

The Two-Dimensional, Rectangular,
Guillotineable-Layout Cutting Problem

with a Single Defect

Vera Neidlein � Andréa C. G. Vianna �
Marcos N. Arenales � Gerhard Wäscher

FEMM Working Paper No. 35, December 2008

OTTO-VON-GUERICKE-UNIVERSITY MAGDEBURG
FACULTY OF ECONOMICS AND MANAGEMENT

F E M M
Faculty of Economics and Management Magdeburg

Working Paper Series

Otto-von-Guericke-University Magdeburg
Faculty of Economics and Management

P.O. Box 4120
39016 Magdeburg, Germany

http://www.ww.uni-magdeburg.de/

Vera Neidlein1 • Andréa C. G. Vianna2
 Marcos N. Arenales3 • Gerhard Wäscher1

The Two-Dimensional, Rectangular,
Guillotineable-Layout Cutting Problem with a Single Defect

–
An AND/OR-Graph Approach

December 2008

Abstract: In this paper, a two-dimensional cutting problem is considered
in which a single plate (large object) has to be cut down into a set of small
items of maximal value. As opposed to standard cutting problems, the
large object contains a defect, which must not be covered by a small item.
The problem is represented by means of an AND/OR-graph, and a Branch
& Bound procedure (including heuristic modifications for speeding up the
search process) is introduced for its exact solution. The proposed method
is evaluated in a series of numerical experiments that are run on problem
instances taken from the literature, as well as on randomly generated
instances.
Keywords: Two-dimensional cutting, defect, AND/OR-graph, Branch &
Bound

1 Otto-von-Guericke-University Magdeburg, Germany, Faculty of Economics and Management
2 Universidade Estadual Paulista, Brazil, Faculdade de Ciências
3 Universidade de Sao Paulo, Brazil, Instituto de Ciências Matemáticas e de Computaçao

Corresponding author:

Dipl.-Math. oec. Vera Neidlein
Otto-von-Guericke-University Magdeburg
Faculty of Economics and Management
- Management Science -
Postfach 4120
39016 Magdeburg
{vera.neidlein@ww.uni-magdeburg.de}

Table of Contents

1 Introduction.. 1
2 Fundamentals.. 1

2.1 Problem Definition and Characterization.. 1
2.2 Formal Representation .. 2
2.3 Literature Review ... 3

3 The AND/OR-Graph Approach to the 2D_UG_SLOPP 5
3.1 Guillotine Cuts and Intermediate Plates... 5
3.2 AND/OR-Graphs .. 6
3.3 Upper and Lower Bounds .. 7
3.4 A Branch & Bound Algorithm ... 8
3.5 Heuristic Modifications ... 9

4 Dealing with a Single Defect.. 9
4.1 Dimensions and Location of a Defect on an Intermediate Plate 10
4.2 Upper and Lower Bounds for a Defective Plate ... 10

5 Numerical Experiments ... 13
5.1 Data Sets ... 13
5.2 Implementation of the Algorithm .. 17

6 Computational Results .. 17
6.1 Instances of Carnieri, Mendoza, and Luppold.. 17
6.2 Randomly Generated Instances... 18

7 Conclusions and Outlook... 23

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 1

1 Introduction

From the late 80’s onwards, the number of publications in the area of cutting and
packing has grown rapidly. However, in the first place, authors tend to concentrate on
developing models and methods for standard problems, while important real-world
conditions are only rarely taken into consideration. A typical, often neglected aspect
is that the material, which has to be cut down, contains a defect. By simply ignoring
the defect, standard methods will only provide sub-optimal solutions.
Therefore, in this paper, a solution approach will be presented that will allow for tak-
ing into account material which contains a defect. More precisely, a two-dimensional
cutting problem is considered, in which a single plate (large object) has to be cut
down into a (weakly heterogeneous) set of small items, which are in unlimited de-
mand. The large plate contains a defect, all cuts are of the guillotine type, and the
goal is to maximize the value of the small items provided.
The remaining part of this paper is organized as follows: In section 2, the problem
under consideration will be defined and described in detail; furthermore, a literature
review about related cutting problems with and also without defects will be given. In
section 3, the respective two-dimensional cutting problem without a defect will be
discussed. An AND/OR-graph representation, as well as a Branch&Bound procedure,
will be described which have been presented earlier in the literature for the solution of
this problem. In section 4, this approach will be extended to the case in which the
plate contains a defect. In order to evaluate the proposed approach, a series of nu-
merical experiments have been carried out, in which it was run on problem data
taken from the literature and data generated randomly. The set-up of the experi-
ments, as well as the implementation of the solution method will be outlined in sec-
tion 5. Section 6 presents and discusses the results from the experiments. The paper
concludes with an outlook on future work in section 7.

2 Fundamentals

2.1 Problem Definition and Characterization

According to the typology of Wäscher, Haußner, and Schumann (2007) the cutting
problem to be discussed in this paper can be categorized as a variant of the uncon-
strained, two-dimensional, rectangular, guillotineable-layout Single Large Object
Placement Problem (SLOPP).
The basic underlying cutting problem is characterized by a set of small items (re-
quired rectangles), which have to be laid out on a single large object (stock rectangle,
stock plate) of given dimensions in a way that the small items do not overlap and lie
entirely within the large object. Any description of such a layout is called a cutting
pattern.
The small items have to be laid out orthogonally, i.e. in the cutting pattern their edges
must be parallel to the edges of the large object, and their orientation is fixed (they
cannot be rotated). Furthermore, we impose a guillotine constraint on the cutting
pattern, i.e., all small items must be obtainable by a sequence of cuts, each of which
dissecting a rectangle (the original large object or a rectangle resulting from a pre-

2 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

vious cut) into two new rectangles (guillotineable layout). The number of stages that
is necessary to cut all items is not restricted.
The assortment of the small items is weakly heterogeneous; the items can be
grouped into relatively few classes (types) in which the items are of identical size.
The number of times each item type is duplicated in the cutting pattern is not limited
(unconstrained problem), and it may happen that an item type does not appear in the
pattern at all. In addition, the orientation of each item type is fixed, i.e. it may not be
rotated by 90° in order to be laid out on the large object. Each small item type has a
particular value, and – since it is not possible to accommodate all small items in the
large object – one wants to maximize the total value of the small items in the cutting
pattern.
In addition to these basic features which define the unconstrained, two-dimensional,
rectangular, guillotineable-layout SLOPP (2D_UG_SLOPP), we now assume that the
stock has a (single) defect, i.e. there is a specific region (defined in two dimensions)
of the plate, to which no small item must be assigned. More precisely, in the cutting
pattern to be determined, no small item must overlap with this defective region. Even
though the defect may be of arbitrary shape, we assume that it can be represented
by a rectangle, whose edges run in parallel to the edges of the stock plate (see
Figure 1).

xd

yd

wd

ld

Figure 1: Representation of the defect

The two-dimensional SLOPP is a NP-hard problem since it is a generalization of the
classic (one-dimensional) Single Knapsack Problem, which is known to be NP-hard
(Karp 1972). Furthermore, also the 2D_UG_SLOPP with a single defect is NP-hard
since it is a generalization of the two-dimensional SLOPP.

2.2 Formal Representation

Let iv denote the value and (li, wi) the dimensions of an item of type i (i = 1, …, m),
and ai the number of times an item of type i is assigned to the stock plate, then the

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 3

unconstrained two-dimensional, rectangular, guillotineable-layout SLOPP can be rep-
resented as follows (see Morabito, Arenales, and Arcaro 1992):

1

1

max

s. t. (,...,) corresponds to a feasible cutting pattern.

m

i i
i

m

v v a

a a
�

� �� (1)

1(,...,) ma a is said to correspond to a feasible cutting pattern if item type i (i = 1, …, m)
can be laid out ai times an on the stock plate in a way that all the above-mentioned
constraints are satisfied. A more precise, quite complex representation of these con-
straints (in particular the guillotineable-layout constraint) has been given by Mes-
saoud, Chu, and Espinouse (2008); we will not go into details here because such a
formal representation is not necessary for the presentation of our approach.

2.3 Literature Review

The 2D_UG_SLOPP has been studied extensively, in particular over the last thirty
years. Gilmore and Gomory (1966) describe an exact dynamic programming ap-
proach for two-dimensional knapsack functions, which are used as a basis to deter-
mine solutions for the2D_UG_SLOPP. An exact recursive procedure using discreti-
zation sets of all necessary locations of cuts is given by Herz (1972). Beasley
(1985a) presents an exact recursive approach using dynamic programming, based
on the method of Gilmore and Gomory (1966), and heuristic modification which con-
siders only a subset of the discretization sets. In the same article, a similar approach
is used for staged problems. An exact algorithm performing a tree search on
AND/OR-graphs, as well as a heuristic search strategy to improve computability, is
described by Morabito, Arenales, and Arcaro (1992). A heuristic approach for the
2D_UG_SLOPP as well as for other versions of the 2D_SLOPP can be found in the
paper by Fayard, Hifi, and Zissimopoulos (1998); they reduce the problem to a series
of one-dimensional knapsack problems which are solved by dynamic programming.
For the same problem types, Alvarez-Valdés, Parajón, and Tamarit (2002) describe a
tabu search algorithm including GRASP. G and Kang (2002) present an upper bound
for the 2D_UG_SLOPP and also for the non-guillotineable layout type, which is cal-
culated by solving two one-dimensional knapsack problems.
Other versions of the 2D_SLOPP have also been widely studied. Christofides and
Whitlock (1977) present a Branch & Bound strategy to solve a guillotineable-layout
problem exactly with upper bounds for the number of times an item type can be cut
(constrained problem). They combine dynamic programming and a transportation
routine for the determination of upper bounds. For the same problem type, Wang
(1983) presents two algorithms that successively put together horizontal and vertical
builds of item types to fill the large object. Christofides and Hadjiconstantinou (1995)
present an improvement of the algorithm of Christofides and Whitlock (1977); they
use a state-space relaxation of a dynamic programming formulation of the problem to
calculate an upper bound required for limiting the Branch & Bound search. Morabito
and Arenales (1996) extend the AND/OR-graph approach to solve constrained and
staged problems, exactly and heuristically. Parada, Pradenas, Solar, and Palma
(2002) develop a combination of a genetic algorithm and a search procedure on an
inverted AND/OR-graph. In the article by Alvarez-Valdés, Parreño, and Tamarit
(2005), a GRASP algorithm and a reasonable choice of its parameters are described.

4 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

Hifi and M’Hallah (2005) present an exact Branch & Bound algorithm including a new
upper bound for the constrained guillotineable-layout 2D_SLOPP with two cutting
stages. Three different upper bounds for any Branch & Bound algorithm, derived by
LP, Knapsack and Lagrangean relaxation, are introduced in Beasley (1985c). The
constrained, non-guillotineable layout 2D_SLOPP is considered by Beasley (1985b),
who provides a 0-1 linear programming model and corresponding exact depth-first
tree search (Branch & Bound) procedure.
In general, cutting problems with defects have only been studied rather limitedly.
Gilmore and Gomory (1965) use linear programming on the one-dimensional and the
two-dimensional Single Stock Size Cutting Stock Problem, and for both cases, they
describe a recursive formula for the value of an item type where the mentioned value
depends on its position on the large object, i.e. the large object consists of different
qualities, one of which may be a non-usable defect. The three-staged
2D_UG_SLOPP with multiple defects and a non-linear value function for the item
types is considered by Hahn (1968), who describes an adaptation of the dynamic
programming approach by Gilmore and Gomory (1966). Scheithauer and Terno
(1988) present an improved dynamic programming solution method for the same type
of problem with a non-rectangular large object. Herz (1972) mentions without giving
any details that it is possible to adapt his recursive algorithm for the 2D_UG_SLOPP
with multiple defects.
More extensive or specialized, less standardized problem variants have also been a
field of research. The combined process of cutting a felled tree first into logs and then
into lumber, considering quality and shape variations (defects) of the tree by use of a
profile scanner, is presented by Faaland and Briggs (1984). They use a staged dy-
namic programming model to solve this problem taken from practice. A special kind
of one-dimensional cutting problem is solved by Sarker (1988) using dynamic pro-
gramming. Here, a single large object with several punctual defects is considered,
and the goal is to maximize the total value that can be achieved by cutting only
through defects, under the condition that the value of a piece cut depends on its
length and the number of contained defects. Aboudi and Barcia (1998) consider a
one-dimensional cutting problem that occurs in paper mills – a roll of paper contain-
ing one defect is to be cut vertically into a given set of sheets; one wishes to deter-
mine a permutation of the sheets which minimizes the length of those sheets con-
taining a defect. (The authors give a 0-1 integer programming model which can be
relaxed (surrogate relaxation) to achieve strong bounds for a Branch & Bound
method including several heuristics. A complex one-dimensional cutting and wrap-
ping problem in the textile industry is described by Özdamar (2000); the cutting of
fabric lengths into shorter pieces and the sorting of those pieces into different quality
grades depending on contained defects is solved by a simulated annealing approach
with occasional mutations.
An auxiliary problem, namely the one of finding all usable rectangles on a large rec-
tangle containing several pairwise disjoint defects, is solved by a constructive algo-
rithm by Twisselmann (1999).
The 2D_UG_SLOPP with a single defect, as it is discussed in this paper, has been
introduced into the literature by Carnieri, Mendoza, and Luppold (1993). They pre-
sent a heuristic solution based on dynamic programming, which extends the classic
approach by Gilmore and Gomory (1963), and including a Branch & Bound search
where the necessary bounds are calculated assuming the large object had no defect.
The same problem type has also been studied by Vianna and Arenales (2006); we
present an extension of their approach here.

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 5

3 The AND/OR-Graph Approach to the 2D_UG_SLOPP

In this section, a summary of the AND/OR-graph approach (Morabito, Arenales and
Arcaro 1992) to the unconstrained, two-dimensional, rectangular, guillotineable-lay-
out SLOPP (without defects) is presented, which, in short, consists of representing all
cutting patterns as complete paths in a specific graph and enumerating them implic-
itly in order to find an optimal solution. This approach will be extended to problems
with a single defect in Section 4.

3.1 Guillotine Cuts and Intermediate Plates

Applying a guillotine cut to a plate results in two new rectangles, called intermediate
plates, which can be cut down further. The process of cutting terminates when a “fi-
nal” (required) item or a piece of waste is obtained. Consequently, any guillotineable-
layout cutting pattern can be generated just by examining the different guillotine cuts,
which can be applied to each intermediate plate. An intermediate plate (say, plate N)
has a certain length LN and width WN , and will be denoted by N = (LN, WN). The set

()M N of small items that can still be cut from N is given by

� �� � � �() : : and , {1,..., }i N i NM N i l L w W i m . (2)

Herz (1972) has shown that, without loss of generality, the positions of the cuts on
the large object can be taken as non-negative integer combinations of the dimen-
sions of the small items, i.e. from the set

0 0
1

: , , 0 and integer, 1,...,
m

i i i
i

X x x l l x L l i m	 	
�

 �
� � � � � �� �

� �
� (3)

for the vertical cuts and from the set

0 0
1

: , , 0 and integer, 1,...,
m

i i i
i

Y y y w w y W w i m� �
�

 �
� � � � � �� �

� �
� (4)

for the horizontal cuts, where � � � �� � � �0 0min , 1,..., , and min , 1,...,i il l i m w w i m . X
and Y are called discretization sets. Likewise, the discretization sets for an intermedi-
ate plate N = (LN, WN) are given by

0 0
()

() : , , 0 and integer, ()i i N i
i M N

X N x x l l x L l i M N	 	
�

 �
� � � � � �� �

� �
� (5)

and

0 0
()

() : , , 0 and integer, ()i i N i
i M N

Y N y y w w y W w i M N� �
�

 �
� � � � � �� �

� �
� (6)

which can be determined by means of the recursive formula of Christofides and
Whitlock (1972), or by its revised version as presented in Morabito and Arenales
(1996).
Therefore, given an intermediate plate N = (LN, WN), a vertical cut at position
x � X(N) produces two new plates: N1 = (x, WN) and N2 = (LN – x, WN); a corre-
sponding formula applies to a horizontal cut y � Y(N). Although the number of inter-

6 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

mediate plates is finite when only cuts in X and Y are considered, it can be enormous
for a practical problem instance.

3.2 AND/OR-Graphs

An AND/OR-graph G = (V, E) is a special type of graph, where V is a set of nodes
and � 1{ ,..., }sE e e a set of directed arcs. Each arc eju links a node j to a set Su of
nodes (in an ordinary graph the set Su consists of just one node):

eju = (j, Su), � ,j V Su � V.

The nodes in Su are called successors of j, and j is called predecessor of nodes in
the set Su. In this paper, Su will always consist of a pair � �,p q of nodes (in case of an
AND-arc, see below), or a unit set {p} (ordinary arc leading to a final node, see be-
low).
When following a path through the graph, one can choose between several arcs that
emerge from a node (OR-arcs), but one has to follow both branches of the chosen
arc (AND-arc). An example can be seen in Figure 2 (a). This type of graph provides
an appropriate tool for the representation of a cutting process – each node stands for
a plate (stock or intermediate), each arc � �� ,{ , }jue j p q for a guillotine cut that sepa-
rates a plate/node j (start node of jue), into a pair of new plates { , }p q (end nodes of

jue).

At some point throughout the cutting process, one may decide not to perform any
further cuts on a particular plate, e.g. because the dimensions of this plate indicate
that it has to be considered as waste, or it has the exact dimensions of a small item,
or because the optimal cutting pattern for that plate is known. This situation can be
represented in the AND/OR-graph by introducing an ordinary arc, called 0-cut, for
each node j (not depicted in Figure 2 (a)), i.e. an arc eju = (j, p) that copies exactly the
plate of node j into node p. If such an arc has been chosen in the path, no further cut
is made on plate in node p, and p is called a final node of the path. The value of a
final node equals 0 in case it represents waste. If the final node represents a specific
small item i, than its value is identical with the value of i, and if the final node repre-
sents a plate for which the optimal cutting pattern is known, then its value is identical
with the value of this pattern.
Any cutting pattern for the large object (stock plate) can be determined from the
AND/OR-graph as follows: Starting from the root node (stock plate), choose one and
only one arc (AND-arc, or 0-cut arc), and from each node pointed to by this chosen
arc choose again one and only one arc, and so on, until all visited nodes are final
nodes. This sequence of paths is called a complete path of the AND/OR-graph, and it
corresponds to a cutting pattern. The broken lines of Figure 2 (a) indicate a complete
path, which corresponds to the cutting pattern depicted in Figure 2 (b).
The value of a complete path (or of its corresponding cutting pattern) is the sum of
the values of all its final nodes. Therefore, problem (1) can be reformulated as the
problem of finding a most valuable complete path in the AND/OR-graph.

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 7

(a)

(b)

Figure 2: AND/OR-graph with a particular highlighted path (a)
and the corresponding cutting pattern (b)

3.3 Upper and Lower Bounds

In order to describe a scheme for the implicit enumeration of the complete paths (i.e.,
cutting patterns), we define upper and lower bounds for the value of the optimal cut-
ting pattern for a given plate N = (LN, WN). The area provides a straightforward way to
compute an upper bound ��()N for the objective function value which can still be
generated by cutting down N:

()

()

() (,) max

s.t. () (area utilization)

0, ()

N N i i
i M N

i i i N N
i M N

i

N L W v a

a l w L W

a i M N

�

�

� � �

� �

 �

�

�

�� ��

 (7)

Trivially, the optimal objective function value of problem (2) is obtained by

 �
� � � �� �

� �
��(,) max : () .i

N N N N
i i

vL W L W i M N
l w

 (8)

Computation of a lower bound ��()N for the objective function value related to a
plate N = (LN, WN) can be based on homogeneous cutting patterns, which contain
only small items of a single type (cf. Figure 3).

8 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

LN

WN

wk

lk

Figure 3: Homogeneous cutting pattern for plate (LN,WN), consisting of item type k

Given a plate N = (LN, WN), the maximum number of times that item type � (,)k kk l w

appears in a homogeneous pattern is
� � � �

�� � � �
� � � �

N N

k k

L W
l w

. Thus the corresponding objective

function value is
� � � �

� �� � � �
� � � �

N N
k

k k

L Wv
l w

, and the best homogeneous cutting pattern gives a

lower bound for the objective function value for plate N = (LN, WN):

 �� � � �� �� � � � �� �� � � �
� �� � � �� �

�� ��() (,) max : ()N N
N N i

i i

L WN L W v i M N
l w

 (9)

Computation of both upper and lower bound requires very little time, the number of
necessary operations depends linearly on the number of small item types. In section
4.2, we give more specific formulas to deal with defective plates.

3.4 A Branch & Bound Algorithm

Let ��()N denote a lower bound and ��()N an upper bound, respectively, for the
objective function value of node/plate N, and let �()N be the currently known best
objective function value for node N. Of course, � ��� � ��() () ()N N N holds. Further-
more, let S be the set of nodes (original or intermediate plates) still to be dealt with.
Then the following Branch & Bound procedure can be used for the determination of
an optimal solution for the 2D_UG_SLOPP:

1. Set � �: (,)S L W� .

2. Choose a node N = (LN, WN) from S and delete it from S. Set () : ()N N�� �� .
For all possible successors N1 and N2 that can result from a vertical cut on N
chosen from the discretization set X(N) or from a horizontal cut on N chosen
from the discretization set Y(N), do:

a) If N1 represents waste, i.e. M(N1)=�, then make N1 a final node; other-
wise include N1 in S. Repeat this step for N2.

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 9

b) If � �� �� ��1 2() () ()N N N (i.e., an improved objective function value
can be obtained by this cut), then update 1 2() : () ()N N N� �� �� �� ; also
update recursively the currently known best objective function values of
all predecessors of N up to the original plate (root node)

c) If �� �� ��1 2() () ()N N N (i.e., the cut can not result in an improved ob-
jective function value), then remove N1 and N2 from S.

3. If S is not yet empty, go back to step 2.
4. STOP! The currently known best value for the root node is the optimal objec-

tive function value. The corresponding cutting pattern can be determined by
identifying the complete path that provides this objective function value.

3.5 Heuristic Modifications

Obviously, computing times for the Branch & Bound procedure depend very much on
the number of nodes that have to be considered, which can be enormous. Therefore,
Morabito, Arenales, and Arcaro (1992) developed several heuristics, which are modi-
fications of the original procedure, that reduce the computing times drastically, but
still lead to reasonably good solutions.

Heuristic 1: Use of promising cuts only
A cut is considered to be promising if the sum of the upper bounds of the resulting
plates N1 and N2 is substantially larger than the currently known best value of N,
that is, 	� � ��� �� �1 2() () (1) ()N N N , and if the sum of the lower bounds of the suc-
cessors is only slightly smaller or even larger than the lower bound of N, that is,

�� � ��� �� ��1 2() () (1) ()N N N , where 	 and � are parameters to be chosen empiri-
cally.

Heuristic 2: Heuristic search strategy
Morabito, Arenales and Arcaro (1992) combine depth-first and hill climbing strategies.
They arbitrarily choose a depth limit (a maximum number of successive cuts, or the
length of the path) and compute from the root node (initial plate) the best (exact or
heuristic) complete path not exceeding this limit, discarding all others paths (a pure
hill-climbing search would be obtained for a depth limit of 1). Then, for the given
depth limit, all nodes are considered as root nodes and chosen for further investiga-
tion, that is, from each one the best complete path up to the depth limit is calculated,
and so on. For details, see Morabito, Arenales, and Arcaro (1992) or Arenales and
Morabito (1995).

4 Dealing with a Single Defect

In this section, the AND/OR-graph approach will be modified in such a way that a
single defect on the plate can be considered explicitly. As has been noted above (see
Figure 1), we assume that the defect d can be represented by a rectangle of length ld
and width wd: d = (ld, wd). The location of the defect on the stock plate is indicated by
the coordinates of its lower left corner (,)d dx y .

10 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

4.1 Dimensions and Location of a Defect on an Intermediate Plate

If a cut is performed on a defective (stock or intermediate) plate (,)N NN L W� , we
need to know what the dimensions of the defects are on the resulting plates and
where they are located. The following line of argumentation will be presented for a
vertical cut only, but holds likewise for a horizontal cut. Let the cut (chosen from the
discretization set X) be at position z, then the dimensions of the plates N1 and N2 to
be generated are (z, WN) and (,)N NL z W� , respectively, i.e. 1 (,)NN z W� and

2 (,)N NN L z W� � . Figure 4 shows the possible positions of the vertical cut z in rela-
tion to the defect.
Figure 4 (a) depicts a case in which only plate N2 will contain a defect; likewise in
Figure 4 (c) only plate N1 will have a defect. Both plate N1 and N2 will have a defect in
the case depicted in Figure 4 (b). Table 1 presents the size of the defects and their
locations (indicated by the coordinates of the lower left corner) for these three cases.

yd
xd

ld

wd

yd
xd

ld

wd

yd
xd

ld

wd

z z z
(a) (b) (c)

plate N1
cut plate N2

Figure 4: Possible positions of a vertical cut

plate N1 plate N2
 dimensions of

defect
location of

defect
dimensions of

defect
location of

defect
case (a) - - (,)d dl w (,)d dx z y�
case (b) (,)d dz x w� (,)d dx y (,)d d dx l z w� � (0,).dy
case (c) (,)d dl w (,)d dx y - -

Table 1: Size and location of defects on plates N1 and N2

4.2 Upper and Lower Bounds for a Defective Plate

An upper bound for a node representing a plate (,)N NN L W� with a defect of size
(,)d dl w can be obtained by a simple modification of the area-utilization bound (4).
Since the useable plate area now is N N d dL W l w� , we obtain

() (,) () max : () .i
N N N N d d

i i

vN L W L W l w i M N
l w

 �
� � � � �� �

� �
�� �� (10)

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 11

The modification for the determination of a lower bound for a node representing a
defective plate is less straightforward. Figure 5 and Figure 6 demonstrate why the
objective function value of the simple homogeneous cutting pattern cannot be used
as a reasonable lower bound any more.

Figure 5: Simple homogeneous cutting pattern with items overlapping the defect

If the calculation of the lower bound would be carried out by ignoring the items over-
lapping the defect, the bound corresponding to Figure 5 would be based on six items.
Figure 6, on the other hand, presents a solution obtained by shifting a block of small
items as far as possible to the right, allowing the computation of the bound to be
based on having assigned nine items.

Figure 6: Modified homogeneous cutting pattern without items overlapping the defect

Consequently, the determination of a lower bound will be based on the identification
of (rectangular) “non-defective regions” of maximal size. A region is called non-de-
fective if it can be obtained from N by a series of successive guillotine cuts and does
not contain a defect. It is of maximal size if each of the guillotine cuts cannot be
moved further towards the defect without creating a defect on this region.
As long as the defect is not located directly adjacent to an edge of plate N, there exist
14 different ways in which N can be partitioned into non-defective regions of maximal
size by a series of guillotine cuts, and there are always four such regions in any parti-
tion (cf. Figure 7; the regions “on the left” of the defect are denoted by A, the ones
“on top” by B, those “on the bottom” by C and the ones “on the right” by D.). As be-
comes evident, each of the four (maximal) regions can be rectangles of four different
sizes (types). It goes without mentioning that some of the partitions will be degener-
ated if the defect is located adjacent to an edge of the plate.

12 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

A1

A2

B1

A3

A4

B3

B2

B4

D4 D3

D2 D1

C3 C4

C1

C2

A1 A1 A1
B3

B3

B4

B4 B4A2 A2

A3 A3

A4 A4 A4

B2

B2

D2

D2

D1

D1

D1

D3

D3

D4

D4

D4

B1

B1 B1

C1 C1

C1

C3

C3 C4

C4

C4

C2

C2

(1)

(11) (14)(13)(12)

(10)(9)(8)

(7)(6)(5)

(4)(3)(2)

Figure 7: The 14 different ways to divide a plate with one defect
 into four non-defective regions of maximal size

A lower bound for a plate N with a defect can now be computed as follows: For each
type of non-defective region, a homogeneous cutting pattern is determined which
provides – according to (5) – the best objective function value (across all item types
which can be accommodated at least once by the region). This gives a lower bound
for each type of non-defective region. Then, for each partition (cf. Figure 7), the lower
bounds for the respective non-defective regions are added up, resulting in a lower
bound for each partition. Finally, the lower bound for N can simply be computed as
the maximum of the lower bounds of all 14 partitions.
In order to determine the (maximal) homogeneous cutting patterns on the (maximal)
non-defective regions, the dimensions of these regions have to be known. For a
plate (,)N NN L W� , on which the (lower left corner of the) defect of size(,)d dl w is lo-
cated in position(,)d dx y , they can be taken from Table 2.

Regarding the computing times, it can be noted that the number of nodes in the
AND/OR-graph may grow exponentially in the number of small items. However, the
number of calculations needed for the determination of the lower bound at a single
node is only linear in the number of the small items (as it is the case for the
2D_SLOPP without a defect). Therefore, there will be no significant increase in the
computing times if compared to the times needed for solving the problem without any
defect.

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 13

type of
non-defective region horizontal dimension vertical dimension

A1 dx NW

A2 dx N dW y�

A3 dx d dy w�

A4 dx dw

B1 NL � �N d dW y w� �

B2 d dx l� � �N d dW y w� �

B3 N dL x� � �N d dW y w� �

B4 dl � �N d dW y w� �

C1 NL dy

C2 d dx l� dy

C3 N dL x� dy

C4 dl dy

D1 � �N d dL x l� � NW

D2 � �N d dL x l� � N dW y�

D3 � �N d dL x l� � d dy w�

D4 � �N d dL x l� � dw

Table 2: Dimensions of the 16 (maximal) non-defective regions

5 Numerical Experiments

In order to determine the performance of the above-described algorithm, a series of
numerical experiments has been carried out. A first set of problem instances, which
has also been used by Vianna and Arenales (2006) for benchmarking purposes, has
been taken from the paper by Carnieri, Mendoza, and Luppold (1993). Even though
this set is of rather limited size, it will be considered here since – according to the
best of the authors’ knowledge – this is the only one related to the 2D_UG_SLOPP
with a single defect that has been presented in the literature so far. A second, more
substantial set of problem instances has been generated randomly.

5.1 Data Sets

5.1.1 The Data Set of Carnieri, Mendoza, and Luppold

Carnieri, Mendoza and Luppold (1993) consider eight problem instances: one set of
item types (see Table 3) combined with 8 different defects, differing with respect to
location and size (see Table 4). For each item type and defect, the dimensions as

14 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

well as the relative size (percentage of area of the large object) are given. The di-
mensions of the large object are (L, W) = (200, 100).

item type
i

length
li

width
wi

value
vi

relative size
[%]

1 40 30 10 6.00

2 68 26 12 8.84

3 50 20 8 5.00

4 60 35 18 10.50

5 45 22 9 4.95

Table 3: Item types of the data set of Carnieri, Mendoza, and Luppold (1993)

defect
no.

position of
lower left corner

(xd,yd)
dimensions

(ld,wd)
relative size

[%]

1 (50,100) (4,5) 0.10

2 (40,100) (4,5) 0.10

3 (60,100) (6,5) 0.15

4 (20,125) (10,7) 0.35

5 (71,125) (8,7) 0.28

6 (30,30) (10,10) 0.50

7 (40,80) (18,30) 2.70

8 (40,80) (18,38) 3.42

Table 4: Defects of the data set of Carnieri, Mendoza, and Luppold (1993)

It should be noted that the values of the item types are not proportional to their area
(weighted version of the 2D_UG_SLOPP) and that the item types are quite large
w.r.t. the size of the large object. The defects, on the other hand, appear to be rather
small.

5.1.2 Randomly Generated Data Sets

Identification of Problem Parameters

The second set of problem instances refers to the unweighted version of the
2D_UG_SLOPP, i.e. it has been assumed that the values (in monetary units) of all
item types are proportional to their sizes (in square units). Under this assumption,
any instance of the 2D_UG_SLOPP with a single defect is completely characterized
by the vector

1 1 2 2((,), (,), (,),..., (,), (,), (,)).m m d d d dL W l w l w l w l w x y

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 15

In other words, in order to obtain a test problem instance,
- the dimensions of the large object (L,W),
- the dimensions of the item types (li,wi), i = 1,..,m,
- the number m of different item types to be placed,
- the dimensions of the defect (ld,wd), and
- the location of the defect (xd,yd),

(problem parameters) have to be specified. Since each instance contains information
about the dimensions of the large object, about the dimensions of the defect and
about its location, it seems reasonable to refer to m, the number of small item types,
as the problem size.

Parameter Specification

In all experiments, the size of the large object has been fixed to 360,000 square units
(sq. u.), for which three different combinations of length and width have been consid-
ered (see Table 5).

(L,W) (600,600) (900,400) (1200,300)
length-to-width

ratio 1:1 2.25:1 4:1

Table 5: Dimensions of the large object

With respect to the size of the item types in relation to the large object, three classes
have been distinguished: item types of “small” size (max. 1% of the area of the large
object, i.e. 1-3,600 square units), “large” size (3-5% of the area of the large object,
i.e. 10,800-18,000 square units), and “both small and large” size (max. 5% of the
area of the large object, i.e. 1-18,000 square units).

The actual size ai (in sq. u.) of each item type i was considered as the realization ˆia
of a random variable, which is generated from the respective size range. ˆia provides
the basis for the determination of the corresponding dimensions (length il , width iw)
of i. In order to avoid “degenerated” item sets (i.e. sets which contain very long and
narrow items in the first place), the following procedure has been chosen (for details
see Neidlein and Wäscher 2008): At first, from the interval� 0.1, 0.9 a realization îb of
a random variable bi for the relative length of i is determined, which is defined in the
following way:

i
i

i i

lb
l w

�
�

. (11)

Then approximate values îl and ˆ iw for il and iw , respectively, are calculated as fol-
lows:

ˆˆˆ
ˆ1

i i
i

i

a bl
b

�
�

 and
ˆˆ
ˆ
i

i
i

aw
l

� . (12)

16 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

In order to obtain il and iw , these values are rounded down:

ˆ ˆ,i i i il l w w� �� � � �� �� � (13)

This provides an item type of size i i ia l w� � , close to the value ˆia originally gener-
ated. By limiting bi to the interval

2

2 2

ˆ
ˆ ˆ

i
i

i i

a Lb
a W a L

� �
� �

 (14)

it is guaranteed that every item type fits into the large object, i.e. that il will not ex-
ceed L and iw will not exceed W.

� �,d dl w (60,60) (105,35) (35,105) small
(~3,600 sq. u.) area [sq. u.] 3,600 3,675 3,675

� �,d dl w (120,120) (210,70) (70,210) medium
(~14,400 sq. u.) area [sq. u.] 14,400 14,700 14,700

� �,d dl w (170,170) (285,95) (95,285) large
(~28,800 sq. u.) area [sq. u.] 28,900 27,075 27,075

 length-to-width
ratio 1:1 3:1 1:3

Table 6: Types of the defect

The number of different item types to be placed on the large object was chosen to be
5 and 10.
The size of the defect was fixed to (approximately) 1% (3,600 sq. u.), 4% (14,400 sq.
u.) and 8% (28,800 sq. u.) of the area of the large object. Small deviations from the
exact percentage values have been permitted in order to allow for a better numerical
manageability of the length-to-width ratios. For each of these size classes, three dif-
ferent combinations of lengths and widths have been introduced, which shape the
defect as a square, as a “lying” (i.e. horizontal) rectangle, and as a “standing” (i.e.
vertical) rectangle. The exact size and dimensions can be taken from Table 6.

(8.1)

(8.2)

Figure 8: Sizes and shapes of large objects (8.1) and defects (8.2)

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 17

The position (,)d dx y of the lower left corner of the defect on the large object was
generated randomly in the intervals � 0, dL l� for dx and � 0, dW w� for dy . Figure 8
gives an illustration of the sizes and shapes of the large objects and the defects.

Basic Problem Classes and Problem Instances

The properties introduced above for the dimensions of the large object (3), for the
size of the small item types (3), and the size of the problem (2) define (3 x 3 x 2 =) 18
classes of problem data (basic problem classes). For each of these classes, 30
instances have been generated by means of an adaptation of the problem generator
of Neidlein and Wäscher (2008).
Each instance of a basic problem class has been combined with each of the nine
different defect dimensions defined in Table 6. Thus, in total (18 x 30 x 9 =) 4860
problem instances have been included in the numerical experiments. The instances
are available at www.ovgu.de/mansci/materials.

5.2 Implementation of the Algorithm

As has been described in section 3.5, in order to speed up the algorithm, a heuristic
which considers promising cuts only is used. The values of the parameters 	 and �
have both been set to 0.1. The depth-first / hill-climbing strategy is used with a depth
bound of three. The algorithm was encoded using Borland Pascal Version 7. All
experiments were run under Windows XP on a microcomputer with 1.7 GHz core
memory clock speed and 512 MB RAM.

6 Computational Results

6.1 Instances of Carnieri, Mendoza, and Luppold

Since this data set contains instances of the weighted version of the 2D_UG_SLOPP,
the quality of a solution can be measured by the total value of the small items cut
from the large object. Table 7 presents the results obtained by Carnieri, Mendoza,
and Luppold (1993, p. 71), as well as the results and computing times of the
AND/OR-graph approach presented in this paper. For all instances, the computing
times of the AND/OR-graph approach turned out to be very reasonable. Please note
that Carnieri, Mendoza, and Luppold (1993) do not report any computing times in
their paper.
The AND/OR-graph approach provided better solutions for two instances, while
equally good solutions were found for the remaining ones. In additional tests we
modified the heuristic search parameters to allow for a deeper AND/OR-graph search
– and thus allocated more computing time to the algorithm – in order to prove that the
obtained solutions were optimal. However, neither did the algorithm terminate at an
optimal solution, nor was any further improvement of the objective function value
achieved for any of the problem instances. We believe that the obtained solutions are
optimal, even though we are not able to prove it.

18 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

Carnieri et al. (1993) AND/OR-graph approach instance
no. total value of items

cut
total value of

items cut
computing
time [sec]

1 166 166 0.52
2 160 160 0.77
3 162 162 1.77
4 158 160 0.27
5 164 164 4.11
6 164 164 1.44
7 157 158 1.07
8 154 154 0.50

Table 7: Total values of items cut and computing times for the instances
of Carnieri, Mendoza, and Luppold (1993)

6.2 Randomly Generated Instances

We note that – under the assumptions made – the size of the (non-defective) area of
the large object which is not covered by small items (waste, trim loss) can be used as
a measure for the quality of each solution. Since the optimal solutions are not known,
the waste is reported as a percentage of the useable area of the large object, i.e. of

d dLW l w� .

Across all problem instances, an average percentage of waste of 5.0333% was ob-
served; the average computing time per instance amounted to 10.25 sec.
Table 8 provides waste and computing times for the 18 basic problem classes (con-
taining 270 instances each) in greater detail. It can already be seen that the waste
decreases (i.e. the solution quality improves) and computing times increase with an
increase in the number of item types. This observation will be confirmed by the sub-
sequent analysis.
In Table 9, results from Table 8 have been aggregated with respect to the number of
item types and the size of the item types. Additionally, the number of instances is
depicted for which zero-waste solutions have been obtained. 2,673 instances are
contained in each of the two problem classes of Table 9.1, and 1,782 instances in
each of the three problem classes of Table 9.2. Computing times increase drastically
with an increasing number of item types, while the solution quality (both in terms of
waste per instance and the number of zero-waste instances per class) improves (cf.
Table 9.1). The latter observation can be explained easily by the fact that a larger
number of item types allows for a larger number of combinations of item types (cut-
ting patterns), which – on the other hand – take more time to evaluate. The same
reasoning can be put forward with respect to the observation that computing times
are longer and solution quality is better for small item types instead of larger ones (cf.
Table 9.2).

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 19

main
problem

class
no.

dimensions
of large
object
(L,W)

no. of item
types

n
size of item

types
waste

[%]
computing

time
[sec]

1 (600,600) 5 small 1,472 9,63
2 (600,600) 5 small/large 5,042 7,48
3 (600,600) 5 large 9,117 3,88
4 (600,600) 10 small 0,713 18,93
5 (600,600) 10 small/large 3,661 17,92
6 (600,600) 10 large 7,752 10,59
7 (900,400) 5 small 1,600 9,49
8 (900,400) 5 small/large 4,967 6,65
9 (900,400) 5 large 10,588 3,84
10 (900,400) 10 small 0,974 19,85
11 (900,400) 10 small/large 4,045 14,33
12 (900,400) 10 large 7,732 9,58
13 (1200,300) 5 small 1,811 8,17
14 (1200,300) 5 small/large 7,636 4,74
15 (1200,300) 5 large 10,839 2,82
16 (1200,300) 10 small 0,991 18,17
17 (1200,300) 10 small/large 4,219 11,61
18 (1200,300) 10 large 7,442 6,84

Table 8: Waste and computing times (averages per instance)
for the basic problem classes

 (9.1)
no. of item types

n
waste

[%]
computing time

[sec]
no. of zero-

waste instances
5 5,897 6,30 2

10 4,170 14,20 19

(9.2)
size of item

types
waste

[%]
computing time

[sec]
no. of zero-

waste instances
small 1,260 14,04 18

small/large 4,928 10,46 3

large 8,912 6,26 0

Table 9: Waste and computing times (averages per instance) for
different numbers of item types (9.1) and different sizes of item types (9.2)

20 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

We note that – in contrast to the results reported so far – the dimensions of the large
object appear to have only very influence. Waste increases slightly as the shape of
the large object becomes less quadratic, computing times are almost constant (cf.
Table 10).

dimensions
of large
object
(L,W)

waste
[%]

computing
time
[sec]

(600,600) 4,626 10,25
(900,400) 4,984 11,41
(1200,300) 5,490 10,62

Table 10: Waste and computing times (averages per instance) for the different
dimensions of the large objects

The picture looks slightly different if the data (concerning the waste) is further differ-
entiated (see Table 11). The amount of waste is affected by the problem size and the
size of the item types in the first place, but it also tends to grow slightly with a more
rectangular, less quadratic shape of the large object. It has to be mentioned, how-
ever, that the outliers represented by the problem classes “number of item types: 5;
dimensions of large object: (1,200, 300)” and “size of item types: small/large; dimen-
sions of large object: (1,200, 300)” are due to a few single instances only which yield
an extraordinarily large amount of waste.

(11.1)

dimensions of large object (L,W) number of
item types

n (600,600) (900,400) (1200,300)

5 5,210 5,718 6,762

10 4,042 4,250 4,218

(11.2)

dimensions of large object (L,W) size of
item types (600,600) (900,400) (1200,300)

small 1,092 1,287 1,401

small/large 4,352 4,506 5,928

large 8,434 9,160 9,140

Table 11: Percentage of waste (averages per instance) dependent on the
dimensions of the large object and the number of item types (11.1)

and the size of the item types (11.2)

Table 12 and Table 13 investigate the influence of the defect on computing times and
solution quality. Table 12 shows the detailed results for the nine different defect
types, whereas Table 13 (in which the defects are sorted in the same sequence as in

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 21

Figure 8) gives an aggregated view regarding the sizes (Table 13.1)) and shapes
(Table 13.2)) of the defect.

defect waste
[%]

computing
time
[sec]

small quadratic 3,929 10,72

small horizontal 4,368 10,34

small vertical 3,704 10,75

medium quadratic 4,994 10,57

medium horizontal 6,016 10,38

medium vertical 4,578 10,27

large quadratic 5,879 10,23

large horizontal 7,211 9,65

large vertical 4,622 9,35

Table 12: Waste and computing times (averages per instance) for the different
dimensions of the defect

The computing times are hardly affected by the different sizes and shapes of the de-
fect, even though they tend to be slightly smaller for large defects because fewer
possible cutting patterns have to be investigated. As could have been expected, a
small defect yields less waste than a large defect (cf. Table 13.1) since it allows for a
larger number of cutting patterns. The small amount of waste related to a vertical
defect (cf. Table 13.2) is due to the fact that all large objects which are considered
here are either quadratic or of horizontal shape. This implies – except for the quad-
ratic large object – that a vertical defect virtually divides the large object into two de-
fect-free new plates (see Figure 9), for which a large number of feasible combinations
of small items (i.e. cutting patterns) exists. A horizontal defect, on the other hand,
leaves narrow defect-free regions above and below the defect and only narrow de-
fect-free regions on the sides of the defect, for all of which the number of feasible
cutting patterns is significantly smaller. Both effects compensate each other on a
quadratic large object.

(13.1) (13.2)

size of
defect

waste
[%]

computing
time
[sec]

shape of
defect

waste
[%]

computing
time
[sec]

small 4,000 10,60 quadratic 4,934 10,51

medium 5,196 10,41 horizontal 5,865 10,13

large 5,904 9,74 vertical 4,301 10,12

Table 13: Waste and computing times (averages per instance) for the
different sizes (13.1) and the different shapes (13.2) of the defect

22 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

Figure 9: Large object of size (1200,300) combined with defect of size (95,285)

Table 14 differentiates the results concerning the waste further with respect to the
size (Table 14.1) and the shape (Table 14.2) of the defect on one hand, and with re-
spect to the dimensions of the large object on the other. The amount of waste is
affected by the size and the shape of the defect in the first place, but varies only
slightly the more rectangular, less quadratic the large object gets.

(14.1)
dimensions of large object (L,W) size of

defect (600,600) (900,400) (1200,300)

small 3,686 3,837 4,477

medium 4,708 5,007 5,873

large 5,484 6,108 6,119

(14.2)

dimensions of large object (L,W) shape of
defect (600,600) (900,400) (1200,300)

quadratic 4,369 4,930 5,502

horizontal 5,345 5,566 6,684

vertical 4,165 4,456 4,283

Table 14: Percentage of waste (averages per instance) dependent on the
dimensions of the large object and the size (14.1) and the shape (14.2) of the defect

 (15.1) (15.2)
number of item types n number of item types nsize of

defect 5 10
shape of

defect 5 10

small 4,987 3,214 quadratic 5,801 4,053

medium 6,106 4,232 horizontal 6,441 5,026

large 6,597 5,064 vertical 5,449 3,431

Table 15: Percentage of waste (averages per instance) dependent on the number of
item types and the size (15.1) and the shape (15.2) of the defect

In Table 15, the percentage of waste for different problem sizes (number of item
types) is depicted against the size (Table 15.1) and the shape (Table 15.2) of the

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 23

defect. The waste increases with an increasing size of the defect as well as with a
decreasing number of item types. It can again be observed that the percentage of
waste is highest for a horizontal defect and lowest for a vertical defect.
Finally, in Table 16 the percentage of waste for different sizes of the item types is
demonstrated against the size (Table 16.1) and the shape (Table 16.2) of the defect.
Similar to what has been said about Table 11, it can be observed here that the solu-
tion quality differs significantly with the size of the item types. Thus, it becomes evi-
dent that – with respect to the solution quality – the size of the item types is the most
important parameter.

(16.1)
size of item types size of

defect small small/large large

small 0,962 3,881 7,459

medium 1,272 5,076 9,159

large 1,546 5,829 10,117

(16.2)

size of item types shape of
defect small small/large large

quadratic 1,256 4,883 8,642
horizontal 1,366 5,788 10,046

vertical 1,158 4,114 8,047

Table 16: Percentage of waste (averages per instance) dependent on the size of
item types and the size (16.1) and the shape (16.2) of the defect

7 Conclusions and Outlook

In this paper, an exact solution approach and some heuristic modifications have been
presented for the solution of the two-dimensional, guillotineable-layout Single Large
Object Placement Problem, in which the large object contains a single defect. It could
be shown that the proposed (heuristically modified) method provides solutions of
excellent quality in reasonable computing time. Future work will concentrate on
extending the proposed method to problems with more than one defect; similar to
that, the approach could be extended to non-rectangular defects (represented by
more than one rectangle).

24 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

References

Aboudi, R.; Barcia, P. (1998):
Determining Cutting Stock Patterns when Defects are Present. Annals of Operations
Research 82, 343-354.
Arenales, M.; Morabito, R. (1995):
And AND/OR-Graph Approach to the Solution of Two-Dimensional Non-Guillotine
Cutting Problems. European Journal of Operational Research 84, 599-617.
Beasley, J.E. (1985a):
Algorithms for Unconstrained Two-Dimensional Guillotine Cutting. Journal of the
Operational Research Society 36, 297-306.
Beasley, J.E. (1985b):
An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure. Opera-
tions Research 33, 49-64.
Beasley, J.E. (1985c):
Bounds for Two-Dimensional Cutting. Journal of the Operational Research Society
36, 71-74.
Beasley, J.E. (2004):
A Population Heuristic for Constrained Two-Dimensional Non-Guillotine Cutting.
European Journal of Operational Research 156, 601-627.
Carnieri, C.; Mendoza, G.A.; Luppold, W.G. (1993):
Optimal Cutting of Dimension Parts from Lumber with a Defect: a Heuristic Solution
Procedure. Forest Products Journal 43 (9), 66-72.
Christofides, N.; Whitlock, C. (1977):
An Algorithm for Two-Dimensional Cutting Problems. Operations Research 25, 30-
44.
Christofides, N.; Hadjiconstantinou, E. (1995):
An Exact Algorithm for Orthogonal 2-D Cutting Problems Using Guillotine Cuts.
European Journal of Operational Research 83, 21-38.
Faaland, B.; Briggs, D. (1984):
Log Bucking and Lumber Manufacturing Using Dynamic Programming. Management
Science 30, 245-257.
Fayard, D.; Hifi, M.; Zissimopoulos, V. (1998):
An Efficient Approach for Large-Scale Two-Dimensional Guillotine Cutting Stock
Problems. Journal of the Operational Research Society 49, 1270-1277.
G, Y.-G.; Kang, M.-K. (2002):
A New Upper Bound for Unconstrained Two-Dimensional Cutting and Packing. Jour-
nal of the Operational Research Society 53, 587-591.
Gilmore, P.C.; Gomory, R.E. (1961):
A Linear Programming Approach to the Cutting-Stock Problem. Operations Research
9, 849-859.
Gilmore, P.C.; Gomory, R.E. (1963):
A Linear Programming Approach to the Cutting-Stock Problem – Part II. Operations
Research 11, 863-888.

 Vera Neidlein · Andréa Vianna · Marcos Arenales · Gerhard Wäscher 25

Gilmore, P.C.; Gomory, R.E. (1965):
Multistage Cutting Stock Problems of Two and More Dimensions. Operations Re-
search 13, 94-120.
Gilmore, P.C.; Gomory, R.E. (1966):
The Theory and Computation of Knapsack Functions. Operations Research 14,
1045-1074.
Hahn, S.G. (1968):
On the Optimal Cutting of Defective Sheets. Operations Research 16, 1100-1114.
Herz, J.C. (1972):
Recursive Computational Procedure for Two-Dimensional Stock Cutting. IBM Journal
of Research and Development 16, 462-469.
Karp, R.M. (1972):
Reducibility Among Combinatorial Problems. In: Miller, R.E.; Thatcher, J.W. (eds):
Complexity of Computer Computations. New York: Plenum, 85-103.
Massoud, S.B.; Chu, C.; Espinouse, M.-L. (2008):
Characterization and Modelling of Guillotine Constraints. European Journal of Opera-
tional Research 191, 112-126.
Morabito, R.N.; Arenales, M.N.; Arcaro, V.F. (1992):
An And-Or-Graph Approach for Two-Dimensional Cutting Problems. European Jour-
nal of Operational Research 58, 263-271.
Morabito, R.; Arenales, M.N. (1996):
Staged and Constrained Two-Dimensional Guillotine Cutting Problems: An AND-OR-
Graph Approach. European Journal of Operational Research 94, 548-560.
Neidlein, V.; Wäscher, G. (2008):
SLOPPGEN: A Problem Generator for the Two-Dimensional Rectangular Single
Large Object Placement Problem. Working Paper No. 15/2008, Faculty of Economics
and Management, Otto-von-Guericke-University Magdeburg.
Özdamar, L. (2000):
The Cutting-Wrapping Problem in the Textile Industry: Optimal Overlap of Fabric
Lengths and Defects for Maximizing Return Based on Quality. International Journal of
Production Research 38, 1287-1309.
Parada, V.; Pradenas, L.; Solar, M.; Palma, R. (2002):
A Hybrid Algorithm for the Non-Guillotine Cutting Problem. Annals of Operations Re-
search 117, 151-163.
Sarker, B.R. (1988):
An Optimum Solution for One-Dimensional Slitting Problems: A Dynamic Program-
ming Approach. Journal of the Operational Research Society 39, 749-755.
Scheithauer, G.; Terno, J. (1988):
Guillotine Cutting of Defective Boards. Optimization 19, 111-121.
Twisselmann, U. (1999):
Cutting Rectangles Avoiding Rectangular Defects. Applied Mathematics Letters 12,
135-138.
Vianna, A.C.G.; Arenales, M.N. (2006):
O Problema de Corte de Placas Defeituosas. Pesquisa Operacional 26, 185-202.

26 The 2D Cutting Problem with a Single Defect – An AND/OR-Graph Approach

Wang, P.Y. (1983):
Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems. Opera-
tions Research 31, 573-586.
Wäscher, G.; Haußner, H.; Schumann, H. (2007):
An Improved Typology of Cutting and Packing Problems. European Journal of Op-
erational Research 183, 1109-1130.

