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On the Localized Vibration Modes of Thin Elastic Shells∗

P.E. Tovstik

A short elaboration of the localized modes of free vibrations of thin elastic shells is presented. A two-dimensional
system of equations based on the Kirchhoff–Love hypotheses is used. Asymptotic expansions for the natural fre-
quencies and for the corresponding vibration modes in power series of the relative shell thickness are constructed.

1 Introduction

The investigation of the spectrum of small free vibrations of thin elastic shells and of the corresponding vibration
modes is the basis for solutions of a large number of dynamical shell problems. Among them there are the forced
vibrations, the parametric vibrations, the nonlinear vibrations, and so on. The general solution of this problem is
given in the book of Goldenweizer et al. (1979) (see also Aslanian and Lidsky (1974), Oniashvili (1957), Skudrzyk
(1968)). The shell spectrum is non-negative and discrete with the point of condensation at infinity. The low part
of the shell spectrum is very complex. The distance between adjacent points of the spectrum is asymptotically
small. The important characteristic of the spectrum is its density. In contrary to plates, for which the density is
asymptotically constant, for shells the density may have points of maxima (see the already referred books and also
the papers of Bolotin (1965), Goldenweizer (1970), Tovstik (1972)). Also in applications it is interesting to know
the minimal shell frequency (see Tovstik (1975)).

In the simplest case of a circular cylindrical shell with simply supported edges, the vibration modes occupy the
whole shell surface. Sometimes the same holds for high-frequency free vibrations of arbitrary shells. In contrary
this paper discusses the various cases of vibration modes localization. The localized modes may appear due to the
variation of the neutral shell surface curvatures or/and to the weak support of the shell edge. To construct localized
modes, asymptotic expansions based on a geometric small parameter equal to the relative shell thickness is used.
In cases of a varying shell curvature the so-called weakest points or lines appear. The deflection of the localized
mode exponentially decreases with increasing distance from these points or lines. The asymptotical description of
these modes contains turning points. The modes localized near the edge are also discussed. As a rule these modes
appear near the free edge or near the weakly supported edge. The types of the weak support for shells of positive,
zero and negative Gaussian curvature are indicated.

The vibration modes localization appears in the various problems of elastic bodies. For constructing these modes
asymptotic methods are used. For a membrane the mode types of ”whispering gallery” and ”jumping ball” are
found (see Babich and Buldyrev (1972)). The former are localized near the membrane edge, and the latter localized
near some line (for example, near the short diameter of the elliptic membrane). The eigen-function localized near
the free edge of a rectangular plate with two opposite edges simply supported is constructed by Ishlinski (1954).
In the three-dimensional range the edge excitation of shells of revolution is studied by Kaplunov (1991). Also in
the three-dimensional range the localized vibration modes of plates with variable thickness (see Tovstik (1994))
and of bodies of revolution with variable thickness (see Kaplunov et al. (2001)) are analysed.
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2 The Two-dimensional Shell Equations and the Boundary Conditions

We study a thin shell with the constant thicknessh made of linearly elastic isotropic homogeneous material. The
material parameters are Young’s modulusE and Poisson’s ratioν. In the neutral shell surface we introduce the
orthogonal curvilinear coordinatesx = {x, y} ∈ Ω whereΩ is the area occupied by this surface andΓ denotes its
boundary.

To deliver the two-dimensional equations, we use the Kirchhoff-Love hypothesis. We use the well known equations
of displacements (see Goldenweizer (1961)), which after separation of variables withu(x, t) = u(x) sin(ωt),
obtain the form

3∑

j=1

(
Lij(x) + h2

∗Nij(x)
)
uj + λui = 0. i = 1, 2, 3 (2.1)

Hereu = u1e1 +u2e2 +u3n is the displacement vector,e1 ande2 are the unit vectors of the curvilinear coordinate
system in the neutral surface, andn = e1 × e2 is the unit normal to this surface. In some cases we also denote the
displacement vector asu = ue1 + ve2 + wn. The main small parameterh∗ = h/R is equal to the relative shell
thickness, whereR is the typical linear shell dimension. The frequency parameterλ is equal to

λ =
ρR2ω2

E
, (2.2)

whereω is the unknown natural frequency, andρ is the density of the shell material.

Lij(x) andNij(x) denote linear differential operators with (in the general case) variable coefficients (see Golden-
weizer et al. (1979), Goldenweizer (1961)). The system (2.1) ath∗ > 0 is elliptic with partial derivatives of 8th
order. If h∗ = 0, the system (2.1) degenerates to the so-called membrane (or momentless) system of 4th order.
The type of the membrane system can be elliptic, hyperbolic, or parabolic.

The system (2.1) is self-adjoint. At each edge it needs 4 boundary condition. We study the classical self-adjoint
boundary conditions. At the edgex = const the possible variants of the boundary conditions are given in Table 1.

Table 1. The classical boundary conditions.

u = 0 v = 0 w = 0 γ1 = 0 1 Geometric restrictions

T1 = 0 S = 0 Q∗
1 = 0 M1 = 0 0 Free conditions

Hereγ1 is the angle of rotation around the tangent to the edge,T1 andS are the stress-resultant in the tangential
plane,Q∗

1 = Q1 + ∂H/∂y is the generalized shear stress-resultant, andM1 is the stress couple. In the first line
of Table 1 the 4 generalized displacements are given, and in the second line the corresponding generalized forces.
Taking every possible combination of geometric restrictions and free conditions, we study 16 variants of boundary
conditions. Conditions with an elastic support (of the typeT1 + cu = 0) are not considered here. It is convenient
to denote each boundary condition by a 4-digital number consisting of 1 and 0 according to the chosen condition
given in the order of Table 1. For example, we denote a clamped edgeu = v = w = γ1 = 0 as 1111, a free edge
T1 = S = Q∗

1 = M1 = 0 as 0000, and a simply supported edgeT1 = v = w = M1 = 0 as 0110.

We use the asymptotic approach to analyze the system (2.1). The important role in this analysis plays the index of
variationp introduced by Goldenweizer (1961) by the relation

max

{∣∣∣∣
∂F

∂x

∣∣∣∣ ,

∣∣∣∣
∂F

∂y

∣∣∣∣
}

∼ h−p
∗ F, (2.3)

whereF is any function describing the stress-strain state of the shell.

The lengthL of the deformation pattern is connected with the index of variation by the relationL ∼ Rh
p
∗ . The

system (2.1) is acceptable only ifp < 1 because in this caseL À h.

The index of variation helps Goldenweizer to introduce a classification of the types of the thin shell free vibrations
(see Goldenweizer et al. (1979)). Let

λ ∼ h−2r
∗ . (2.4)
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Figure 1: The dependencer(p)

Then there are the following 4 main types of free vibrations:
(1) the quasi-transversal vibrations with small variability

with 0 ≤ p < 1/2, r = p, w À {u, v},
(2) the quasi-tangential vibrations

with 0 ≤ p < 1, r = 0, w ¿ {u, v},
(3) the vibrations of Rayleigh type

with 0 ≤ p < 1/2, r = −1 + 2p, w À {u, v},
(4) the quasi-transversal vibrations with large variability

with 1/2 ≤ p < 1, r = −1 + 2p, w À {u, v}.

For the types (1)–(4) the dependence between the natural frequency of orderr and the index of variationp is shown
in Fig. 1.

Instead of system (2.1) for the pointp = 1/2, r = 0 in Fig. 1, the more simple system of Donnell type may
be used. This system is acceptable to describe approximately all types of vibrations except the type (2) of the
quasi-tangential vibrations because in this system the tangential inertia forces are neglected. We write the Donnell
system in the form

µ2∆∆w − λw + ∆κΦ = 0,

µ2∆∆Φ + ∆κw = 0,
µ4 =

h2
∗

12(1 − ν2)
, (2.5)

whereµ > 0 is a small parameter,Φ is the stress function, and the linear differential operators∆ and∆κ are

∆w =
1

A1A2

(
∂

∂x

(
A2

A1

∂w

∂x

)
+

∂

∂y

(
A1

A2

∂w

∂y

))
,

∆κw =
1

A1A2

(
∂

∂x

(
κ2A2

A1

∂w

∂x

)
+

∂

∂y

(
κ1A1

A2

∂w

∂y

))
,

whereA1, A2 are the Laḿe coefficients of the neutral surface, andκ1, κ2 are its main curvatures.

Now by using asymptotic expansions we study various cases of the vibration modes localization.
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3 Axisymmetric Vibrations of Shells of Revolution

The problem of the axisymmetric vibrations of a shell of revolution is one-dimensional. Let the shell be bounded
by two parallelss = s1 ands = s2 wheres is the generatrix. The problem can be reduced to the singularly
perturbed ordinary differential equation of 6th order

−µ4
6∑

k=1

ak(s)
dkw

dsk
+

2∑

k=1

bk(s)
dkw

dsk
= 0, b2(s) = λ − κ2

2(s) (3.1)

whereκ2(s) is the generatrix curvature.

Equation (3.1) is very simple for a numerical solution, but it is complex due to the presence of turning pointss∗
for whichb2(s∗) = 0 (see Goldenweizer et al. (1979), Tovstik (1967)). Let us introduce the frequency intervalΛ

Λ = [Λ−, Λ+], Λ− = min
s

{κ2
2(s)}, Λ+ = max

s
k2

2(s)} (3.2)

in which the turning point is contained. It is to be remarked that for cylindrical and for spherical shells the turning
points are absent. In this section we do not study these shells.

Forλ /∈ Λ the turning point is absent and the general solution of equation (3.1) consists of the linear combination
of four bending solutions

wn(s, µ) =

∞∑

k=0

µkAkn(s) exp

(
1

µ

∫
qn(s) ds

)
, q4

n = b2, n = 1, 2, 3, 4, (3.3)

and of two membrane solutions

wn(s) =

∞∑

k=0

µ4kwkn(s), b2
d2w0n

ds2
+ b1

dw0n

ds
+ b0w0n = 0, n = 5, 6. (3.4)

In the case with the turning points∗ for which b2(s∗) = 0, b ′2(s∗) 6= 0, the expansions (3.3) and (3.4) are
inapplicable nears = s∗ becauseAkn → ∞ at s → s∗, and equation (3.4) has a singular point ats = s∗. Near
the turning point five linearly independent solutions of equation (3.1) have the asymptotic expansions

w(n)(s, ε) =

∞∑

k=0

εAk(s)v
(n)
k (η) + εδn5w∗(s, µ), n = 1, 2, 3, 4, 5, (3.5)

ε = µ4/5, η(s) =
1

ε

(
5

4

∫s

s∗
b

1/4
2 (s) ds

)4/5

.

Expansions (3.5) are expressed by the following standard functionsv
(n)
k

d5v
(0)
k

dη5
− η

dv
(0)
k

dη
− v

(0)
k = 0, v

(n)
k+1(η) =

∫
v

(n)
k (η) dη, k = 0, 1, . . . (3.6)

which are the entire functions of the complex argumentη. The 6th solution of equation (3.1) has the same form
(3.4) where the functionswk6 are regular ats = s∗.

In the case of the turning point expansions, (3.3) and (3.4) are valid for|s − s∗| À ε and expansion (3.5) is valid
for |s − s∗| ¿ 1. To construct the solution in the whole interval[s1, s2] it is necessary to combine solution (3.5)
with solutions (3.3) and (3.4). Here we use that atη → ±∞ the solutions (3.5) may be expressed through the
more simple solutions (3.3) and (3.4) (see Bauer et al. (1993)). Unfortunately, uniform asymptotic expansions of
equation (3.1) are unknown (evidently such expansions do not exist).
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Figure 2: The vibration modes for a conic shell of revolution with the turning point

In Fig. 2 the vibration modes for a conic shell of revolution are presented. As it is easy to see the turning point
separates the shell surface into two parts. In the first part the variability of the normal deflectionw(s) is large (the
index of variationp = 1/2), and in the second the functionw(s) changes slowly withs (p = 0). The maximal
deflection is near the turning point and its value is of the orderε−1.

4 Non-symmetric Vibrations of Shells of Revolution

In this case after separation of variablesw(s,ϕ) = w(s) cos(mϕ), m = 1, 2, . . . , the problem again becomes
one-dimensional. Herem is the number of waves in the circumferential direction, andϕ is the angular coordinate.

If the number of wavesm is fixed and small enough, then this case in the asymptotic point of view does not differ
from the axisymmetric case. Therefore we suppose that the numberm is large (m À 1) and we put

m = µ−1ρ. (4.1)

Then the system (3.1) can be rewritten in the standard form of a first order system

µ
dy
ds

= A(s, µ)y, A(s, µ) =

∞∑

k=0

Ak(s)µk, y = {y1, . . . , y8}. (4.2)

The system (4.2) has 8 WKB solutions (see Goldenweizer et al. (1979), Bauer et al. (1993))

y(n)(x, µ) =

∞∑

k=0

µky(n)
k (x) exp

(
1

µ

∫
i pn(s) ds

)
, n = 1, . . . , 8, i =

√
−1. (4.3)

The functionspn(s) satisfy the algebraic equation of 8th order

det(A0(s) − i pE) = 0, (4.4)

whereE is the unit matrix of 8th order. Equation (4.4) can be solved with respect to the frequency parameterλ

λ = (p2 + q2)2 +
(k2p2 + k1q2)2

(p2 + q2)2
≡ f(p, q, s), q =

ρ

B(s)
, (4.5)

whereB(s) is the distance between the point on the neutral surface and the axis of rotation. It is supposed here and
below that all linear dimensions of the neutral surface (herek−1

1 , k−1
2 , s, B(s)) are related toR. Then all variables

in (4.5) are dimensionless. If the rootpn(s) of equation (4.5) is multiple at the (turning) points = s∗, then the
corresponding solution (4.3) is not valid near this point becausey(n)

k (x) → ∞ whens → s∗.

Let us introduce the value
λ0 = min

p,q,s
f(p, q, s) = f(p0, q0, s0) (4.6)

for all realp, q and fors ∈ [s1, s2].

Real rootspn(s) of equation (4.5) correspond to the oscillating solutions (4.3) of the system (4.2). Ifλ < λ0

then there are no real roots, and all solutions (4.3) increase or decrease exponentially. Therefore in this case the
vibration modes may be localized near one of the shell edges, and the existence of such modes depends on the
boundary conditions at this edge (see below in this Section).

301



In the caseλ > λ0 equation (4.5) has one pair or two pairs of real roots and therefore equation (4.2) has oscillating
solutions which generate the vibration modes for arbitrary boundary conditions. Ifλ > λ0 andλ is close toλ0

then the oscillations are concentrated near the points = s0 which is called the weakest point. Near the weakest
point the first vibration modes are localized. Here we study two cases of the weakest point position.

The weakest point is far from the shell edges.Let equation (4.5) have no more than one pair of real roots (the
case of two pairs is studied in Goldenweizer et al. (1979)). Let the frequency parameterλ be close enough toλ0

so that the real roots of equation (4.5) are ats
(1)
∗ ≤ s ≤ s

(2)
∗ , where the turning pointss(k))

∗ satisfy the inequality

s1 < s
(1)
∗ < s0 < s

(2)
∗ < s2. (4.7)

Then the localized modes occupy the interval between the turning points and exponentially decrease with in-
creasing distance from this interval. The corresponding eigen-valuesλ(n) can be found from the equation (see
Goldenweizer et al. (1979))

1

µ

∫s(2)
∗

s
(1)
∗

p0(s) ds = π

(
1

2
+ n

)
+ O(µ), n = 0, 1, 2, . . . , (4.8)

where±p0(s) are real roots of equation (4.5) ats ∈ [s
(1)
∗ , s

(2)
∗ ].

The set of the localized modes is two-parametric and depends on the numberm of waves in circumferential
direction and the numbern in equation (4.8), which is connected with the number of waves in the longitudinal
direction. Let the integer numberm be fixed and close tom0 = µ−1q0B(s0). We introduce the function

f(m)(p, s) = f(p, q(s), s), q(s) =
ρ

B(s)
, ρ = µm, (4.9)

and find

λ
(m)
0 = min

p,s
f(m)(p, s) = min

s

{
ρ4

B4(s)
+ κ2

2(s)

}
=

ρ4

B4(s
(m)
0 )

+ κ2
2(s

(m)
0 ). (4.10)

Here it is remarked that the weakest parallel may (slightly) depend onm.

For the first some eigen-valuesλ(m,n) and the corresponding vibration modes more simple explicit relations (in-
stead of equation (4.8)) can be found (see Bauer et al. (1993)). The frequency parameter is equal to

λ(m,n) = λ
(m)
0 + µ

(
1

2
+ n

) √
f
(m)
pp f

(m)
ss + O(µ2), n = 0, 1, . . . , (4.11)

where the partial derivativesf(m)
pp and f

(m)
ss are calculated ats = s

(m)
0 , p = 0. The vibration mode has the

asymptotic representation

wm,n(s,ϕ) = e−ξ2/2
(
Hn(ξ) + O(µ1/2)

)
cosm(ϕ − ϕ0), (4.12)

where

ξ =

√
c

µ

(
s − s

(m)
0

)
, c =

√
f
(m)
pp

f
(m)
ss

andHn(ξ) are the Hermite polynomials,H0(ξ) = 1, H1(ξ) = ξ. We remark that the first eigen-values do not
depend on the boundary conditions.

In Fig. 3 the first vibration mode of an elongated ellipsoid of revolution is shown. The weakest parallel coincides
with its equator.

The weakest point coincides with the edges = 0. If λ > λ0 andλ is close enough toλ0 then near the edge
s = 0 there is a turning points = s∗. One of the solutions of equation (4.2) oscillates ats < s∗ and exponentially
decrease ats > s∗. The asymptotic expansion of this solution contains the standard Airy function and its derivative
(see Wasow (1965))

w0(s, µ) = a(s, µ) Ai(η) + µ1/3b(s, µ)Ai ′(η), η =

(
3

2µ

∫s

s∗
p0(s) ds

)2/3

(4.13)
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Figure 3: The Vibration Mode of an Ellipsoid of Revolution
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Figure 4: The vibration modes localized near the edge

wherep0(s) is the real root of equation (4.4) ats < s∗, and the functionsa(s, µ) andb(s, µ are the asymptotic
series in powers ofµ with the coefficients regular ins.

To satisfy the given boundary conditions at the edges = 0, we add to function (4.13) three solutions (4.3) expo-
nentially decreasing with increasing distance from the edges = 0. As a result we get the vibration mode in the
form

w(s,ϕ) =

(
w0(s, µ) +

4∑

n=2

Cn(s, µ)eipns/µ

)
cosm(ϕ − ϕ0), Im pn > 0 (4.14)

The first vibration mode for the clamped edges = 0 is shown in the left side of Fig. 4.

Such modes exist for arbitrary boundary conditions ats = 0 and the first some of them do not depend on the
boundary conditions at the opposite edge. The asymptotic expansion of the first eigen-values is the following (see
Goldenweizer et al. (1979))

λ(m,n) = λ
(m)
0 + µ2/3λ

(m,n)
1 + µλ

(m,n)
2 + O(µ4/3) (4.15)

whereλ
(m)
0 is the same as in (4.10),λ

(m,n)
1 depends on the roots of equationAi(η) = 0 and does not depend on

the boundary conditions ats = 0, and onlyλ(m,n)
2 depends on the boundary conditions.

The cases of a weakly supported edge.Here we suppose thatλ < λ0. In this case all solutions of equation (4.2)
exponentially decrease or increase. We try to satisfy 4 given boundary conditions at the edges = 0 by 4 solutions
which decrease away from this edge. We seek the vibration mode in the form

w(s, ϕ) =

(
4∑

n=1

Cn(s, µ)eipns/µ

)
cosm(ϕ − ϕ0), Im pn > 0 (4.16)

The problem is reduced to the equation
∆4(λ) = 0, λ < λ0 (4.17)

where∆4 is the determinant of the 4th order with elements depending onλ. All 16 classical variants of boundary
conditions (see Table 1) are examined. The numerical calculations show that there exist only 6 variants for which
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Figure 5: The localized vibration modes of cylindrical and conic shells

equation (4.17) has roots. It occurs that no more than one root exists. These 6 variants are given in Table 2. We call
such boundary conditions weak boundary conditions. Among these conditions there are the free edge, 4 conditions
with one geometrical restriction, and one condition with two restrictions(v = γ1 = 0).

Table 2. The weak boundary conditions.

N Boundary conditions Geometric restrictions
λ

λ0

1 0000 − 0.469
2 0001 γ1 = 0 0.537
3 0100 v = 0 0.842
4 0101 v = γ1 = 0 0.880
5 0010 w = 0 0.987
6 1000 u = 0 0.995

The numerical example in Table 2 is given for the following values of parametersq = 1, k1 = 1.5, k2 = 1. From
this example it is easy to see which geometrical restriction is more essential to prevent the existence of localized
vibration modes withλ < λ0.

5 The Localized Vibration Modes for Non-circular Cylindrical and Conic Shells with Slanted Edges

Vibration modes of circular cylindrical and conic shells with straight edges occupy the entire shell surface. But
if shells are non-circular and/or its edges are slanted then a localization of the vibration modes is possible. The
modes are localized near the weakest generatrixϕ = ϕ0.

In Fig. 5 the localized vibration modes are shown. The variability of these modes in the circular direction is much
larger than its variability in the longitudinal direction

∣∣∣∣
∂w

∂ϕ

∣∣∣∣ À
∣∣∣∣
∂w

∂s

∣∣∣∣ . (5.1)

The corresponding stress–strain state is called a semi-momentless state because the stress coupleM1 may be
neglected compared with the coupleM2. Relation (5.1) allows us to simplify the Donnell equations (2.5) to
perform the asymptotic separation of variables. In this problem the asymptotic expansions are the same as in
the corresponding buckling problem (see Tovstik and Smirnov (2001)). For simplicity we here study only the
cylindrical shells.

The simplified equations of the Donnel type have the form

µ4
∗∆∆w + κ2(ϕ)

∂2Φ

∂s2
− λ∗w = 0, µ4

∗∆∆Φ − κ2(ϕ)
∂2w

∂s2
= 0 (5.2)

where

∆w =
∂2w

∂s2
+

∂2w

∂ϕ2
≈ ∂2w

∂ϕ2
, λ = µ2λ∗, µ2

∗ = µ.

Hereλ∗ andµ∗ are the new frequency and the small parameter, respectively.
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The asymptotic solution has the form

w(s, ϕ, µ∗) =

∞∑

n=0

µ
n/2
∗ wn(s, ξ) exp{i(µ−1/2

∗ qξ + (1/2)aξ2)}, ξ =
ϕ − ϕ∗√

µ∗
,

λ∗ = λ0 + µ∗λ1 + µ2
∗λ2 + . . . , q > 0, Im a > 0.

(5.3)

Here wn(s, ξ) are the polynomials in ξ, in particular in the zeroth approximation
w0(s, ξ) = Hm(ξ)W0(s), m = 0, 1, . . . , whereHm(ξ) are the Hermite polynomials. Due to Ima > 0 the
solution of equation (5.2) exponentially decreases with decreasing distance from the weakest generatrixϕ = ϕ0.
The asymptotic solutions (5.3) and (4.12) are similar to the expansions constructed by Maslov (1977).

The functionW0(s) satisfies the ordinary boundary value problem of the beam type

κ2
2(ϕ)

d4W0

ds4
+ (q8 − Λq4)W0 = 0. (5.4)

Equation (5.4) contains the valuesϕ, q, andΛ as parameters. At each edges = s1(ϕ) ands = s2(ϕ) it is
possible to satisfy only 2 (main) boundary conditions. The other 2 conditions may be satisfied by the edge effect
solutions which exponentially decrease away from the edges. The edge effect solutions in the case, when the edge
does not coincide with the curvature lines of the surface, are found by Goldenweizer (1961). The problem how
to choose 2 main boundary conditions for the given 4 conditions is discussed in detail for all 16 variants of the
classical boundary conditions in the book by Tovstik and Smirnov (2001). For the beam 4 variants of the main
conditions are possible:W0 = dW0/ds = 0 (the clamped edge),W0 = d2W0/ds2 = 0 (the simply supported
edge),dW0/ds = d3W0/ds3 = 0 (the weakly supported edge), andd2W0/ds2 = d3W0/ds3 = 0 (the free
edge). The solution of equation (5.4) with the main conditions coincides with the function, which describes the
transversal vibrations of a beam

d4W0

ds4
−

α4

l4
W0 = 0, (5.5)

wherel is the beam length. For example, for both edges clamped we haveα = 4.73, for simply supported edges
α = π. The 16 variants of the full boundary conditions are separated into 4 groups according to the main boundary
conditions. The list of the full boundary conditions, which correspond to these 4 groups of the main conditions in
the case whends1/dϕ = 0 is given in Table 3.

Table 3. The groups of boundary conditions.

N The groups of main conditions The full boundary conditions
1 The clamped group 1111, 1110, 1011, 1101, 1100, 1010
2 The simply supported group 0111, 0110, 0011, 0101, 0100, 0010
3 The weakly supported group 1001, 1000
4 The free edge group 0001, 0000

For the given boundary conditions we findα and then we obtain

Λ = q4 +
α4κ2

2(ϕ)

q4l4(ϕ)
= f(q,ϕ) l(ϕ) = s2(ϕ) − s1(ϕ). (5.6)

After minimization of the functionf(q,ϕ) we get valuesλ0, q, and the weakest generatrixϕ0 near which the
vibration mode is localized.

λ0 = min
q,ϕ

f(q,ϕ) = min
ϕ

2α2k2(ϕ)

l2(ϕ)
=

2α2k2(ϕ0)

l2(ϕ0)
, q4 =

α2k2(ϕ0)

l2(ϕ0)
. (5.7)

The valueλ1 depends only on the derivatives of the functionf(q,ϕ) atϕ = ϕ0

λ1 = λ
(m)
1 =

(
m +

1

2

) √
fϕϕfss − f2

ϕs (5.8)
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Figure 6: The elliptic cylinder

and the next termλ2 in the asymptotic expansion (5.3) depends on all the boundary conditions (see Tovstik and
Smirnov (2001)).

The eigen-functions (5.3) are complex. Therefore their real and imaginary parts are also eigen-functions of the
problem (5.2). But it is incorrect to think that the corresponding eigen-valuesλ∗ are double. Due to the asymptotic
character of the series (5.3) in reality two very close eigen-valuesλ

(1)
∗ andλ

(2)
∗ with the coinciding asymptotic

expansions (5.3) exist ∣∣∣ λ
(1)
∗ − λ

(2)
∗

∣∣∣ = O
(
e−c/µ∗

)
, c > 0. (5.9)

To these eigen-values the eigen-functions with the following asymptotic expansions

w(j) = C
(j)
1 Re(w(s, ϕ, µ∗)) + C

(j)
2 Im(w(s,ϕ, µ∗)), j = 1, 2, (5.10)

correspond with the definite constantsC
(j)
1 andC

(j)
2 .

In the paper by Naumova (2001) the free vibrations of a non-straight circular conic shell (as in the right side of
Fig. 6) are investigated. The asymptotic solution is compared with the numerical solution obtained by the Finite
Element Method.

These solutions are in good agreement, but the numerical solution gives only the first of two asymptotically double
eigen-functions.

The eigen-values and eigen-functions of an elliptic cylindrical shell.As an example, which illustrates the
asymptotically double eigen-values we study the free low-frequency vibrations of a thin elastic shell with simply
supported edges in the form of an elliptical cylinder (see Fig. 6).

Instead of the coordinateϕ in circular direction, we use the anglex shown in Fig. 6 as an independent variable.
After the separation of variablesw(x, y) = w(x) sin(πs/L) (which is possible for simply supported edges) we
rewrite the system (5.2) in a dimensionless form (see Krotov and Tovstik (1997))

ε4k4(x)
d4w

dx4
− λw + k(x)Φ = 0, ε4k4(x)

d4Φ

dx4
− k(x)w = 0, (5.11)

where

ε8 =
h2L4

12(1 − ν2)a6
, λ =

ρω2L4

π2ε4ER2
, k(x) = e−2

(
sin2 x + e2 cos2 x

)3/2

, e =
b

a
> 1.

Hereε is the small parameter, andk(x) is the curvature of the ellipse.

We seek the eigen-values of the frequency parameterλ for which there exist the2π-periodic solutionsw(x), Φ(x)
of the system (5.11).

The problem has 2 weakest generatrixesx = ±π/2 therefore we expect to have 4 eigen-values, which are very
close each other and the asymptotically fourfold eigen-value which may be found by relations similar to (5.3),
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(5.7), and (5.8) is

λ(m) =
2

e2
+ ε

√
192(e2 − 1)

e7

(
1

2
+ m

)
+ O(ε2), m = 0, 1, . . . (5.12)

We take the following numerical parametersm = 0, e = 1.4, ε = 0.1 and numerically calculate the first eigen-
values. Due to symmetry of the problem it is possible to seek even and odd eigen-functions with respect to the
ellipse diameters (see Fig. 7) and also to separately find the corresponding eigen-values.

For this aim we solve the problem (5.11) in the interval0 ≤ x ≤ π/2 and take the boundary conditions

w =
d2w

dx2
= Φ =

d2Φ

dx2
= 0 (odd)

dw

dx
=

d3w

dx3
=

dΦ

dx
=

d3Φ

dx3
= 0 (even)

or (5.13)

at the ends of this interval.

Calculations show that 4 asymptotically fourfold eigen-values differ from each other by no more than10−5. It is
interesting to remark that these 4 eigen-values may be gathered in two groups:{even–even, odd–odd} and{even–
odd, odd–even} and the difference between eigen-values within the groups is much smaller, namely of the order
of 10−10.

6 The Localized Vibration Modes of Cylindrical Panels with a Weakly Supported Rectilinear Edge

We study the free low-frequency vibrations of a thin circular cylindrical panel with radiusR and lengthL (see
Fig. 8, right). For the low-frequency vibrations the inequality (5.1) is fulfilled and the asymptotic separation of
variables is possible, after which the problem is reduced to a one-dimensional boundary value problem. Therefore
it is possible to obtain the approximate asymptotic solutions for arbitrary boundary conditions. In this sense this
problem for cylindrical panel vibrations is simpler than the problem for rectangular plate vibrations (see Fig. 8,
left). The last problem has no analytical solution for arbitrary boundary conditions.

Here we suppose that one of the rectilinear edgesy = 0 is weakly supported so that the vibration mode is localized
near this edge. The boundary conditions at the curvilinear edgesx = 0 andx = −l may be arbitrary, but at first
we begin from the simply supported curvilinear edges for which the exact separation of variables is possible.
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Figure 9: Forms of the localized eigen-functions

The equation which describes the low-frequency vibrations of a circular cylindrical shell may be written in the
dimensionless form

µ8
∗∆

4w − λ

(
∆2w −

∂2w

∂ϕ2

)
+

∂4w

∂x4
= 0, ∆w =

∂2w

∂x2
+

∂2w

∂ϕ2
, (6.1)

where−l = −L/R ≤ x ≤ 0; ϕ is the angle in circular direction,−ϕ0 ≤ ϕ ≤ 0, ϕ0 = y0/R, and

µ8
∗ =

h2

12(1 − ν2)R2
, λ =

ρω2R2

E
.

After the scaling of the variableϕ = µ∗
√

l/πη and the separation of variablesw(x,ϕ) = Y(η) sin(πx/l) we get
as the zeroth approximation for the unknown functionY(η) the ordinary differential equation

d8Y

dη8
− 2λ0

d4Y

dη4
+ Y = 0, λ =

2µ2π2

l2
λ0, (6.2)

whereλ0 = 1 corresponds to the minimal frequency of a circular cylindrical shell closed in the circular direction.

We seek solutions of equation (6.2), which satisfy the given boundary conditions at the edgeη = 0 and the
decreasing condition

Y(η) → 0 at η → −∞. (6.3)

In the paper of Ershova and Tovstik (1998) the 6 variants of the weakly supported edge are found for which such
a solution of equation (6.2) exists. The eigen-valuesλ0 and the corresponding eigen-functions are presented in
Fig.9.

We remark that in this problem the variants of the weakly supported rectilinear edge coincide exactly with the
variants of the weakly supported curvilinear edge of a shell of revolution. For the free edge 0000 there exists the
second eigen-valueλ(2)

0 = 0.973 for which the corresponding eigen-function decreases more slowly than in Fig.9.

More exact than (6.2) the asymptotic relation for the frequency parameterλ for arbitrary boundary conditions at
the curvilinear edges has the form (see Ershova and Tovstik (1998))

λ =
2µ2α

l2

(
λ0 + µ2

∗λ2 + O(µ3
∗)

)
, (6.4)

Here the parameterλ0 depends on the boundary conditions at the weakly supported rectilinear edgeϕ = 0 and it
is the same as in Fig. 9. The parameterα appears when we asymptotically separate the variables as in equation
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(4.5). This parameter depends only on the groups of the main boundary conditions at the curvilinear edgesx = 0

andx = −l. The list of its possible values is the following (αij = αji)

α11 = 4.71, α12 = 3.93, α22 = 3.14 = π, α13 = 2.37,

α14 = 1.88, α23 = 1.57, α24 = α33 = α34 = α44 = 0
(6.5)

where the indices indicate the numbers of the groups forx = 0 andx = −l (see Table 3). For the boundary
conditions withαij = 0 the relation (6.4) (and also relation (5.3)) is inapplicable. The parameterλ2 in relation
(6.4) depends on all boundary conditions at the rectilinear and at the curvilinear edges.

7 Conclusions

By the asymptotic approach for thin elastic shells, two types of the free vibration modes localized near the weakest
lines are investigated. In the first of them the localization is possible if the neutral surface is heterogeneous (for
example the surface curvatures are not constant). To find the asymptotic expansions of the modes in this case it
is necessary to use the complex asymptotic constructions including turning point and lines. The second type of
localization is connected with the weakly supported edges. The 6 variants of weak boundary conditions are found.
It is surprising that for two essentially different problems (with the curvilinear edge of a shell of revolution and
with the rectilinear edge of a cylindrical panel) these variants are identical.

The used asymptotic approach is based on a single small parameter (the relative shell thicknessh∗), and the other
parameters are supposed to be of the order of unity. In the other case the obtained asymptotic relations become
incorrect. For example the relation (6.4) is not valid for very long panelsL/R À 1, or for very short panels
L/R ¿ 1, or for very narrow panelsϕ0 ¿ 1. In the last case the opposite rectilinear edge begins to influence the
frequency.

It is interesting to construct the vibration modes localized near the (weakest) point. For the buckling problems such
localization is studied in the book by Tovstik and Smirnov (2001). For a shell of an ellipsoidal form with three
different axes, the weakest point coincides with one of the poles. It is also interesting to study cases whenαij = 0

for the cylindrical panel.
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