unstable mode results. This behavior is
typical for proportionally damped mode-coupling instability (cf. eg. Hoffmann and Gaul (2003)), a further in-
terpretation is therefore not given here. In the following we will consider the stick-slip limit cycles arising in the
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unstable regime, i.e. forµ > 0.28. Figure 3 shows the results of direct time-integration of eq. (5) forµ = 0.30
with initial conditions close to the static equilibrium position. Note that in the beginning the typical exponential
oscillatory growth characterizing an oscillatorily linearly unstable system can be seen. This growth persists until
thex1-component of the vibration reaches the velocity of the belt (set here tovB = 0.5m/s) which rapidly limits
the amplitude of the oscillation in thex1-direction, i.e. in the tangential direction at approx.t ≈ 32s (left graph
of fig. 3). Note however that thex2-vibration does still increase markedly before saturation at approx.t ≈ 100s
(middle graph of figure 3). This two-step saturation process is also clearly visible in the phase-plane plot ofẋ1 vs.
x1 (right graph of figure 3).

Figure 3.Exemplary results of time integration for the full non-linear system at< µ = 0.3. Transient
growth due to instability of the steady sliding state and amplitude saturation forx1 (left) andx2

(middle). The right graph depicts a phase-plane plot ofẋ1 vs. x1.

Of course this dynamical behavior can easily be explained: as long as sticking phases do not yet occur, the dy-
namical behavior is determined by the exponential growth corresponding to the linear instability of the steady
sliding state. When the mass first sticks to the belt, the motion tangential to the belt surface (inx1-direction) is
strongly inhibited, in a sense the two-degree-of-freedom system is instantaneously transferred into a single-degree-
of-freedom system for the out-of-plane motion (x2-direction) which is only indirectly affected by the appearance
of sticking effects in thex1-direction: after sticking takes place in thex1-direction, thex2-vibration may be con-
sidered as a forced vibration with the forcing term stemming from the structurally coupledx1-vibration. With this
picture in mind it may be understood that the times for amplitude saturation of thex1- and thex2-component differ
substantially. Consequently the amplitude ratio for the saturatedx1- andx2-oscillations differs from what would
have been expected from the unstable system eigenmode. When approximative methods to determine limit-cycle
amplitudes are to be considered, it will be crucial that they can cope with this effect and can predict correct ampli-
tudes and amplitude ratios for both tangentialx1- and normalx2-components.

3 Harmonic Balance Techniques

The technique of Harmonic Balance is one of the classical approaches to determine limit-cycle amplitudes in
nonlinear vibration problems. Since the general approach is well known, cf. e.g. to Nayfeh and Mook (1995),
we will in the following focus on the specific aspects of the technique in the present context of mode-coupling. It
turns out that - as could be expected - the most simple adaptation of Harmonic Balance (presented in the following
sub-section) leads to some substantial shortcomings in the results, which can be overcome by a slightly modified
approach presented subsequently.

3.1 Application of Conventional Harmonic Balance

To approximately solve equations (5) the following ansatz is chosen:

x1 = xd
1 + Axs

1 sin(ωt), (6)

x2 = xd
2 + A[xs

2 sin(ωt) + xc
2 cos(ωt)],

wherexd
1 andxd

2 denote constant static displacement changes resulting from the oscillation, A denotes the di-
mensionless limit-cycle amplitude to be determined andxs

1, xs
2 andxc

2 denote the sine and cosine components of
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the system’s unstable complex eigenvector after scaling it for computational convenience such thatxc
1 = 0. The

assumption underlying this ansatz is of course that the non-linear limit-cycle oscillation will basically resemble
the oscillation corresponding to the exponential growth in the linearly unstable parameter regime and the effect
of the non-linearity will mainly lead to this oscillation saturating at a certain amplitude level, represented by an
amplitude factorA. With this the right-hand-side non-linear terms of equation (5) read

−µ(ω2
2 − k/2m)[sgn(vB − ẋ1)− 1](x0

2 + x2) (7)

= −µ(ω2
2 − k/2m)[sgn(vB −Aωxs

1 cos(ωt))− 1][xd
2 + x0

2]

−µ(ω2
2 − k/2m)A[sgn(vB −Aωxs

1 cos(ωt))− 1][xs
2 sin(ωt) + xc

2 cos(ωt)],

where static and time-dependent terms have been separated. From these terms only the constant and first harmonic
components, determined by integration over one oscillation periodT = 2π/ω in the style of Fourier analysis, will
be taken into account in the Harmonic Balance approach, cf. e.g. to Magnus and Popp (1997). This leads, after
some lengthy but basically straightforward algebra, to the contributions:

a1 =
1
T

T∫

0

(−µ(ω2
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)
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1 cos(ωt))− 1](xd
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π
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2)tc,

a2 =
1
T

T∫

0

(−µ(ω2
2 − k/2m)A

)
[sgn(vB −Aωxs

1 cos(ωt))− 1](xs
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π
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N c
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2) dt (11)

=
4µ(ω2

2 − k/2m)
π

(xd
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2) sin(ωtc),

Ns
2 =

2
T

T∫

0

sin(ωt)
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=
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2 − k/2m)Axc
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where

tc =

{
1
ω arccos

(
vB

Axs
1ω

)

0
for

Axs
1ω > vB

Axs
1ω ≤ vB

(14)

has been used to abbreviate the anyway lengthy expressions. Using the terms so obtained, an approximation of the
system’s non-linear parts, i.e. the right-hand-side of equations (5), up to the first harmonic contributions, can be
written down as

a + Ns
2 sin(ωt) + N cos(ωt),
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where againa = a1 + a2 andN = N c
1 + N c

2 have been used for abbreviation purposes. Using this harmonic ex-
pression and changing into an obvious matrix notation, the equations of motion in reduced form may be formulated
as

Mÿ + Cẏ + Ky =
(

a0 + N2 sin(ωt) + N cos(ωt)
0

)
≡ R, (15)

wherey = (x1, x2)T , R denotes the right-hand-side vector and the mass, damping and stiffness matricesM , C
andK are set up according to equation (5).

Now the right-hand-side termR, representing the forcing due to the non-linear system properties, is expressed in
terms of equivalent damping and stiffness forces as

R = C̃ẏ + K̃y, (16)

such that equations (15) can be rewritten as

Mÿ + Ĉẏ + K̂y = 0, (17)

whereĈ = C−C̃ andK̂ = K−K̃. Inserting the ansatz of equation (6) into equations (16), comparing coefficients
for the sine, cosine and constant terms and denoting the matrix coefficients ofC̃ andK̃ asCij andKij leads to the
following set of equations to determinẽC andK̃:

−C12Aωxc
2 + K11Axs

1 + K12Axs
2 = Ns

2 , (18)

K22Axs
2 − C22Aωxc

2 + K21Axs
1 = 0 ,

C12Aωxs
2 + C11Aωxs

1 + K12Axc
2 = N ,

C21Aωxs
1 + K22Axc

2 + C22Aωxs
2 = 0 ,

K11x
d
1 + K12x

d
2 = a0 ,

K21x
d
1 + K22x

d
2 = 0 .

Obviously the system is underdetermined. There are only six equations to determine ten unknowns. This problem
does not appear for single-degree-of-freedom problems, where the method of harmonic balance is usually applied.
In order to solve the equations the system will therefore be restricted without loss of generality, since later only
the energy functional of the resulting system of equations is evaluated and the restriction may be regarded as an
equivalence transformation not influencing the final results. Setting the off-diagonal elements ofC̃ andK̃ to zero
the following solution can be obtained:

K11 = Ns
2/Axs

1, K22 = K12 = K21 = 0, (19)

C11 = N/Aωxs
1, C22 = C12 = C21 = 0,

xd
1 = a0Axs

1/N
s
2 , xd

2 = 0.

With these coefficients now the energy functional of equation (17) is set up by multiplication withẏT from the
left:

d

dt

[
1
2
ẏ>Mẏ +

1
2
y>K̂sy

]
+ ẏ>K̂ny + ẏ>Ĉẏ = 0. (20)

Note that herêK has been decomposed into its symmetric (K̂s) and anti-symmetric (̂Kn) part. To determine the
constant limit-cycle amplitudeA, constant energy solutions of equation (20) have to be obtained, which leads to
the condition that the forcing terms vanish when averaged over one vibration amplitude. After some algebra this
condition results in

2π
ω∫

0

(
µ(ω2

2 − k/2m)ẋ1x2 + (2D1ω1 − C11)ẋ2
1 + (2D2ω2 − C22)ẋ2

2

)
dt = 0. (21)

Inserting the ansatz functions and solving the integral yields

A2ωπ

(
µ(ω2

2 − k/2m)
ω

xs
1x

c
2 + (2D1ω1 − C11)xs

2
2 + (2D2ω2 − C22)(xs

2
2 + xc

2
2)

)
= 0, (22)

which basically represents the work done on the system by the friction and the damping forces over one vibration
cycle. In the top left graph of figure 4 this work is plotted for different values of the friction coefficient as a function
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of A. For small enough values ofA the dissipated work obviously increases with increasingA. ForA > 10 the
behavior changes and for a certain amplitudeA0 the dissipated energy vanishes. This is the limit-cycle amplitude
to be determined, since in the saturated steady limit-cycle dissipative and self-exciting forcing have to equal each
other when averaged over one vibration cycle.

Figure 4.Results of the simple Harmonic Balance approach. (a) Work done vs. vibration amplitudeA
for supercritical friction coefficientsµ. (b) Phase Diagram comparison of direct time-integration
(thin lines) and Harmonic Balance (thick circle). (c) Limit-cycle amplitudeA vs. friction coeffi-
cient for various damping coefficientsC = C1 = C2. (d) Limit-cycle amplitudeA vs. friction
coefficientsµ for various belt velocitiesvB .

The bottom left graph of figure 4 shows the effect of damping on the limit-cycle amplitudesA0. It turns out that
increased damping leads to a stabilization of the system, as could have been expected. To complete the picture,
the bottom right graph of figure 4 shows the effect of changing belt-velocityvB on A0: it turns out that the am-
plitude increases with belt-velocity, agreeing well with the intuitive picture of the underlying stick-slip behavior.
This becomes even clearer, when the phase plane plot of the approximate solution’sx1 component is compared
with the result from direct time-integration (top right graph of figure 4). It can be seen that the Harmonic Bal-
ance approach described captures the stick-slip limit-cycle behavior of thex1-direction very well, basically the
limit-cycle amplitude is determined largely by the condition that sticking periods appear. This on the other hand
also shows the limitations of the approach: it has already been shown in the introductory section by investigat-
ing direct time-integration results of the system under consideration that the amplitude ratio of thex1- and the
x2-components in the saturated limit-cycle state may be markedly different from what can be obtained from the
eigenvector analysis. The conventional Harmonic Balance approach presented does however not take this into
account. The approximate prediction of thex2-vibration may therefore be expected to be rather poor, as will be
seen below in section 5 where the results of all three techniques presented in this work are compared quantitatively.
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3.2 Application of Extended Harmonic Balance

It will become clear below, when the results of the different techniques under consideration are compared, that in
the present context the conventional Harmonic Balance approach suffers from its underlying basic one-dimensional
nature, whereas the mode-coupling phenomenon is essentially a two-degree-of freedom problem. To account for
this two-dimensionality in an approach, that will be called Extended Harmonic Balance from now on, the following
modified ansatz is used:

x1 = xd
1 + A1x

s
1 sin(ωt) , (21)

x2 = xd
2 + [As

2x
s
2 sin(ωt) + Ac

2x
c
2 cos(ωt)],

where instead of a single amplitude factor the oscillatory components are multiplied with the possibly distinct
amplitude factorsA1, As

2 andAc
2, which allows to take into account changes in the phase and amplitude relations

due to the action of nonlinearity. Note that strictly speaking the inclusion of the eigenvector componentsxs
1, xs

2

andxc
2 in this ansatz is not really necessary, since each of them is multiplied with an amplitude factor anyway, but

in order to keep the analogy to the conventional Harmonic Balance approach they are kept. Note also that in the
present approach the frequencyω will not be taken out of the eigenvalue analysis, but will be obtained as a result
of the approach.

Basically the procedure now is analogous to conventional Harmonic Balance. The non-linear term, i.e. the friction
term on the right-hand-side of equation (5) is projected on its harmonic components resulting in the coefficients -
using the same definitions as in the preceding sub-sections:

N c
1 =

4µ(ω2
2 − k/2m)

π
(xd

2 + x0
2) sin(ωtc) (22)

Ns
2 =

µ(ω2
2 − k/2m)As

2x
s
2

π
(2ωtc − sin(2ωtc))

N c
2 =

µ(ω2
2 − k/2m)Ac

2x
c
2

π
(2ωtc + sin(2ωtc))

a1 =
2ωµ(ω2

2 − k/2m)
π

(x0
2 − xd

2)tc

a2 =
2µ(ω2

2 − k/2m)Ac
2x

c
2

π
sin(ωtc),

such that approximate equations can again be written down in the form of equations (15). Now the approach
differs slightly from conventional harmonic balance. Instead of expressing the non-linearity in terms of damping
and stiffness matrices, the ansatz functions are directly inserted into the resulting averaged system equations and
a comparison of coefficients is performed for the constant, sine and cosine terms, which yields a nonlinear set of
equations:

−A1x
s
1ω

2 + ω2
1A1x

s
1 −

k

2m
As

2x
s
2 = Ns

2 (23)

−As
2x

s
2ω

2 − 2D2ω2A
c
2x

c
2ω −

k

2m
A1x

s
1 + ω2

2As
2x

s
2 = 0

2D1ω1A1x
s
1ω −

k

2m
Ac

2x
c
2 = N c

1 + N c
2

−Ac
2x

c
2ω

2 + 2D2ω2A
s
2x

s
2ω + ω2

2Ac
2x

c
2 = 0

ω2
1xd

1 −
k

2m
xd

2 = a1 + a2

− k

2m
xd

1 + ω2
2xd

2 = 0

Here there now are six (non-linear) equations for the six unknownsA1, As
2, Ac

2, ω, xd
1 andxd

2. The equations can
readily be solved by Newton-iterations, the results will be presented below in section 5.

4 Application of the Technique of Krylov and Bogoliubov

The approach of Krylov and Bogoliubov, sometimes also called method of slowly varying amplitude and phase, is
well known and well described in literature, cf. eg. to Nayfeh and Mook (1995) or Magnus and Popp (1997). The
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following presentation will therefore be kept rather short.

First equations (5) are written in the form

ẍ1 + ω2
1x1 = g1, (24)

ẍ2 + ω2
2x2 = g2,

with

g1 = −2D1ω1ẋ1 + (
k

2m
− µ(ω2

2 − k/2m))x2 − µ(ω2
2 − k/2m)[sgn(vB − ẋ1)− 1](x0

2 + x2),

g2 = −2D2ω2ẋ2 +
k

2m
x1.

Now the first equation in (24) is expanded with(ω2 − ω2
1)x1 and the second equation with(ω2 − ω2

2)x2 in order
to obtain the same frequencyω on the left-hand-side of both equations and to redefine the right-hand-side:

ẍ1 + ω2x1 = (ω2 − ω2
1)x1 + g1 = g̃1, (25)

ẍ2 + ω2x2 = (ω2 − ω2
2)x2 + g2 = g̃2,

The solutions to these equations are now written in the form

x1(t) = A1(t) sin(ωt + φ1(t)), (26)

x2(t) = A2(t) sin(ωt + φ2(t)),

and the usual coordinate transformation from the original variablesx1 andx2 to the new amplitude and phase
variablesA1, A2, φ1 andφ2 is conducted such that the amplitude and phase equations read

Ȧ1 =
g̃1

ω
cos(θ1), φ̇1 = − g̃1

A1ω
sin(θ1), (27)

Ȧ2 =
g̃2

ω
cos(θ2), φ̇2 = − g̃2

A2ω
sin(θ2),

whereθ1 = ωt + φ1, θ2 = ωt + φ2. Note that the amplitude and phase equations (27) are formally still fully
equivalent to equations (25), no approximation has been assumed yet. The approximation process attributed to
Krylov and Bogoliubov and sometimes termed the first approximation will be described now: basically it relies on
the assumption that the resulting vibrations will be harmonic oscillations with slowly varying amplitude and phase
coefficients. This directly leads to the assumption that there are two timescales involved in the resulting dynamics:
the fast timescale of the oscillation corresponding toω and the slow timescale on which amplitudes and phases
change. As a consequence of the separation of scales involved in this assumption it seems appropriate to average
the amplitude and phase equations (27) over one period of the fast oscillation cycle to obtain averaged amplitude
and phase equations:

˙̄A1 =
ω

2π

2π
ω∫

0

g̃1

ω
cos(θ1)dt =

1
2π

2π
ω∫

0

g1 cos(θ1)dt, (28)

˙̄φ1 =
ω

2π

2π
ω∫

0

− g̃1

A1ω
sin(θ1)dt = −ω2 − ω2

1

2π

π

ω
− 1

2πA1

2π
ω∫

0

g1 sin(θ1)dt, (29)

˙̄A2 =
ω

2π

2π
ω∫

0

g̃2

ω
cos(θ2)dt =

1
2π

2π
ω∫

0

g2 cos(θ2)dt, (30)

˙̄φ2 =
ω

2π

2π
ω∫

0

− g̃2

A2ω
sin(θ2)dt = −ω2 − ω2

2

2π

π

ω
− 1

2πA2

2π
ω∫

0

g2 sin(θ2)dt. (31)

The remaining integrals have to be evaluated, which is a straightforward, although lengthy procedure, so here only
the resulting equations are given:
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˙̄A1 =
1
2π

[
− 2D1ω1Ā1π +

kĀ2π

2mω
sin(ψ)− µ(ω2

2 − k/2m)Ā2

ω
sin(ψ)

(
π − 2B − sin(2B)

)

+
4µ(ω2

2 − k/2m)x0
2

ω
sin(B)

]
, (32)

˙̄φ1 = −ω2 − ω2
1

2ω
− 1

2πĀ1
cos(ψ)

[
kĀ2

2m

π

ω
− µ(ω2

2 − k/2m)Ā2

ω

(
π − 2B + sin(2B)

)]
, (33)

˙̄A2 = −2D2ω2Ā2

2
− kĀ1

4mω
sin(ψ), (34)

˙̄φ2 = −ω2 − ω2
2

2ω
− kĀ1

4ωmĀ2
cos(ψ), (35)

whereψ = φ2−φ1 andB = arccos(vB/A1ω) are used. To determine the amplitudes of the stationary limit-cycle,
˙̄A1, ˙̄A2 and ˙̄φ2 − ˙̄φ2 are required to equal zero, which yields

0 = 2D1ω1Ā1π + sin(ψ)
(kĀ2π

2mω
− µ(ω2

2 − k/2m)Ā2

ω

(
π − 2B − sin(2B)

))
(36)

+
4µ(ω2

2 − k/2m)x0
2

ω
sin(B),

0 = Ā2 +
kĀ1

4ωD2ω2
sin(ψ), (37)

0 =
ω2

2 − ω2
1

2ω
+ cos(ψ)

[
kĀ2

4mωĀ1
− kĀ1

4mωĀ2
− µ(ω2

2 − k/2m)Ā2

2πωĀ1

(
π − 2B − sin(2B)

)]
. (38)

These three equations can now be used to determine the three unknownA1, A2 andψ.

Figure 5.Exemplary results of the Krylov-Bogoliubov approximation: results of direct time integration
and predicted oscillation amplitude due to Krylov-Bogoliubov forx1 andx2 for µ = 0.285 (a)
and (b) andµ = 0.35 (c) and (d).
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The non-linear system of equations is solved using Newton iterations. Figure 5 shows typical results: it is obvious
that the present approach gives excellent results for friction coefficientsµ only marginally above critical (compare
figure 5 (a) and (b)), whereas there do remain some discrepancies for largerµ (figure 5 (c) and (d)). These discrep-
ancies can also be understood intuitively rather easily: also the Krylov-Bogoliubov technique assumes basically
harmonic behavior for the nonlinear oscillation; for largerµ however the actual stick-slip behavior diverges sub-
stantially from harmonic characteristic, explaining the errors to be observed.

5 Comparison of Results

Now it is time to compare the approximation quality of the three approaches presented. To that purpose two pa-
rameter studies have been performed. First the damping-factorsD2 in the out-of-plane direction have been varied,
second the friction coefficient has been varied. Figure 6 shows the results. For each test case time-integrations
have been performed to obtain benchmark values and the approximate techniques have been applied.

Figure 5.Benchmark of the approximate techniques (Conventional Harmonic Balance: dashed, Extended
Harmonic Balance: dash-dotted, Krylov-Bogoliubov: dotted) vs. the result from direct time-
integration (solid). (a)x2-amplitude vs. damping coefficientD2. (b) x2-amplitude vs. friction-
coefficientµ.

Let us first discuss the techniques’ performance with respect to predicting satisfying values for thex2-vibration
when damping is varied, see figure 6 (a). Obviously both the Extended Harmonic Balance approach as well as
Krylov-Bogoliubov perform extremely well, hardly any difference to the results from direct time integration can
be determined by the eye. However, conventional Harmonic Balance yields - for small damping coefficients -
values for thex2-vibration that are substantially below the correct ones. Of course this benchmark has been
chosen deliberately to detect, which of the techniques copes satisfactorily with the effect already described in the
introduction, that thex2-vibration somehow decouples from thex1-vibration when stick-slip sets in. Following
this reasoning it is clear that conventional Harmonic Balance will yield poor results, especially for low damping
situations, since it does not allow for a change in the ratio ofx1- andx2-amplitudes but sticks to the ratio given from
eigenvalue analysis of the linearized system even in the regime of strong nonlinearity. The other two techniques do
allow the nonlinearity to adjust the ratio ofx1 andx2 and consequently yield excellent results in this benchmark.

The second benchmark performed focuses more on the capability of the techniques to take the non-linearities in-
herent in the system into account. For that purpose the friction coefficientµ has been varied, all other parameters
staying constant. The results are given in figure 6 (b), where thex2-amplitude is now represented vs. the friction
coefficientµ. Obviously conventional Harmonic Balance performs rather poorly, mainly because of the shortcom-
ings already described above. Both Extended Harmonic Balance as well as Krylov-Bogoliubov lead to comparable
results, although for larger values ofµ they consistently underestimate thex2-amplitude. Close to the onset of
instability Krylov-Bogoliubov seems to perform a bit better than the Extended Harmonic Balance.
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6 Summary, Conclusions and Outlook

Three techniques to approximately determine the limit-cycle amplitudes of stick-slip vibrations in a mode-coupling
unstable two-degree-of-freedom system have been evaluated and compared. It has turned out that the vibration
characteristics, especially the mean ratios of vibration component amplitude, of the stationary limit-cycle state
may differ substantially from what might be expected from a stability analysis of the steady sliding state and its
corresponding most unstable eigenvector.

Consequently application of the conventional Harmonic Balance approach, adjusted only slightly to the two-
degree-of-freedom problem at hand, does not yield satisfactory results, especially with respect to those vibration
components that are not linked directly to the dynamics of stick-slip. We have seen that in our model problem con-
ventional Harmonic Balance may result in grossly incorrect values for thex2-component of the vibration, which
could however e.g. be crucial for the radiation of noise in the original or underlying noise and vibration problem
of brake squeal to be investigated. Since in detailed applications it seems difficult to judge in advance the error that
conventional Harmonic Balance brings with it, it does not seem to be a good candidate for approximately solving
stick-slip problems in the context of mode-coupling unstable systems.

An extended Harmonic Balance, taking into account more degrees of freedom for the underlying ansatz functions,
does not show the problem of the conventional Harmonic Balance and yields results comparable to those of the
technique of Krylov-Bogoliubov. Both approaches yield quite good results for the dynamics related to the sticking-
dynamics (i.e. thex1-component in the present example), nevertheless there do remain substantial errors with
respect to components not directly tied to the sticking dynamics (i.e. thex2-components in our example), since
they both assume harmonic oscillation behavior and therefore can take into account the non-harmonic distortions
so characteristic for stick-slip vibrations only to a limited extent. Nevertheless their results seem promising for use
in engineering contexts, where other modeling and simulation uncertainties can definitely lead to the same order of
modeling uncertainty as the approaches described. However, both approaches lead to non-linear sets of equations
that have to be solved by iterative algorithms. Moreover the formal mathematical effort that has to be taken is
rather large, especially in the case of Krylov-Bogoliubov.

It therefore seems appropriate to conclusively discuss the role that techniques like the ones described might play in
the application on engineering problems in an everyday engineering work-process. It has been stated already in the
introduction that although computer power is still increasing exponentially over time, many problems, especially
large-scale friction affected systems like the ones that motivated the present work, do still not allow evaluation
of limit-cycle behavior on a routine basis, although corresponding results would be urgently necessary, e.g. to
reliably predict the noise radiation of rolling automotive tyres, automotive friction brakes or the wheel/rail system.
A number of solutions to the problem can of course be imagined, and the use of approximative techniques like
those described in the present work is one option only. Most prominent alternative approaches are: (1) Direct
time integration in the framework of finite-element analysis: Depending on the complexity of the problem under
consideration, this option will probably be restricted to not too complex friction situations, as experience shows.
(2) Direct time integration after use of condensation techniques: this is a very promising approach, however the
sometimes strange peculiarities of friction processes might make it difficult to find generic condensation strategies
yielding generically satisfying results. (3) Use of Elastic Multibody Simulation: an increasingly popular approach,
which however faces similar problems as the approach based on finite-elements and condensation. The present
work might be regarded as a contribution to a fourth approach, which could be based on some rather standard
preprocessing steps (like determination of a steady sliding state and afterwards an eigenvalue analysis to determine
system stability information) supplemented by some sort of quick and computationally efficient post-processing
based on approximative techniques, yielding results on limit-cycle amplitudes.

Of course the results shown do not yet describe the full process chain leading to finite-amplitude limit-cycle
results in the context of friction self-excited systems. Rather, the present work has focused on a benchmark of
the algorithms that might, and that might not play a role in such a process. In addition, further questions will have
to be answered, before a final evaluation of such a process can be performed: (1) How can the multi-degree-of-
freedom problem as it is found e.g. in large finite-element calculations be projected on a few-degree-of-freedom
problem, that might allow approximate techniques to be used? Basically this is the question of reduction of degrees
of freedom. (2) Even after an appropriate few-degree-of-freedom representation of the system under consideration
has been set up, there are still several options for the application of approximation techniques: In the present work
the techniques have been applied directly to a minimal two-degree-of-freedom model in physical coordinates. Of
course an analogous approach could be taken for modal coordinates or other reduced systems.
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It will be the task of further studies to determine, if an approach like sketched above may be able to compete
with the rapidly progressing finite-element and multibody modeling and simulation techniques. For very large
scale friction affected dynamic systems however there could be the possibility that an approach making use of the
elegant, sometimes intricate, but always very efficient mathematics of approximate techniques might - adapted to
and included in the powerful framework of commercial tools - outperform alternative conventional techniques to
determine non-linear limit-cycle behavior.
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