
WORKING PAPER SERIES

A Hybrid Algorithm for the Vehicle Routing Problem with
Pickup and Delivery and 3D Loading Constraints

Dirk Männel/Andreas Bortfeldt

Working Paper No. 15/2015

Impressum (§ 5 TMG)
Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Wirtschaftswissenschaft
D Dekan

Verantwortlich für diese Ausgabe:

Otto-von-Guericke-Universität Magdeburg
Fakultät für Wirtschaftswissenschaft
Postfach 4120
39016 Magdeburg
Germany

http://www. ww. /femm

Bezug über den Herausgeber
ISSN 1615-4274

Dirk Männel/Andreas Bortfeldt

1

A Hybrid Algorithm for the Vehicle Routing Problem
with Pickup and Delivery and 3D Loading Constraints

Dirk Männel1, Andreas Bortfeldt1*

1 Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
andreas.bortfeldt@ovgu.de, dirk.maennel@gmx.de

* Corresponding author, phone: 0049 391 6711842

Abstract
In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and
three-dimensional loading problem, called PDP with 3D loading constraints (3L-PDP). A set of routes of
minimum total length has to be determined such that each request is transported from a loading site to the
corresponding unloading site. In the 3L-PDP, each request is given as a set of 3D rectangular items
(boxes) and the vehicle capacity is replaced by a 3D loading space. We investigate which constraints will
ensure that no reloading effort will occur, i.e. that no box is moved after loading and before unloading. A
spectrum of 3L-PDP variants is introduced with different characteristics in terms of reloading effort. We
propose a hybrid algorithm for solving the 3L-PDP consisting of a routing and a packing procedure. The
routing procedure modifies a well-known large neighborhood search for the 1D-PDP. A tree search
heuristic is responsible for packing boxes. Computational experiments were carried out using 54 newly
proposed 3L-PDP benchmark instances.

Key words: Transportation, vehicle routing, pickup and delivery, 3D loading constraints.

1 Introduction
Routing vehicles and loading them with goods represent two major challenges in transportation logis-
tics. Routing and loading problems have to be tackled as integrated problems if companies are inter-
ested in optimizing both the routing of vehicles and the corresponding loading of goods.
Gendreau et al. (2006) first formulated and solved an integrated routing and loading problem, namely
the capacitated vehicle routing problem (CVRP) with three-dimensional (3D) loading constraints
(3L-CVRP). Contrasting to the classical CVRP, customer demands are represented as sets of parallel
epipeds (called boxes) and the scalar capacity of a vehicle is replaced by a 3D rectangular loading
space. This essential modification allows for a more detailed modeling of mixed cargo transportation
by vehicles. Several packing constraints, e.g. concerning stacking of goods, can only be considered if
customer demands are viewed as sets of 3D items. To ensure that calculated routes can actually be
implemented, a 3D modeling of cargo and loading spaces is indispensable (see Bortfeldt and
Homberger, 2013). Thus it seems to be desirable to model and solve further types of vehicle routing
problems (VRPs) as integrated routing and 3D loading problems (3L-VRP).

This task is tackled here for the classical Pickup and Delivery Problem (PDP). In the classical
PDP, we are given a set of transportation requests that have to be served by a fleet of homogeneous
vehicles with a uniform 1D capacity. Each request is characterized by a 1D demand that has to be
transported from a specific loading site (pickup point) to a specific unloading site (delivery point).
Since we have a single pickup point and single delivery point per request, the classical PDP belongs to
the one-to-one VRPs with pickup and delivery. A set of routes, each starting and ending at the single
depot, has to be constructed in such a way that (i) each request is served at only one route and its load-
ing site is visited before its unloading site; (ii) the capacity of a used vehicle is never exceeded by the
set of loaded goods; (iii) the length of each route does not exceed a given limit; (iv) the number of
routes does not exceed the given number of vehicles, and (v) the transportation cost, given by the total
travel distance, is minimized.

To extend the classical PDP to an integrated routing and 3D loading problem, called hereafter PDP
with three-dimensional loading constraints (3L-PDP), the demands are taken as sets of 3D rectangular
items and the vehicles are equipped by a 3D rectangular loading space. As usual for the 3L-CVRP, we
want to have a problem formulation that rules out any reloading effort. That is, the boxes should not be
moved after loading and before unloading. In the 3L-CVRP this is guaranteed by the so-called Last-In-
First-Out (LIFO) condition. It turns out that this constraint is not sufficient to eliminate any reloading
effort for the 3L-PDP. Therefore, additional constraints are introduced for this purpose. This leads to a
spectrum of 3L-PDP variants that are afterwards defined more formally.

A hybrid algorithm for solving the 3L-PDP is proposed that is composed of the modified large
neighborhood search (LNS) algorithm by Ropke and Pisinger (2006) for the 1D-PDP and the tree

2

search (TRS) algorithm for packing boxes by Bortfeldt (2012). The hybrid algorithm is tested by
means of 54 newly introduced 3L-PDP benchmark instances with up to 100 requests.

The rest of the paper is organized as follows: Section 2 reviews the relevant literature. In Section 3
crucial features of the 3L-PDP are discussed and some variants of the 3L-PDP are formulated. Section
4 describes the hybrid algorithm, while in Section 5 numerical results of experiments are presented
and analyzed. Conclusions are drawn and an outlook at further research is given in Section 6.

2 Related work
In our literature review, we will focus on recent work on the classical PDP with paired pickup and
delivery points and on VRP with 3D loading constraints (3L-VRP). We refer the reader to Toth and
Vigo (2014) for a comprehensive survey on vehicle routing.

2.1 Solution methods for the classical PDP

In pickup and delivery problems, goods or passengers are transported between customers or institu-
tions. Following the classification schema by Parragh et al. (2008) the classical PDP is characterized
by paired pickup and delivery points, i.e. each pickup point is generally associated with a special de-
livery point and vice versa. Moreover, the PDP deals with the transportation of goods; hence, no spe-
cial constraints and objectives are involved concerning the (in)convenience of passengers as in
dial-a-ride problems. A further distinction can be made with regard to the number of available vehicles
and we will consider only the multi vehicle case, while the single vehicle case, representing an imme-
diate extension of the Traveling Salesman Problem (TSP), is not considered here.

Mathematical models of the classical PDP or PDP with time windows (PDPTW) can be found, e.g.
in Parragh et al. (2008) and in Toth and Vigo (2014). Recently published solution methods are sur-
veyed in Berbeglia et al. (2007), Parragh et al. (2008) and Gendreau et al. (2008). The PDP is
NP-hard, as it generalizes the TSP. Therefore, mainly classical heuristics and metaheuristics were pro-
posed for solving the PDP. A representative sample of recent heuristics is listed in Table 1. For further
details of the algorithms, the reader is referred to the references; some comments can be found in
Parragh et al. (2008) and in Toth and Vigo (2014). For an introduction in metaheuristic approaches we
refer to Gendreau and Potvin (2010).

Table 1: Sample of heuristics for the classical PDP.
Reference Type of heuristic
Nanry and Barnes (2000) Reactive tabu search
Li and Lim (2001) Tabu embedded simulated annealing
Lim et al. (2002) Squeeky wheel optimization
Pankratz (2005) Grouping genetic algorithm
Lu and Dessouky (2006) Construction heuristic
Bent and van Hentenryck (2006) Hybrid algorithm: simulated annealing, large neighborhood search
Ropke and Pisinger (2006) Adaptive large neighborhood search
Derigs and Döhmer (2008) Indirect local search with greedy decoding
Nagata and Kobayashi (2010) Guided ejection search

All solution methods listed in Table 1 are specified for the PDPTW, i.e. time windows are always
considered. However, service times are only taken into account by Nanri and Barnes (2000), Li and
Lim (2001) and by Ropke and Pisinger (2006). Almost all methods minimize the routing cost (total
travel distance) and several methods do also minimize the number of routes. The multi depot case is
only handled by Ropke and Pisinger (2006). Almost all methods of Table 1 assume that the vehicle
fleet is homogeneous. The case of heterogeneous vehicles is dealt with by Xu et al. (2003) and by
Ropke and Pisinger (2006). Most of the solution methods listed in Table 1 are evaluated by means of
the benchmark instances proposed by Li and Lim (2001). Outstanding results especially for larger
instances were achieved through the neighborhood search methods by Bent and van Hentenryck
(2006) and by Ropke and Pisinger (2006), while the method of Li and Lim (2001) proved to be very
successful for smaller instances.

An exact branch and cut algorithm for the PDPTW was proposed by Ropke et al. (2007), while
Ropke and Cordeau (2009) specified a branch and cut and price algorithm. Baldacci et al. (2011) re-

3

cently presented an exact algorithm based on a set-partitioning-like integer formulation. These exact
PDPTW algorithms are capable of solving PDPTW instances with up to 500 requests; nevertheless,
the numerical results reveal that heuristic approaches remain indispensable for large PDP instances.

2.2 Solution methods for vehicle routing problems with 3D loading constraints

Iori and Martello (2010, 2013) and Pollaris et al. (2015) survey the state of the art in the field of inte-
grated vehicle routing and loading problems. Generally, the literature is still limited and this applies in
particular to VRP with 3D loading constraints.

The 3L-CVRP was introduced by Gendreau et al. (2006) with five additional packing constraints
frequently occurring in freight transportation. These include a last-in-first-out (LIFO) loading con-
straint, a weight constraint, an orientation constraint, a support constraint, and a stacking constraint
(see Section 2 for details). Gendreau et al. suggest a two-stage tabu search algorithm for solving the
3L-CVRP. The “outer” tabu search serves for planning the routes, while the “inner” tabu search solves
a 3D strip packing problem in order to load a vehicle according to a given customer sequence. Taran-
tilis et al. (2009) propose a hybrid procedure combining the strategies tabu search and guided local
search. They use a collection of plain packing heuristics. Fuellerer et al. (2010) develop an ant colony
algorithm for routing that is integrated with fast but effective packing heuristics. Wang et al. (2010)
design a two-phase tabu search algorithm for routing that cooperates with two constructive packing
heuristics. This hybrid algorithm was further developed by Zhu et al. (2012). Wisniewski et al. (2011)
propose a tabu search for routing and a randomized bottom left-based packing algorithm. Bortfeldt
(2012) suggests a hybrid algorithm for the 3L-CVRP with a tabu search procedure for routing and a
tree search algorithm for loading vehicles. Ruan et al. (2013) present a honey bee mating algorithm for
routing that is combined with six loading heuristics. Lacomme et al. (2013) propose an effective hy-
brid procedure for the 3L-CVRP that, however, does not consider all 3D packing constraints intro-
duced by Gendreau et al. (2006). Finally, Tao and Wang (2015) developed a tabu search procedure and
hybridized it with an effective packing algorithm.

Moura and Oliveira (2009) specify the VRP with time windows and 3D loading constraints
(3L-VRPTW) with two objectives and present two heuristic procedures for this problem. The number
of vehicles is minimized with higher priority, whereas the total travel distance is minimized with lower
priority. The authors do not consider the weight and the stacking constraint of the 3L-CVRP, while the
other packing constraints (see above) are adopted. Another hybrid algorithm for solving the
3L-VRPTW was recently suggested by Bortfeldt and Homberger (2013). It consists of an evolutionary
strategy and two tabu search procedures. Zachariadis et al. (2012) consider a 3L-VRP with time win-
dows where boxes are stacked on pallets, which in turn are loaded in vehicles.

Two hybrid algorithms for the 3L-VRP with backhauls were proposed by Bortfeldt et al. (2015).
Both algorithms include a neighbourhood search algorithm for routing and a tree search algorithm for
packing boxes.

The PDP with 3D loading constraints was up to now only tackled by Bartók and Imreh (2011).
They specify a local search heuristic for solving a PDP variant that, however, does neglect the LIFO
constraint and does not take into account other reasons for reloading effort (see Section 3.1). The 2L-
PDP was covered by Malapert et al. (2008). They developed a constraint programming approach for
the loading aspects of the problem but did not report numerical results. Ultimately, several basic types
of 3L-VRP are not yet satisfactorily treated. This applies in particular for the 3L-PDP.

3 The 3L-PDP and some of its variants
Before giving a more formal definition of the 3L-PDP, we will discuss and illustrate crucial points of
this problem.

3.1 Crucial features of the 3L-PDP
As in the classical PDP, a number of requests have to be transported from a pickup point to a delivery
point by means of homogeneous vehicles. However, in the 3L-PDP, the demands consist of sets of
boxes and they are sent in 3D loading spaces of the vehicles.

We assume that all vehicles are rear-loaded, i.e. the goods are loaded and unloaded at the rear
exclusively by movements in length direction of the vehicle (cf. Figure 3). Lifting boxes or moving
them in width direction is not permitted in the loading or unloading operation.

4

At the same time, we want to avoid any reloading effort, that is any temporary or permanent repo-
sitioning and rotating of boxes after loading and before unloading. There are different practical reasons
to forbid reloading of goods during a pickup and delivery tour. Absence of manpower, tight working
time, lack of equipment and shortage of space at customer sites are some of them. Moreover, the goods
might be extra heavy, fragile or even hazardous.

Thus, the question arises, which conditions a pickup and delivery tour and the corresponding
packing of boxes must observe to rule out any reloading effort.

The first condition is the request sequence (RS) constraint at delivery points that is well-known as
last-in-first-out (LIFO) constraint from other integrated routing and loading problems, for example the
3L-CVRP. At a delivery point the RS constraint requires that between a box A to be unloaded and the
rear of the vehicle no box B is situated that needs to be unloaded later. Likewise a box B to be unload-
ed later must not lie above box A. Otherwise box B has to be reloaded before box A can be unloaded
by a pure movement in length direction.

As also pickup points occur in a pickup and delivery tour, we must have also a RS constraint to
exclude reloading of goods at loading sites. At a pickup point the RS constraint requires that between
the position of a box A just loaded and the rear of the vehicle or above box A no box B is situated that
was loaded at an earlier pickup point. Again, otherwise a reloading of box B would be inevitable.

It is an essential feature of 3L-PDP that the RS constraint (for unloading and loading sites) is not
sufficient to rule out any reloading effort. To understand this fact, we consider a simple 3L-PDP
instance and a corresponding solution with one route and appropriate packing plans (see Figure 1).

Figure 1: A 3L-PDP instance with a feasible solution (view from above).

It is evident that the route and the appropriate packing plans represent a feasible solution for the

Instance data:
(1) one vehicle with loading space length L = 10, width W = 4, height H = 1
(2) three requests

R1: from point P1 to point D1, boxes (length l � width w � height h): I11=2x4x1 , I12=2x4x1
R2: from point P2 to point D2, boxes: I21=5x3x1
R3: from point P3 to point D3, boxes: I31=7x2x1

5

3L-PDP instance given in Figure 1. In particular, the RS constraint in both variants is observed. Never-
theless, we have to state some reloading effort since box I12 of request 1 is rotated at the pickup point
of request 3. Moreover, the given route could not be implemented if this reloading operation would not
be done. Obviously, it is impossible to find two packing plans for the pickup points P2 and P3 such
that the boxes of request 1 are located at the same positions in both plans. That is, the boxes of request
1 have to be reloaded at P3 as otherwise the boxes of requests 1 and 3 could not be stowed together.

It is a specific attribute of the 3L-PDP that in a route boxes of a request A are generally transported
and packed for a part of the route together with boxes of a request B and for another part of the route
together with boxes of a request C (and not with the boxes of B) etc. In the above example the boxes
of request 1 are transported first together with the boxes of request 2 and afterwards together with the
boxes of request 3.

If packing plans are generated for the different partial routes in which the boxes of request A are
“on board”, these boxes will generally occupy different places. To exclude a change of placements
without fail, i.e. to rule out a reloading effort, we have to introduce a new constraint, the reloading
ban: The placement of any box (including the position of a reference corner and the spatial orientation
of the box) must not be changed after the box was loaded and before the box is unloaded.

All in all, we can state that reloading effort for the 3L-PDP can only be avoided unerringly if the
RS constraint (for unloading and loading sites) and the reloading ban (as above defined) are required
at the same time.

However, to meet the reloading ban, we have to find routes for a 3L-PDP instance where each
route is completed by a series of interrelated packing plans. In the above example, two interrelated
plans are necessary: the first one must contain placements of boxes of requests 1 and 2, the second one
must include placements of the boxes of requests 1 and 3. To meet the reloading ban, the placement of
boxes of request 1 must be the same in the first and the second plan (making the plans interrelated).
The specification of a packing procedure that is able to determine interrelated packing plans for greater
routes in short running times presents a fairly difficult task. Therefore, we first look for a simplified
3L-PDP variant that allows us to avoid specifying a packing algorithm for interrelated packing plans.

Instead, we are going to eliminate any reloading effort within a route by means of routing patterns
that ensure that the boxes of any request must not be stored together with the boxes of different re-
quests in different partial routes.

The idea of a routing pattern for the 3L-PDP is quite simple. It consists of a series of sub-patterns.
Each sub-pattern is a sequence of m (m ≥ 1) pickup points followed by the corresponding delivery
points in inverse order. In Figure 2 two routing patterns and two routes that do not correspond to a
routing pattern are shown.

Routing pattern with sub-patterns with maximal two requests:
 0 � P1 � P2 � D2 � D1 � P3 � P4 � D4 � D3 � 0

Routing pattern with sub-patterns with maximal three requests:
 0 � P1 � P2 � P3 � D3 � D2 � D1 � P4 � P5 � D5 � D4 � 0

Route that does not follow a routing pattern:
 0 � P1 � P2 � D2 � P3 � D3 � D1 � 0

Route that does not follow a routing pattern:
 0 � P1 � P2 � D1 � D2 � 0

Legend: 0: Depot, Pi / Di: pickup / delivery point of request i, i = 1,...,5, �: sub-pattern before is finished
 Figure 2: Examples of routing patterns and routes that not correspond to routing patterns.

If a route follows a routing pattern, the loading space will become empty again each time after a
sub-pattern is finished. Hence, the packing plans that are needed for subsequent sub-patterns (or partial
routes) are independent of each other. The boxes of a request have to be stowed together only with
boxes of requests of the same sub-pattern. Thus, only one packing plan per request is needed and there
is no need to reload the boxes of any request.

If all routes of a solution of a 3L-PDP instance follow a routing pattern in the above sense, we will
say that the independent partial routes (IPR) constraint holds.

We are now ready to specify a spectrum of five 3L-PDP variants (see Table 2). We always require
the RS constraint at loading sites. The 3L-PDP variants are defined by means of the RS constraint for

6

unloading sites, the reloading ban and the independent partial route constraint. For each variant and
each constraint the entry is "y", if the constraint is required and "n" if not. In case the IPR condition
and the RS constraint at loading sites is required, RS constraint at unloading sites and reloading ban
are automatically satisfied (see Section 4.3); this is marked by entry "a". Provided none of the three
defining constraints must be met, a high reloading effort is to be expected and the total travel distance
will be very low. In case only the RS constraint at unloading sites holds the reloading effort will be
medium while the total travel distance will be low. The same applies if only the reloading ban is re-
quired while the RS constraint is not to be observed. For the other variants the reloading effort is zero
and the total travel distance is relatively large. Provided the reloading effort is ruled out by the inde-
pendent partial route condition the total travel distance is higher as this constraint restricts the solution
space stronger than the reloading ban.

 Table 2: Five 3L-PDP variants (y: yes, n: no, a: automatically).

RS
loading

RS
unloading

Reloading
ban

Independent
partial routes

Reloading
effort

Travel
distance

1 y n n n high very low
2 y y n n medium low
3 y n y n medium low
4 y y y n zero medium
5 y a a y zero high

As stressed above we will focus on the 3L-PDP without any reloading. Nevertheless, the first three
3L-PDP variants are also of interest. A comparison should consider not only the saving of total travel
distance in variants 1 to 3 but also show the reloading effort of the first three variants. However, in this
paper we will only consider the elimination of reloading effort by means of the independent partial
routes condition (i.e. variants 3 and 4 are not considered here).

Further routing and packing constraints are taken into account. As in the 1D-PDP, we limit the
number of routes by a given number of vehicles vmax (assuming that each vehicle performs only one
route). Also the route length is limited explicitly since the capacity of vehicles does not force a limited
route length in a pickup and delivery mode. As usual for 3L-VRP we extend the problem formulation
by some packing constraints introduced by Gendreau et al. (2006), namely a weight constraint, an
orientation constraint, a support constraint and a fragility constraint. This procedure is beneficial since
it facilitates numerical comparisons with other 3L-VRPs. All six aforementioned constraints are in-
cluded in all problem variants listed in Table 2.

3.2 Problem definition
Now we specify the 3L-PDP more formally. We are given n requests each consisting of a loading site i,
an unloading site n+i and a set Ii of goods that are to be transported from i to n+i (i = 1,…,n). There are
vmax identical vehicles, originally located at the single depot (denoted by 0), with a rectangular loading
space with length L, width W and height H. Let V = {0,1,…,n,n+1,…,2n} be the set of all nodes, i.e.
loading and unloading sites including the depot. Let E be a set of undirected edges (i,j) that connect all
node pairs (0 ≤ i, j ≤ 2n, i ≠ j) and let G = (V, E) be the resulting graph. Let travel costs cij (cij ≥ 0) be
assigned to each edge (i,j) and let the travel costs be symmetric, i.e. cij = cji (0 ≤ i, j ≤ 2n,
i ≠ j). Set Ii includes mi rectangular pieces (boxes) Iik and box Iik has the length lik, the width wik and the
height hik (i = 1,…,n, k = 1,…,mi).

The loading space of each vehicle is embedded in the first octant of a Cartesian coordinate system

in such a way that the length, width and height of the loading space lie parallel to the x, y, and z axes.

The placement of box Iik in a loading space is given by the coordinates xik, yik, and zik of the corner of

the box closest to the origin of the coordinates system; in addition, an orientation index oik indicates

which of the possible spatial orientations is selected (i = 1,...,n, k = 1,...,mi). A spatial orientation of a

box is given by a one-to-one mapping of the three box dimensions and the three coordinate directions.

A packing plan P for a loading space comprises one or more placements and is regarded as feasible

if the following three conditions hold: (FP1) each placed box lies completely within the loading space;

(FP2) any two boxes that are placed in the same truck loading space do not overlap; (FP3) each placed

box lies parallel to the surface areas of the loading space. Figure 3 shows a loading space with placed

boxes. Each vehicle is loaded and unloaded at the rear and empty at the beginning of a route.

7

 Figure 3: A loading space with placed boxes.

A feasible route R is a sequence of 2p+2 nodes (p ≥ 1) that starts and ends at the depot. R should
include the loading and unloading sites of p different (among the n given) requests and each loading
site must precede the unloading site of the same request. A solution of the 3L-PDP is a set of v
sequences (Rl, Pl,1,…,Pl,2pl), where Rl is a route and Pl,q is a packing plan (l = 1,…,v, q = 1,…,2pl, pl
denotes the number of requests of route l).

Pl,q represents the packing pattern of route l after having visited its (q+1)th node, i.e. after some
boxes were loaded or unloaded at the (q+1)th node of route l. To be feasible, a solution must fulfil the
following three conditions: (F1) all routes Rl and packing plans Pl,q are feasible (l = 1,…,v, q =
1,…,2pl); (F2) the loading site and the unloading site of each request occurs once in one route Rl
(l = 1,…,v); (F3) the packing plan Pl,q for a route Rl and its (q+1)th node contains exactly placements
for those boxes which are to be loaded but not (yet) to be unloaded at the first q+1 nodes of the route.

In addition, the following routing and packing constraints are to be satisfied optionally:
(C1) Request sequence constraint (RS constraint): A packed box b of a certain request is said to be in

unloading position if there is no packed box b’ of another request between b and the rear of the
vehicle or above box b (cf. Figure 3). Loading requirement (C1-l): If the (q+1)th node of route l
is a loading site, then all boxes to be loaded there must be in unloading position in the packing
plan Pl,q, i.e. after loading (l = 1,…,v, q = 1,…,2pl). Unloading requirement (C1-u): If the (q+1)th
node is an unloading site, then all boxes to be unloaded there must be in unloading position in the
packing plan Pl,q-1, i.e. before unloading (l = 1,…,v, q = 1,…,2pl). This constraint ensures that all
boxes of a given request can be loaded or unloaded exclusively by movements parallel to the lon-
gitudinal axis of the loading space of a vehicle and without moving boxes of other requests.

(C2) Reloading ban: Each box Iik of request i must not be moved after loading and before unloading
(i = 1,…,n, k = 1,...,mi). If the box Iik is loaded at the (q+1)th node and unloaded at the (q’+1)th
node of route l, its placement (xik, yik,, zik, oik) must be the same in the packing plans Pl,q,
Pl,q+1,…,Pl,q’-1 (i = 1,…,n, k = 1,...,mi, l =1,…,v, 1 ≤ q < q’ ≤ 2pl).

(C3) Independent partial routes constraint: Each route Rl follows a routing pattern, i.e. it consists of
one or more sub-patterns (l = 1,…,v). A sub-pattern consists of a series of one or more loading
sites (pickup points) followed by the corresponding unloading sites (delivery points) in inverse
order.

(C4) Weight constraint: Each box Iik has a positive weight dik (i = 1,...,n, k = 1,...,mi) and the total
weight of all boxes in a packing plan Pl,q must not exceed a maximum load weight D (l = 1,...,v,
q = 1,…,2pl).

(C5) Orientation constraint: The height dimension of all boxes is fixed, while horizontal 90° turns of
boxes are allowed. Thus only two of six values are allowed for the orientation index oik of a
placement (i = 1,...,n, k = 1,...,mi).

(C6) Support constraint: If a box is not placed on the floor, a certain percentage a of its base area has
to be supported by other boxes.

(C7) Stacking constraint: A fragility attribute fik (i = 1,...,n, k = 1,...,mi) is assigned to each box. If a
box is fragile (fik = 1), only other fragile boxes may be placed on its top surface, whereas both

8

fragile and non-fragile boxes may be stacked on a non-fragile box (fik = 0).
(C8) Route length constraint: The total distance of a route must not exceed a specified maximum dmax.

This constraint can also be understood as a route duration constraint if the vehicle velocity is set
to a constant.

(C9) Route number constraint: The number of routes v must not exceed the number of vehicles vmax.
Finally, the 3L-PDP consists of determining a feasible solution that meets some of the constraints

(C1) - (C9) and minimizes the total travel distance of all routes. More precisely, we consider the vari-
ants of 3L-PDP as specified in Table 1 (see above) and require constraints (C1) to (C3) in accordance
to Table 1. The other constraints (C4) to (C9) are stipulated for each of the five variants of the 3L-PDP.

Figure 4 illustrates a simple 3L-PDP instance and the routes of a possible solution (while edges
that do not belong to these routes are not shown.)

 Figure 4: 3L-PDP instance with routes of a solution (legend see Fig. 2).

4 A hybrid algorithm for the 3L-PDP
In the sequel, we describe a hybrid algorithm for the 3L-PDP consisting of two separate procedures for
routing and packing. The routing procedure is derived from the adaptive LNS heuristic for solving the
PDPTW by Ropke and Pisinger (2006). Boxes are loaded into vehicles by the tree search 3D packing
algorithm by Bortfeldt (2012). In the following description, emphasis is laid on the integration of
routing and packing.

4.1 Routing procedure

The routing procedure is roughly outlined in Figure 5. First, an initial solution is constructed. After-
wards, an iterative neighborhood search is carried out until a time limit is exceeded. Within each itera-
tion, a number ξ of requests to be removed and reinserted in the solution is selected randomly. Several
removal and insertion heuristics are available. Among them, one removal and one insertion heuristic
are selected randomly per iteration. The next solution is generated by the selected heuristics Rh and Ih
according to snext := Ih(Rh(scurr, ξ)). If snext is accepted in a dedicated test, it becomes the new current
solution scurr and the best solution sbest is updated if necessary. Otherwise, the initial solution of the next
iteration scurr remains unchanged.

9

3l_pdp_lns (in: problem data, parameters, out: best solution sbest)
 construct initial solution scurr and set sbest := scurr
 while stopping criterion is not met do
 select number of requests to be removed ξ
 select removal heuristic Rh and insertion heuristic Ih
 determine next solution: snext := Ih(Rh(scurr, ξ))
 check acceptance of snext

 if snext is accepted then
 scurr := snext
 if (f(scurr) < f(sbest)) then sbest := scurr endif
 endif
 endwhile
end.

Figure 5: LNS-based routing algorithm for the 3L-PDP.

The acceptance test follows the well-known simulated annealing rule and according to this, the
search is embedded in an annealing process with a geometric cooling schedule. Differently to the orig-
inal adaptive LNS, the selection probabilities for the removal and insertion heuristics are fix; i.e. a
pure LNS is performed. Moreover, no noise term is applied to the objective function.

Since the number of vehicles is limited, it may happen that the initial solution or a later generated
solution is incomplete, i.e. some requests are missing. To cope with this situation, the concept of a
virtual request bank is used as in the original ALNS heuristic. The objective function is specified as
the sum f(s) = ttd(s) + M.nmc(s), where s is a given solution, ttd stands for its total travel distance, nmc
is the number of missing requests and M is a sufficiently large constant. By this definition, solutions
with less missing requests are always preferred.

The removal and insertion heuristics are basically adopted from the original ALNS heuristic and
briefly summarized in Table 3. Within the Shaw removal, the relatedness of requests is expressed by
means of two factors, namely the locations of their pickup and delivery sites and the weights of their
item sets. Hence, the relatedness of the two requests i and j is calculated by the blended index r(i,j) =
wr1(c'ij + c'i+n,j+n) + wr2|v'i – v'j|, 1 ≤ i < j ≤ n, where c'ij, c'i+n,j+n and v'i lie in the interval [0,1];
c'ij (c'i+n,j+n) denotes the normalized distance between the pickup points i and j (the delivery points i+n
and j+n); v'i denotes the normalized weight of request i. The weights wrp (p = 1, 2) allow for a different
weighting of the distances and weights difference.

The Tour removal has been added in order to drive the search into regions where feasible solutions
with less tours can be found. Although the minimization of the number of tours is not an explicit goal,
this procedure can be helpful to identify high-quality solutions in terms of total travel distance.

Table 3: Removal and insertion heuristics of the LNS heuristic for 3L-PDP.
Heuristic Description

Random removal RhR Removes iteratively requests that are selected at random.
Shaw removal RhS Removes iteratively requests that are related in terms of location and weight.

Worst removal RhW Removes iteratively a request whose removal leads to the largest cost (total travel distance)
reduction.

Tour removal RhT Removes all requests from a randomly chosen route. If less than ξ requests are removed
in this way, further requests will be removed with Shaw removal.

Greedy insertion IhG Inserts iteratively requests into the solution such that the increase of the cost function is minimal.
Regret-2 insertion IhR2 Inserts iteratively requests into the solution such that the gap in the cost function between

inserting the request into its best and its second best route is maximal.
Regret-3 insertion IhR3 Inserts iteratively requests into the solution such that the sum of two gaps in the cost function is

maximal. The first gap results from inserting the request into its best and its second best route,
while the second gap results from inserting the request into its best and its third best route.

The insertion heuristics are based on insertion moves and the concept of insertion cost. An insertion
move is specified by four parameters: i denotes the inserted request (1 ≤ i ≤ n), k indicates the route in
which i is inserted (1 ≤ k ≤ v), �� and � are the positions where the loading and unloading site
of request i are inserted into route k (1≤ β ≤ 2p(k)+1, 2 ≤ � ≤ 2p(k)+2, β < ε); p(k) is the number of

requests that currently belong to route k. The insertion cost �f(i,k,�,�) of an insertion move stands for
the increase of the objective function value if the move is implemented. Only those insertion moves
are admitted that do not violate the weight constraint (C4) and the route length constraint (C8). For a

10

given request and a route k, having currently p(k) requests, at most (2p(k)+1)(2p(k)+2)/2 feasible com-
binations for the index pair (β, ε) are available. Figure 6 shows two variants of inserting a request into

an existing route.

 Figure 6: Insertion of a request into a route (bold lines: added edges, dotted lines: removed edges).

For the insertion variant (β,ε) = (2,6) (on the right) the insertion cost Δf(i,k,β,ε) results by adding

together the distances P1�P3, P3�P2, D2�D3 and D3�0 and subtracting then P1�P2 und D2�0.

The insertion cost of a request i into a route k is specified as ,
i. e. Δf(i,k) is given by the cheapest insertion move of request i into route k. The insertion heuristics

perform generally n iterations. The Greedy insertion IhG selects in each iteration the (request, route)-

pair (i0, k0) for insertion which minimizes the insertion cost ().

The Regret-2 insertion IhR2 heuristic selects per iteration the request i0 that maximizes the regret

value k1 and k2 (k1 ≠ k2) are those routes in which request i can

be inserted with smallest and second smallest insertion cost (

), respectively. Finally, we mention that the regret value for the Regret-3 insertion

IhR3 is calculated according .

The initial solution is constructed by means of the Regret-2 insertion heuristic starting with an
empty solution.

4.2 Integration of routing and packing

To provide feasible packing plans for routes of solutions 3D packing checks are performed that are
integrated in two parts of the routing procedure.

Let a new solution (snext) be generated from an old one (scurr) by means of a removal heuristic Rh
and a insertion heuristic Ih according to snext := Ih(Rh(scurr, ξ)) and consider a route of scurr. If Rh and Ih

are applied to the route two cases can occur. In general, some requests (i.e. pairs of a pickup and deliv-

ery point) of the route are removed and some new requests are reinserted. It might also occur that only

old requests are removed from the route without inserting new ones. In the former case, it will suffice

to integrate packing checks in the insertion heuristic that is applied after the removal heuristic. In the

latter case, it will be mostly possible to store the boxes of the remaining requests at all remaining sites

of a route in a feasible way, too. Therefore, packing checks are integrated in the insertion heuristics

exclusively (and not in removal heuristics) and these checks are called insertion packing checks.

However, sometimes the boxes of a given set can be stored in the loading space of a route in a fea-

11

sible way, while this is no longer the case after some of the boxes were removed. Such a situation may

occur, e.g. if a box that is needed to provide sufficient support for another fragile box was removed. To

cope with these cases, packing checks will also be applied to all routes of a solution snext within the

acceptance test of snext (see Figure 5) and these checks are called acceptance packing checks. Especial-

ly all routes that did result earlier by a pure removing of requests are checked. If there is at least one
site for which no feasible packing plan can be provided, the solution snext will be discarded and the
search continues with the last accepted solution. By this measure it is prevented that an accepted solu-
tion ever includes an infeasible route in terms of packing.

Subsequently, the integration of insertion packing checks is shown by means of the Greedy inser-
tion heuristic.

In Figure 7 the Greedy insertion heuristic is shown in detail. It is based on the procedure
select_best_insertions that performs the packing checks and is shown in Figure 8. The Greedy inser-
tion heuristic takes an incomplete solution, a set of missing requests and the best solution so far as
input values. In each loop cycle the best (minimum cost) insertion is determined, related to the re-
quests still missing and implemented before the set of missing requests is updated. The procedure
select_best_insertions is used to deliver the best insertion for a given request. In each cycle the number
of still missing requests nmrwi for which no feasible insertion was found at all is counted.

greedy_insertion (in: set of missing requests Rm, sbest, inout: solution s)
 repeat

 min_cost := 	
 nmrwi := 0 // no. missing requests without insertion
 for all rq
 Rm do

 Ibest(rq) := select_best_insertions(s,rq,1) // set Ibest(rq) receives best rq-insertion
 if |Ibest(rq)| = 0 then nmrwi := nmrwi + 1 // request without insertion

 else
 if cost of best rq-insertion < min_cost then
 rqins := rq; min_cost := cost of best rq-insertion endif

 endif
 endfor

 if nmrwi > nmr(sbest) then return endif // no useful solution
 if nmrwi <|Rm| then update s by insertion in Ibest(rqins); Rm := Rm \ {rqins} endif

 until (|Rm| = 0 or nmrwi =|Rm|)
end.

Figure 7: Greedy insertion heuristic.

If in any cycle nmrwi is greater than the number of missing requests nmr(sbest) in the best solution
found so far, then a further computation is useless and the heuristic will return.

Otherwise, a solution is provided in the end that has no more missing requests than the best solu-
tion so far or is even a feasible and complete solution.

The procedure select_best_insertions is organized in two parts. In the first part (for-loop) all poten-
tial insertions of a given request rq into any route of a given solution s are provided. Each insertion
must be feasible (only) in terms of route length (C8), route number (C9) and weight (C4). In case of
the 3L-PDP variants 2 or 5 the RS unloading constraint (C1-u) or the IPR constraint (C3) are checked
here, too (to be explained later). The minimum cost insertions of all routes are collected in a list Icand.

In the second part (while-loop), the insertions of Icand are examined by ascending costs. In each
cycle the currently minimum cost insertion insbest undergoes a 3D packing check, i.e. the insertion
insbest is applied to its route and the route is then checked in terms of the constraints (C1-l) and (C5) to
(C7). If the outcome is positive, insertion insbest is included into the set of best insertions Ibest (and re-
moved in Icand). Otherwise the next cheapest insertion for the route of insbest (if any) will replace insbest
in list Icand. The procedure returns if Ibest has enough (nins) insertions or if Icand is empty. Any two inser-
tions in Ibest belong to different routes.

Two features of the procedure select_best_insertions should be stressed. First, one-dimensional
checks are made before 3D packing checks are carried out. Second, all possible insertions are first
evaluated and sorted by cost before the "expensive" packing checks are made. By this technique,
called "evaluating first, packing second", the packing effort is kept low since the packing checks can
be aborted each time after few (3D-)feasible insertions have been detected.

12

 The procedure select_best_insertions is also used for the Regret-2 and Regret-3 insertion heuris-
tics. In every cycle these heuristics retrieve the best two (three) insertions from select_best_insertions
for all requests currently not contained in the (incomplete) solution to calculate the requests regret
values. For each request, these two (three) insertions must belong to different routes. Finally in each
cycle the request with maximal regret value is inserted into the solution, i.e. these requests' best inser-
tion is implemented. For more details about the Regret-2 and Regret-3 insertion heuristic see Bortfeldt
et al. (2015).

Our implementation of the LNS routing procedure can also be applied to the (1D) PDP. In this
situation, the 3D packing test is omitted and only the route length (C8), route number (C9), and weight
constraint (C4) are checked.

select_best_insertions (in: solution s, request rq, no. of required insertions nins,
 out: set of best rq-insertions Ibest)

 Ibest := Ø; list of insertion candidates Icand := Ø
for all routes r of solution s do

 Iroute(r) := set of all 1D-feasible insertions of rq in route r
 sort Iroute(r) by ascending cost
 if |Iroute(r)| > 0 then Icand := Icand � {Iroute(r)(1)} endif // add first insertion of Iroute(r)
 endfor
 while |Ibest| < nins and |Icand| > 0 do
 sort Icand by ascending cost
 best insertion insbest := Icand(1); Icand := Icand \ {insbest}

 perform 3D packing check of insertion insbest,i.e. of the resulting route
 if 3D packing check of insbest successful then
 Ibest := Ibest � {insbest} // next best insertion found
 else r := route of insbest
 Iroute(r) := Iroute(r) \ {insbest} // remove insbest

 if |Iroute(r)| > 0 then Icand := Icand � {Iroute(r)(1)} endif // add (new) first insertion
 endif

 endwhile
end.

Figure 8: Procedure select_best_insertions with packing check.

4.3 Packing checks

The insertion packing checks and the acceptance packing checks are now explained in detail.
Basically, for each route of a solution and each site visited in this route a feasible packing plan has

to be provided. The plan must stow all boxes that are already loaded and not yet unloaded after the
visit of this site. Now we ask whether existing feasible packing plans for selected sites of a route
guarantee the existence of feasible packing plans for other sites. It turns out that this is the case at least
if additional assumptions hold that are based on the required constraints of the 3L-PDP variants dealt
with in this paper, i.e. the variants 1, 2 and 5 (see Table 2). By using these additional assumptions we
want to reduce the effort spent for packing checks. We first deal with the 3L-PDP variants 2 and 5 and
afterwards with variant 1.

We define a sequence of open pickup points (SOPP) as a sequence of pickup points within a route
of a 3L-PDP solution having following characteristics: (i) the last point of the sequence is followed by
a delivery point in the route; (ii) the sequence contains all and only pickup points of the route whose
delivery points lie behind the last sequence point.

Let m2 (m2 ≥ 1) be the number of consecutive pickup points lying at the end of the SOPP. Let m1
(m1 ≥ 0) be the number of pickup points that are separated from the last m2 pickup points by at least
one delivery point. Then the sequence can be denoted as Pi, i = 1,…,m1, m1+1,…,m1+m2 (i.e. Pm1+m2 is
the last point).

We say that a packing plan for pickup point Pm1+m2 of a SOPP satisfies the cumulative request se-
quence constraint for loading sites (CRS-l) if the following conditions hold: (i) there are no boxes of a
request j (loaded at pickup point Pj) between a box of request i and the rear of the vehicle; (ii) there are
no boxes of request j above a box of request i (i, j = 1,…,m1+m2, j < i).

13

Proposition 1: Let a feasible plan for pickup point Pm1+m2 of a SOPP exist that meets the con-
straints (C1-l) and (C5) to (C7) and observes the CRS-l constraint. Then feasible packing plans ob-
serving constraints (C1-l) and (C5) to (C7) do also exist for pickup points Pi (i = m1+1,…,m1+m2-1).

Proof: Clearly, a packing plan for a pickup point that observes the CRS-l constraint also meets the
RS constraint for loading sites (C1-l). If the boxes of the last request m1+m2 are removed, a packing
plan for pickup point Pm1+m2-1 results that also meets the CRS-l constraint, hence the (C1-l) constraint.
The plan for Pm1+m2-1 also satisfies support constraint (C6), as no boxes were removed that could serve
for supporting boxes of requests 1 to m1+m2-1 (condition (ii) in CRS-l constraint definition). Con-
straints (C5) and (C7) as well as feasibility conditions (FP1) to (FP3) are trivially met in the plan for
Pm1+m2-1 because they hold in the plan for Pm1+m2. For the pickup points Pi (i = m1+1,…,m1+m2-1),
packing plans can be derived in a similar manner.

Now we introduce a further constraint with regard to routing called inverse delivery points se-
quence (IDPS) constraint. A route meets the IDPS constraint if the following condition holds: given
any two requests i and j that are transported together at least between two consecutive points of a
route; if the pickup point Pi lies before Pj, then the delivery point Di lies behind Dj (i,j = 1,…,n, i < j).

Proposition 2: Let a route be given that observes the IDPS constraint and a SOPP within the route.
Let a packing plan for the (last) pickup point Pm1+m2 exist that is feasible, meets the constraints (C1-l)
and (C5) to (C7) and satisfies the CRS-l constraint. Then feasible packing plans observing the con-
straints (C1-u) and (C5) to (C7) do also exist for the consecutive delivery points following pickup
point Pm1+m2.

Proof: The points following Pm1+m2 must be the delivery points Dm1+m2, Dm1+m2-1,…, Dm1+m2- m3
(0 ≤ m3 ≤ m2) in this order since another set and another order of delivery points would contradict the
IPDS constraint. The boxes of request m1+m2 are already in unloading position if the vehicle arrives in
Dm1+m2. After these boxes were unloaded the boxes of request m1+m2-1 are in unloading position due to
the CRS-l constraint, i.e. constraint (C1-u) is met in the plan for Dm1+m2. Constraints (C5) to (C7) and
feasibility conditions (FP1) to (FP3) are verified for the plan for delivery point Dm1+m2 as in proof of
Property 1. Feasible packing plans for further consecutive delivery points can be derived similarly.

The above considerations show that for 3L-PDP variants 2 and 5 it is sufficient to construct feasi-
ble packing plans for the last pickup points of all SOPPs of a given route. Feasible packing plans that
observe the RS constraint (C1-l or C1-u) and constraints (C5) to (C7) can in this case be derived for all
other pickup points and all delivery points of this route.

However, this claim holds only if two conditions are fulfilled. On the one hand, the constructed
packing plans for the last pickup points of SOPPs must observe the CRS-l constraint being stronger
than the (C1-l) constraint. On the other hand, the IDPS constraint for routes must be required. This
constraint is included in the independent partial routes constraint (see Section 3.1); hence it holds au-
tomatically in problem variant 5. In problem variant 2 the IDPS constraint is substituted for the RS
constraint for unloading sites (C1-u). This is possible as the RS constraint for loading sites (C1-l) and
the IDPS constraint result in packing plans for delivery points that meet constraint (C1-u) as shown in
Property 2 (this way also the entry “a” in line 5 and column “RS unloading” in Table 2 is justified).

Acceptance packing checks for problem variants 2 and 5 are carried out exactly as described be-
fore. An insertion packing check is performed each time another request is inserted into a route (see
Section 3.2). Packing plans are then to be provided only for those last pickup points of SOPPs that lie
between the inserted pickup point and the inserted corresponding delivery point since for the other
parts of the route feasible packing plans are provided with the unmodified route of the former solution.

The procedure of packing checks for a route in 3L-PDP variants 2 and 5 is illustrated by two
examples in Figure 9. In the first example (variant 2), boxes of some requests, e.g. 1, are loaded in
multiple packing plans with possibly different placements. In the second example (variant 5) each
request is stowed only one time due to the IPR constraint. Hence, there is no reloading effort at all.

In the 3L-PDP variant 1, the RS constraint for loading sites (C1-l) has to be observed. Hence,
packing checks for pickup points are carried out as in problem variants 2 and 5. However, the RS con-
straint for unloading sites (C1-u) and a fortiori the stronger IDPS constraint no longer holds. There-
fore, packing plans for delivery points can no longer be derived generally from packing plans for pre-
vious pickup points and their existence is no longer guaranteed.

14

Example for problem variant 2:
Given route
 0 � P1 � P2 � D2 � P3 � P4 � P5 � D5 � D4 � P6 � D6 � D3 � D1 � 0

Sequence of open Packing plan incl. CRS-l constraint Derived packing plans
 pickup points to be provided for site result for sites

1. P1 � P2 P2 P1, D2
2. P1 � P3 � P4 � P5 P5 P3, P4, D5, D6
3. P1 � P3 � P6 P6 D6, D3, D1

Example for problem variant 5:
Given route
 0 � P1 � P2 � D2 � D1 � P3 � P4 � P5 � D5 � D4 � D3 � P6 � D6 � 0

Sequence of open Packing plan incl. CRS-l constraint Derived packing plans
 pickup points to be provided for site result for sites

1. P1 � P2 P2 P1, D2, D1
2. P3 � P4 � P5 P5 P3, P4, D5, D4, D3
3. P6 P6 D6

Legend: 0: Depot, Pi / Di: pickup / delivery point of request i, i = 1,...,6.
 Figure 9: Packing checks in 3L-PDP variants 2 and 5.

Instead, feasible packing plans for all delivery sites of a given route must be provided separately.
This is done in the following way:
(1) If a vehicle arrives at a delivery site, all boxes of the corresponding request, say A, are to be un-
loaded. Since the RS constraint (C1-u) is not required, some boxes of requests B, C, etc. may stand in
the way of the A-boxes. All requests which were loaded after request A and are not already unloaded at
the current delivery site are called blocking requests. For simplification it is assumed that all boxes of
all blocking requests are to be temporarily unloaded.
(2) It can occur that there are no blocking requests at all, i.e. request A is the last in the loading se-
quence of requests. In this case the packing plan for the current delivery site results from the plan for
the former site simply by removing the A-boxes. The resulting plan is feasible and observes the con-
straints (C5) to (C7) if the former plan has these characteristics (see Prop. 2).
(3) Otherwise a new feasible packing plan must be built for the current delivery site. The plan must
contain placements for the loaded and not yet unloaded boxes (i.e. no longer placements of A-boxes).
(4) In particular, the requests that are temporarily to be unloaded must be considered for the new pack-
ing plan. We specify two policies for doing this. In the first policy (resulting in subvariant 1A), the
original loading order of all requests is maintained. In the second policy (subvariant 1B), the original
loading order is modified as the order of the temporarily unloaded requests is now chosen inverse to
the order of corresponding delivery points. Clearly, the second loading order should result in less re-
loading effort at the following delivery sites.
(5) For the specified loading order, the packing heuristic generates a packing plan (if possible) in such
a way that constraints (C5) to (C7) and the CRS-l constraint for the given loading order is fulfilled.
(6) For the requests that have to be temporarily unloaded, a reloading effort is to be calculated in any
case. For the boxes of other requests, the placements in the packing plan for the current delivery site
are compared with the placements in the packing plan of the previous site. Only for boxes with
changed placements a reloading effort is calculated (including reloading effort for their blocking re-
quests if necessary).
(7) Similar differences concerning the scope of checks exist between acceptance packing checks and
insertion packing checks as in problem variants 2 and 5 (see above).
(8) The structure of input data of a packing check for a pickup point and for a delivery point is the
same. In any case, the loading order of the relevant requests is needed as well as the box set per re-
quest.

15

Packing checks for problem variant 1 are illustrated by an example in Figure 10 that considers
only delivery sites.

Example for problem variant 1:
Given route
 0 � P1 � P2 � D1 � P3 � P4 � P5 � D3 � D4 � D5 � D2 � 0

Delivery New packing plan Relevant Assumed Loading
 site to be provided requests blocking order
 requests

1. D1 yes 2 2 2
2. D3 yes 2,4,5 4,5 2 � 4 � 5 (1A)
 2 � 5 � 4 (1B)
3. D4 yes (1A) 2,5 5 2 � 5

 no (1B)
4. D5 no
5. D2 no

Legend: 0: Depot, i: request no., Pi / Di: pickup / delivery point of request i, i = 1,...,5.
 Figure 10: Packing checks for delivery sites in 3L-PDP variant 1.

4.4 Packing procedure

For a given loading sequence of requests and the corresponding sets of boxes, the packing procedure
tries to determine a complete solution, i.e. a packing plan stowing all given boxes. The generated
packing plan is feasible and observes the constraints (C5) to (C7) as well as the CRS-l constraint (in-
cluding the (C1-l) constraint). A depth first search is carried out by means of the recursive procedure
add_placement shown in Figure 11. A stowage plan currentSolution is transferred and then extended in
different variants by one further box placement for each procedure call.

As the search is started, the solution currentSolution is set empty, the set freeBoxes is filled by all
boxes (incl. data concerning loading sequence) and the list potentialPlacements is filled by all feasible
box placements in the lower left front corner of the loading space L�W�H (cf. Figure 3).

The procedure add_placement checks first whether the current packing check can be aborted. This
is done, i.e. all running instances of procedure add_placement are aborted, if currentSolution is a com-
plete solution or if the number of calls of add_placement exceeds a given limit maxApCalls. The cur-
rent instance of the procedure is aborted if there is at least one free box without a potential placement,
i.e. if a complete solution can no longer be achieved.

Candidates for the next placement are selected from the list potentialPlacements and provided in
the list currentPlacements. All these placements are then tried alternatively. For each placement, the
current solution, the set of free boxes, and the list of potential placements are updated accordingly
before procedure add_placement is called again. To update the list potentialPlacements, all potential
placements that can no longer be implemented are removed. Additional potential reference points for
new potential placements are determined as extreme points (see Crainic et al., 2008).

add_placement (in: freeBoxes, potentialPlacements, inout: currentSolution)
if all boxes stowed in currentSolution or number of procedure calls > maxApCalls then

abort packing check endif
// abort current instance
if there is at least one free box without placement in potentialPlacements then return endif
provide list currentPlacements with potential placements that are currently to be tried
for i := 1 to |currentPlacements| do
 currentSolution’ := currentSolution � { currentPlacements(i) } // add placement to solution
 freeBoxes’ := freeBoxes \ { currentPlacements(i).box } // update free boxes
 potentialPlacements’ := update(potentialPlacements) // update potential placements
 add_placement (currentSolution’, freeBoxes’, potentialPlacements’) // recursive call
endfor
end.

Figure 11: Packing procedure add_placement.

16

The selection of placements currently to be tried among all potential placements is governed by
two rules. On the one hand, it is ensured that a vehicle is loaded from the front to the back, from bot-
tom to top with lower priority, and from left to right with lowest priority. Hence, placements with
smaller x-coordinates of the reference corner are preferred, etc. On the other hand, the selection is
made taking into account the CRS-l constraint. Placements of boxes are preferred that belong to earlier
loaded requests and, therefore, have to be stowed nearer to the cabin. The placement selection is con-
trolled by the integer parameters maxBoxRankDiff and maxRefPoints where higher parameter values
lead to a larger set of currently tried placements.

All loading sequences of requests that have ever been checked are collected in a cache to further
accelerate the search. Whenever a sequence is tested, it is first searched in the cache. To speed up this
search, for each request a separate table is established keeping the positions of all stored sequences
including this request. Thus, a request sequence is searched by examining only the cache positions of
its first request. The packing algorithm is only called if the sequence was not found in the cache and
the sequence is then inserted in the cache together with the result of the packing test. Multiple checks
of same request sequences are avoided by this procedure.

5 Computational experiments
The computational experiments are organized in two parts. In the first part we examine the 1D variant
of the hybrid algorithm (denoted by 1D-LNS) using the well-known PDP instances by Li and Lim
(2001) with up to 100 requests. In the second part we test mainly the 3D variant of the algorithm by
means of 54 new 3L-PDP instances with up to 100 requests and up to 300 boxes.

The packing procedure is coded in the C++ programming language using Visual Studio 2012 Ex-
press, while the LNS scheme is implemented using the Java programming language under Eclipse
3.5.2. Preliminary experiments (in which total run times were varied) demonstrated that the impact of
the different developing environments is negligible. All the experiments have been conducted on a PC
with Intel Core i5-2500K (4.5 GHz, 16 GB RAM).

Afterwards, the new benchmark instances are introduced and the parameter setting is specified be-
fore the computational results are presented and analyzed.

5.1 Benchmark instances for 3L-PDP

To provide a sufficiently large set of 3L-PDP benchmark instances with different characteristics we
generate the instances as follows:
� 30 instances with 50 requests, 18 instances with 75 and 6 instances with 100 requests are provided.

The average number of boxes per request is two for half and three for the other half of the instances.
� Regarding the distribution of pickup and delivery sites of the requests, we distinguish the three vari-

ants "Random", "Mixed cluster" and "Pure cluster". In variant "Random" the sites are uniformly dis-
tributed in a rectangular section of the plane, while they are clustered in the other variants. In variant
"Mixed cluster" individual clusters may contain pickup as well as delivery sites, while only sites of
one sort can occur in an individual cluster of variant "Pure clusters". For each instance size, the same
number of instances belongs to each distribution variant.

� Loading spaces and boxes are generated similarly to Gendreau et al. (2006). The dimensions of the
uniform loading spaces of the vehicles are chosen as L = 60, W = 25 and H = 30 length units. The
lengths lik, widths wik and heights hik of the boxes are drawn randomly from the intervals
[0.2∙L, 0.6∙L], [0.2∙W, 0.6∙W] and [0.2∙H, 0.6∙H], respectively (i = 1,...,n, k = 1,...,mi). A box is
characterized as fragile with the probability 0.25. The percentage a for the minimal supporting area
was specified as 0.75.

� The weight capacity of the loading spaces was set to 45,000 weight units (being also the value of
volume). The proportion of weight and volume is chosen three to one for the boxes of one third of
the requests of an instance while for the boxes of the residual requests identical values are chosen for
weights and volumes. Hereby the weight constraint (C4) does not become redundant.

� The maximal number of admitted vehicles vmax per instance is determined such that the algorithm
can relatively easily find a feasible solution for problem variant 5. Since we expect shorter
travel distances for the other problem variants, it should be possible to find feasible solutions for the
other problem variants which respect the determined value of vmax, too.

17

The 54 new 3L-PDP instances are overviewed in Table 4; the figures in columns 2
8 are instance
numbers. The instances will be provided at the website http://www.mansci.ovgu.de.

Table 4: Overview of the 54 new 3L-PDP benchmark instances.
Number

of
requests

2 Boxes per request on average 3 Boxes per request on average Total

Random Mixed
cluster

Pure
cluster

Random Mixed
cluster

Pure
cluster

50 5 5 5 5 5 5 30
75 3 3 3 3 3 3 18

100 1 1 1 1 1 1 6

5.2 Parameter setting

The parameter setting for the experiments is specified in Table 5 and 6. The same parameterization of
the routing procedures is used for all problem variants. All parameter values were determined based on
limited computational experiments using a trial and error strategy.

Table 5: Parameter setting for the LNS routing procedure.
Parameter Description Value

rmin lower bound of no. of removed customers 0.04·n
rmax upper bound of no. of removed customers 0.4·n
w start temperature control parameter 0.005
c rate of geometrical cooling 0.9999

p(RhR), p(RhS)
p(RhW), p(RhT)

probability of Random / Shaw removal
 probability of Worst / Tour removal

0.3, 0.4
0.1, 0.2

p(IhG), p(IhR2), p(IhR3) probability of Greedy / Regret-2 / Regret-3 insert 0.1, 0.6, 0.3
wr1, wr2 weights of relatedness formula for Shaw removal 9, 2

Table 6: Parameter setting for packing procedure.
Parameter Description Value

maxApCalls Max. no. of calls of procedure add_placement 3000
maxBoxRankDiff Max. tolerated rank difference of boxes 2

maxRefPoints Max. number of admitted reference points 3

In Table 7 the maximum run time per instance and single run is shown. The computing time de-
pends on the number of requests and the average box number per request. Lower time limits are speci-
fied if the new PDP instances are tested by 1D-LNS, i.e. as 1D-PDP instances.

Table 7: Computing time in minutes for experiments with new (3L-)PDP instances
Number of

requests
1D-test

(no packing)
2 Boxes per

request on avg.
3 Boxes per

request on avg.
50 1 2 5
75 2 4 10

100 4 8 20

For the 1D-LNS test by means of the instances by Li and Lim (2001) with 50 (100) requests, we allow
a computing time of two (five) minutes.

5.3 Computational results for the one-dimensional PDP(TW)

The PDP instances by Li and Lim (2001) are actually PDPTW instances, i.e. the requests have time
windows. To perform a comparison with other algorithms using the Li and Lim instances, we had to
extend our hybrid algorithm to make it capable of taking time windows into account. Furthermore,
most of the existing PDPTW solution procedures do minimize primarily the number of used vehicles
(or routes) and the total travel distance is only the second objective criterion. We did adapt our hybrid
algorithm also in this regard.

We tested 1D-LNS using the Li and Lim instances with 50 and 100 requests (100 and 200 custom-
ers, respectively) and compared the results of 1D-LNS with those of Ropke and Pisinger (2006) and
the best known solutions. These were taken from the website Sintef (2015) and from Koning (2011).

18

Tables 8 and 9 present the best solutions achieved by 1D-LNS and by Ropke and Pisinger (2006)
as well as the best known solutions as indicated in the above sources (nv is the number of used vehi-
cles, ttd is the total travel distance). Best values are in bold; new best solutions are marked by an aster-
isk (*).

Table 8: Best solutions for Li-Lim-100 instances (50 requests)
Instance 1D-LNS Ropke and Pisinger

(2006)
Best known

solution
 nv ttd nv ttd nv ttd

LC101 10 828.94 10 828.94 10 828.94
LC102 10 828.94 10 828.94 10 828.94
LC103 9 1035.35 9 1035.35 9 1035.35
LC104 9 860.01 9 860.01 9 860.01
LC105 10 828.94 10 828.94 10 828.94
LC106 10 828.94 10 828.94 10 828.94
LC107 10 828.94 10 828.94 10 828.94
LC108 10 826.44 10 826.44 10 826.44
LC109 9 1000.60 9 1000.60 9 1000.60
LC201 3 591.56 3 591.56 3 591.56
LC202 3 591.56 3 591.56 3 591.56
LC203 3 591.17 3 591.17 3 585.56
LC204 3 590.60 3 590.60 3 590.60
LC205 3 588.88 3 588.88 3 588.88
LC206 3 588.49 3 588.49 3 588.49
LC207 3 588.29 3 588.29 3 588.29
LC208 3 588.32 3 588.32 3 588.32
LR101 19 1650.80 19 1650.80 19 1650.80
LR102 17 1487.57 17 1487.57 17 1487.57
LR103 13 1292.68 13 1292.68 13 1292.68
LR104 9 1013.39 9 1013.39 9 1013.39
LR105 14 1377.11 14 1377.11 14 1377.11
LR106 12 1252.62 12 1252.62 12 1252.62
LR107 10 1111.31 10 1111.31 10 1111.31
LR108 9 968.97 9 968.97 9 968.97
LR109 11 1208.97 11 1208.96 11 1208.96
LR110 10 1159.35 10 1159.35 10 1159.35
LR111 10 1108.90 10 1108.90 10 1108.90
LR112 9 1003.77 9 1003.77 9 1003.77
LR201 4 1253.23 4 1253.23 4 1253.23
LR202 3 1197.67 3 1197.67 3 1197.67
LR203 3 949.40 3 949.40 3 949.40
LR204 2 849.05 2 849.05 2 849.05
LR205 3 1054.02 3 1054.02 3 1054.02
LR206 3 931.63 3 931.63 3 931.63
LR207 2 903.06 2 903.06 2 903.06
LR208 2 734.85 2 734.85 2 734.85
LR209 3 930.59 3 930.59 3 930.59
LR210 3 964.22 3 964.22 3 964.22
LR211 2 911.52 2 911.52 2 911.52
LRC101 14 1708.80 14 1708.80 14 1708.80
LRC102 12 1558.07 12 1558.07 12 1558.07
LRC103 11 1258.74 11 1258.74 11 1258.74
LRC104 10 1128.40 10 1128.40 10 1128.40
LRC105 13 1637.62 13 1637.62 13 1637.62
LRC106 11 1424.73 11 1424.73 11 1424.73
xLRC107 11 1230.15 11 1230.14 11 1230.14
LC101 10 828.94 10 828.94 10 828.94
LC102 10 828.94 10 828.94 10 828.94
LC103 9 1035.35 9 1035.35 9 1035.35
LC104 9 860.01 9 860.01 9 860.01
LC105 10 828.94 10 828.94 10 828.94
LC106 10 828.94 10 828.94 10 828.94
LC107 10 828.94 10 828.94 10 828.94
LC108 10 826.44 10 826.44 10 826.44
LC109 9 1000.60 9 1000.60 9 1000.60

For 55 of 56 Li-Lim-100 instances 1D-LNS finds the best known solution and reaches exactly the
same results as ALNS by Ropke and Pisinger (2006) for all 56 instances. For the Li-Lim-200 instances
1D-LNS performs slightly worse than ALNS. Both algorithms achieve the minimal known number of
vehicles for 59 of 60 instances. The average gap of the total travel distance amounts to 0.24 % for 1D-

19

LNS and to 0.09 % for ALNS.
For a single instance, the gap is determined as (ttd-best − ttd-best-known) / ttd-best-known (in %)

where ttd-best is the best reached travel distance (over ten runs) and ttd-best-known is the best known
travel distance for the given instance. Moreover, 1D-LNS achieves new best solutions for ten instanc-
es. Here we have to make the restrictive remark that we only claim to achieve (old or new) best solu-
tions with regard to the above mentioned references.

Table 9: Best solution for Li-Lim-200 instances (100 requests)
Instance 1D-LNS Ropke and Pisinger

(2006)
Best known

solution
 nvt ttd nv ttd nv ttd

LC1_2_1 20 2704.57 20 2704.57 20 2704.57
LC1_2_2 19 2764.56 19 2764.56 19 2764.56
LC1_2_3 17 3127.78* 17 3128.61 17 3128.61
LC1_2_4 17 2693.41 17 2693.41 17 2693.41
LC1_2_5 20 2702.05 20 2702.05 20 2702.05
LC1_2_6 20 2701.04 20 2701.04 20 2701.04
LC1_2_7 20 2701.04 20 2701.04 20 2701.04
LC1_2_8 20 2689.83 20 2689.83 20 2689.83
LC1_2_9 18 2724.24 18 2724.24 18 2724.24
LC1_2_10 17 2942.13* 17 2943.49 17 2943.49
LC2_2_1 6 1931.44 6 1931.44 6 1931.44
LC2_2_2 6 1881.40 6 1881.40 6 1881.40
LC2_2_3 6 1844.33 6 1844.33 6 1844.33
LC2_2_4 6 1767.82 6 1767.12 6 1767.12
LC2_2_5 6 1891.21 6 1891.21 6 1891.21
LC2_2_6 6 1857.78 6 1857.78 6 1857.78
LC2_2_7 6 1850.13 6 1850.13 6 1850.13
LC2_2_8 6 1824.34 6 1824.34 6 1824.34
LC2_2_9 6 1854.21 6 1854.21 6 1854.21
LC2_2_10 6 1817.45 6 1817.45 6 1817.45
LR1_2_1 20 4819.12 20 4819.12 20 4819.12
LR1_2_2 17 4621.21 17 4621.21 17 4621.21
LR1_2_3 15 3612.64 15 3612.64 15 3612.64
LR1_2_4 10 3031.20* 10 3037.38 10 3037.38
LR1_2_5 16 4760.18 16 4760.18 16 4760.18
LR1_2_6 14 4175.16 14 4178.24 14 4175.16
LR1_2_7 12 3543.56* 12 3550.61 12 3550.61
LR1_2_8 9 2791.67 9 2784.53 9 2784.53
LR1_2_9 14 4343.86* 14 4354.66 14 4354.66
LR1_2_10 11 3695.84* 11 3714.16 11 3714.16
LR2_2_1 5 4073.10 5 4073.10 5 4073.10
LR2_2_2 4 3796.81 4 3796.00 4 3796.00
LR2_2_3 4 3098.36 4 3098.36 4 3098.36
LR2_2_4 3 2500.04 3 2486.14 3 2486.14
LR2_2_5 4 3438.39 4 3438.39 4 3438.39
LR2_2_6 4 3201.54 4 3201.54 4 3201.54
LR2_2_7 3 3152.52 3 3135.05 3 3135.05
LR2_2_8 2 2582.35 2 2555.40 2 2555.40
LR2_2_9 3 4054.50 3 3930.49 3 3930.49
LR2_2_10 3 3286.95* 3 3344.08 3 3323.37
LRC1_2_1 19 3606.06 19 3606.06 19 3606.06
LRC1_2_2 15 3681.07 15 3674.80 15 3671.02
LRC1_2_3 13 3154.92* 13 3178.17 13 3161.75
LRC1_2_4 10 2631.82 10 2631.82 10 2631.82
LRC1_2_5 16 3715.81 16 3715.81 16 3715.81
LRC1_2_6 17 3368.66 17 3368.66 16 3572.16
LRC1_2_7 14 3738.47 14 3668.39 14 3668.39
LRC1_2_8 13 3167.23 13 3174.55 13 3146.70
LRC1_2_9 13 3303.18 13 3226.72 13 3157.34
LRC1_2_10 12 2951.90 12 2951.29 12 2951.29
LRC2_2_1 6 3632.37 6 3605.40 6 3595.18
LRC2_2_2 5 3182.62* 5 3327.18 5 3327.18
LRC2_2_3 4 2914.82* 4 2938.28 4 2938.28
LRC2_2_4 3 3038.16 3 2887.97 3 2887.97
LRC2_2_5 5 2777.23 5 2776.93 5 2776.93
LRC2_2_6 5 2707.96 5 2707.96 5 2707.96
LRC2_2_7 4 3067.91 4 3056.09 4 3044.40
LRC2_2_8 4 2401.17 4 2399.95 4 2399.95
LRC2_2_9 4 2208.72 4 2208.49 4 2208.49
LRC2_2_10 3 2600.41 3 2550.56 3 2550.56

20

As the results indicate, our LNS implementation reaches nearly the solution quality of the best
available methods for the PDPTW. In particular, a high solution quality was achieved although the
LNS has been rather simplified compared to the original procedure by Ropke and Pisinger (2006).

5.4 Computational results for the 3L-PDP

The detailed results for the 3L-PDP instances regarding total travel distance (ttd) are presented in
Table 10. In the leftmost column the instance names are listed. The next column shows the total travel
distances for the 1D test for which only the weight constraint (C4), and the routing constraints (C8)
and (C9) are considered. In the following eight columns the total travel distances and the gaps are
indicated for the 3L-PDP variants 1A, 1B, 2 and 5 (see Table 2). All presented total travel distances are
mean values over five runs. The corresponding gaps are calculated as (ttd
 ttd-1D)/ttd-1D*100 (%).
In the last line of Table 10 the gap values of the 3L-PDP variants are averaged over the 54 instances.

Summarizing the results, we can state that the travel distances increase significantly if the 3L-PDP
instances are solved instead of the corresponding 1D-PDP instances. For the problem variants 1A and
1B, the total travel distances grow on average by 11.31% and by 11.66%, respectively, compared to
the 1D case. For the problem variants 2 and 5, the mean increase is even higher and amounts to 20.94
and 25.25%, respectively.

In Table 11 the reloading effort for the 3L-PDP variants 1A, 1B and 2 is indicated. Since the
reloading effort is zero for problem variant 5, this variant does not occur in Table 11 (cf. Table 2).

The reloading effort needed for a 3L-PDP instance is primarily given as reloading quantity, i.e. as
the weight of all boxes that are reloaded. If a box is reloaded, say, three times the weight of the box is
counted three times. Thus it may occur that the reloading quantity exceeds the total weight of the
boxes.

Table 11 is organized as follows. The first column includes the instance names and the
second column shows the total weight of all requests per instance (cargo weight). In the following six
columns the reloading quantities for the relevant 3L-PDP variants are given as absolute values (in
weight units) and as percentages of the cargo weight. The results per instance are, again, averaged over
five runs. In the last line of Table 11 the percentaged reloading quantities are averaged over the 54
instances.

The reloading quantity of problem variant 2, caused by the missing reloading ban, is only
moderate and amounts to 15.82% of the cargo weight on average. For problem variants 1A and 1B the
mean reloading quantity is much higher (101.23% and 89.83%, respectively), since not only the re-
loading ban is missing but the RS constraint (C1-u) for unloading sites is not required, either. The dif-
ference of 11.40%-points between the subvariants of problem variant 1 is also plausible, since in
subvariant 1B the reloading quantity is partially saved by a better loading order of the temporarily
unloaded requests.

Table 12 summarizes the results regarding total travel distance and reloading effort. For each
3L-PDP variant, the total travel distance is here given as percentage of the travel distance in the
1D-case while the reloading quantities are again indicated as percentages of the cargo weight. All pre-
sented values are averaged over the five runs per instance and over the 54 3L-PDP instances.

The results clearly show that a 3D modeling of pickup and delivery problems leads to a significant
increase of the travel distances in the 3D case and is, therefore, generally more realistic. The indicated
figures for the 3L-PDP variants correspond very well with the expected differences between those
variants regarding travel distances and reloading effort as shown in Table 2. The main result is the
clear tradeoff between travel distances and reloading effort indicating that a saving of travel distance
has to be "paid" with an additional portion of reloading effort.

21

Table 10: Results (travel distances) for different variants of 3L-PDP

Instance 1D-Test Variant 1A Variant 1B Variant 2 Variant 5
ttd ttd gap (%) ttd gap (%) ttd gap (%) ttd gap (%)

50_RAND_2_1 1362.26 1455.02 6.81 1454.24 6.75 1625.45 19.32 1739.10 27.66
50_RAND_2_2 1181.42 1314.65 11.28 1318.04 11.56 1505.18 27.40 1586.44 34.28
50_RAND_2_3 1234.98 1332.90 7.93 1334.59 8.07 1569.91 27.12 1666.28 34.92
50_RAND_2_4 1246.39 1366.41 9.63 1367.16 9.69 1538.08 23.40 1585.81 27.23
50_RAND_2_5 1276.39 1333.79 4.50 1354.64 6.13 1540.72 20.71 1594.02 24.88
50_CLUS_2_1 888.14 987.54 11.19 979.58 10.30 1055.68 18.86 1121.46 26.27
50_CLUS_2_2 852.82 931.02 9.17 927.90 8.80 1036.49 21.54 1109.68 30.12
50_CLUS_2_3 921.30 989.54 7.41 1011.51 9.79 1100.10 19.41 1151.12 24.94
50_CLUS_2_4 1031.28 1121.43 8.74 1117.70 8.38 1218.93 18.20 1275.24 23.66
50_CLUS_2_5 1132.02 1237.05 9.28 1231.75 8.81 1306.87 15.45 1379.22 21.84
50_CPCD_2_1 1102.82 1267.67 14.95 1259.81 14.24 1305.88 18.41 1378.32 24.98
50_CPCD_2_2 1039.63 1186.62 14.14 1168.05 12.35 1242.83 19.54 1260.34 21.23
50_CPCD_2_3 996.64 1135.87 13.97 1140.37 14.42 1196.29 20.03 1234.57 23.87
50_CPCD_2_4 1128.00 1257.23 11.46 1254.35 11.20 1307.38 15.90 1332.65 18.14
50_CPCD_2_5 1237.93 1370.15 10.68 1391.59 12.41 1430.77 15.58 1460.59 17.99
50_RAND_3_1 1359.03 1460.43 7.46 1467.18 7.96 1618.03 19.06 1715.25 26.21
50_RAND_3_2 1184.75 1306.15 10.25 1326.86 11.99 1463.17 23.50 1581.58 33.49
50_RAND_3_3 1251.30 1340.69 7.14 1345.13 7.50 1566.62 25.20 1661.71 32.80
50_RAND_3_4 1266.16 1347.32 6.41 1381.39 9.10 1532.35 21.02 1564.35 23.55
50_RAND_3_5 1281.81 1359.31 6.05 1357.90 5.94 1534.21 19.69 1588.92 23.96
50_CLUS_3_1 889.57 967.53 8.76 983.86 10.60 1007.47 13.25 1050.41 18.08
50_CLUS_3_2 854.41 920.50 7.74 924.67 8.22 1029.19 20.46 1099.70 28.71
50_CLUS_3_3 926.75 989.50 6.77 997.03 7.58 1081.18 16.66 1123.87 21.27
50_CLUS_3_4 1026.55 1103.63 7.51 1091.72 6.35 1204.17 17.30 1252.35 22.00
50_CLUS_3_5 1137.96 1240.91 9.05 1228.89 7.99 1286.80 13.08 1323.39 16.29
50_CPCD_3_1 1097.01 1307.50 19.19 1298.45 18.36 1322.84 20.59 1342.60 22.39
50_CPCD_3_2 1048.17 1204.86 14.95 1222.38 16.62 1239.50 18.25 1245.59 18.83
50_CPCD_3_3 998.97 1149.57 15.08 1140.22 14.14 1211.05 21.23 1252.47 25.38
50_CPCD_3_4 1135.69 1284.56 13.11 1283.16 12.99 1304.17 14.84 1313.58 15.66
50_CPCD_3_5 1237.80 1378.63 11.38 1403.03 13.35 1429.27 15.47 1450.47 17.18
75_RAND_2_1 1701.32 1867.59 9.77 1876.01 10.27 2053.82 20.72 2118.13 24.50
75_RAND_2_2 1562.31 1762.19 12.79 1762.22 12.80 2053.95 31.47 2130.80 36.39
75_RAND_2_3 1653.16 1793.10 8.46 1839.14 11.25 2106.54 27.42 2188.07 32.36
75_CLUS_2_1 1180.71 1315.88 11.45 1315.95 11.45 1390.50 17.77 1469.57 24.46
75_CLUS_2_2 1136.71 1277.16 12.36 1252.09 10.15 1378.23 21.25 1425.73 25.43
75_CLUS_2_3 1163.14 1343.67 15.52 1342.37 15.41 1440.17 23.82 1495.71 28.59
75_CPCD_2_1 1803.87 1995.94 10.65 2012.83 11.58 2177.45 20.71 2237.26 24.03
75_CPCD_2_2 1792.68 2021.17 12.75 2033.39 13.43 2188.77 22.10 2226.24 24.19
75_CPCD_2_3 1879.48 2106.77 12.09 2141.70 13.95 2233.85 18.85 2283.54 21.50
75_RAND_3_1 1698.67 1896.49 11.65 1867.50 9.94 2055.42 21.00 2146.59 26.37
75_RAND_3_2 1562.97 1727.39 10.52 1745.46 11.68 1968.19 25.93 2081.42 33.17
75_RAND_3_3 1654.16 1789.52 8.18 1785.70 7.95 2068.74 25.06 2146.31 29.75
75_CLUS_3_1 1178.62 1321.44 12.12 1323.61 12.30 1417.24 20.25 1455.55 23.50
75_CLUS_3_2 1138.91 1255.64 10.25 1288.53 13.14 1398.08 22.76 1436.75 26.15
75_CLUS_3_3 1173.96 1312.10 11.77 1324.54 12.83 1427.25 21.58 1474.84 25.63
75_CPCD_3_1 1815.60 2058.79 13.39 2114.13 16.44 2173.03 19.69 2253.30 24.11
75_CPCD_3_2 1810.81 2094.31 15.66 2070.63 14.35 2196.79 21.32 2195.44 21.24
75_CPCD_3_3 1883.97 2152.68 14.26 2158.56 14.58 2224.86 18.09 2257.27 19.81
100_RAND_2_1 3086.28 3523.49 14.17 3530.66 14.40 4020.81 30.28 4070.19 31.88
100_CLUS_2_1 3176.76 3683.07 15.94 3687.00 16.06 4027.97 26.80 4193.50 32.01
100_CPCD_2_1 3541.89 4174.77 17.87 4212.94 18.95 4331.93 22.31 4320.29 21.98
100_RAND_3_1 3110.14 3536.58 13.71 3535.65 13.68 3976.68 27.86 4040.47 29.91
100_CLUS_3_1 3206.88 3686.48 14.96 3714.63 15.83 3986.07 24.30 4155.06 29.57
100_CPCD_3_1 3579.25 4250.80 18.76 4142.83 15.75 4256.80 18.93 4258.44 18.98
Average gap 11.31 11.66 20.94 25.25

22

Table 11: Results (reloading quantities) for different variants of 3L-PDP

 Cargo Variant 1A Variant 1B Variant 2
Instance weight reloading quantity reloading quantity reloading quantity
 absolute in % absolute in % absolute in %
50_RAND_2_1 610544 575886 94.32 496600 81.34 130697 21.41
50_RAND_2_2 578322 669087 115.69 535546 92.60 133158 23.02
50_RAND_2_3 530415 662901 124.98 612078 115.40 129989 24.51
50_RAND_2_4 652932 566122 86.70 519652 79.59 59762 9.15
50_RAND_2_5 698040 569765 81.62 523570 75.01 146195 20.94
50_CLUS_2_1 610544 520392 85.23 507746 83.16 90256 14.78
50_CLUS_2_2 578322 565259 97.74 527001 91.13 234478 40.54
50_CLUS_2_3 530415 638657 120.41 530535 100.02 130968 24.69
50_CLUS_2_4 652932 630986 96.64 576149 88.24 138649 21.23
50_CLUS_2_5 698040 431940 61.88 422388 60.51 94053 13.47
50_CPCD_2_1 610544 545360 89.32 436470 71.49 41543 6.80
50_CPCD_2_2 578322 590201 102.05 465529 80.50 42577 7.36
50_CPCD_2_3 530415 480357 90.56 416155 78.46 44567 8.40
50_CPCD_2_4 652932 421828 64.61 419679 64.28 42886 6.57
50_CPCD_2_5 698040 413780 59.28 364143 52.17 26928 3.86
50_RAND_3_1 611295 495706 81.09 458559 75.01 89826 14.69
50_RAND_3_2 579037 578519 99.91 509699 88.03 152272 26.30
50_RAND_3_3 531236 681992 128.38 566385 106.62 156420 29.44
50_RAND_3_4 654049 558242 85.35 538405 82.32 40394 6.18
50_RAND_3_5 699080 515608 73.76 487154 69.68 37135 5.31
50_CLUS_3_1 611295 536957 87.84 495350 81.03 156768 25.65
50_CLUS_3_2 579037 588426 101.62 529809 91.50 105480 18.22
50_CLUS_3_3 531236 571454 107.57 565991 106.54 114692 21.59
50_CLUS_3_4 654049 597921 91.42 550284 84.14 110039 16.82
50_CLUS_3_5 699080 574424 82.17 484857 69.36 67788 9.70
50_CPCD_3_1 611295 548726 89.76 452438 74.01 27095 4.43
50_CPCD_3_2 579037 530539 91.62 489940 84.61 46584 8.05
50_CPCD_3_3 531236 486764 91.63 403069 75.87 57034 10.74
50_CPCD_3_4 654049 428243 65.48 367992 56.26 57190 8.74
50_CPCD_3_5 699080 419695 60.04 388517 55.58 55635 7.96
75_RAND_2_1 772435 953854 123.49 764635 98.99 117721 15.24
75_RAND_2_2 780361 907165 116.25 846517 108.48 146900 18.82
75_RAND_2_3 808203 911155 112.74 851973 105.42 160699 19.88
75_CLUS_2_1 772435 836792 108.33 793409 102.72 148422 19.21
75_CLUS_2_2 780361 842717 107.99 715138 91.64 100917 12.93
75_CLUS_2_3 808203 856501 105.98 903500 111.79 163504 20.23
75_CPCD_2_1 772435 843069 109.14 773819 100.18 90743 11.75
75_CPCD_2_2 780361 829112 106.25 657545 84.26 133752 17.14
75_CPCD_2_3 808203 772778 95.62 760018 94.04 68174 8.44
75_RAND_3_1 774140 875228 113.06 772509 99.79 128220 16.56
75_RAND_3_2 782381 983657 125.73 808558 103.35 196943 25.17
75_RAND_3_3 810106 1005567 124.13 874698 107.97 160055 19.76
75_CLUS_3_1 774140 983038 126.98 845074 109.16 146674 18.95
75_CLUS_3_2 782381 874307 111.75 793207 101.38 229418 29.32
75_CLUS_3_3 810106 930583 114.87 887598 109.57 115878 14.30
75_CPCD_3_1 774140 916437 118.38 754219 97.43 132773 17.15
75_CPCD_3_2 782381 842012 107.62 735611 94.02 157132 20.08
75_CPCD_3_3 810106 822820 101.57 699974 86.41 40983 5.06
100_RAND_2_1 1072407 1408169 131.31 1319035 123.00 136278 12.71
100_CLUS_2_1 1072407 1316780 122.79 1124825 104.89 157942 14.73
100_CPCD_2_1 1072407 1132356 105.59 980534 91.43 151785 14.15
100_RAND_3_1 1074809 1404231 130.65 1215821 113.12 161874 15.06
100_CLUS_3_1 1074809 1407984 131.00 1183947 110.15 181252 16.86
100_CPCD_3_1 1074809 1145181 106.55 936335 87.12 107328 9.99
Average 101.23 89.83 15.82

Table 12: Tradeoff between total travel distance and reloading quantity

3L-PDP
variant

Total travel distance
average in %

Reloading quantity
average in %

1A 111.31 101.23
1B 111.66 89.83
2 120.94 15.82
5 125.25 0.00

23

6 Conclusions and future work

In this paper, the vehicle routing problem with pickup and delivery (PDP) has been extended to an
integrated vehicle routing and loading problem with 3D rectangular items to be transported in homo-
geneous vehicles with a rectangular 3D loading space (3L-PDP). In the problem formulation, we fo-
cused on the question under which conditions any reloading effort, i.e. any movement of boxes after
loading and before unloading, can be avoided. It turned out that the RS constraint for loading and un-
loading sites is not sufficient. Instead, we require either a new packing constraint, termed reloading
ban, or a new routing constraint, called independent partial routes condition, to exclude any reloading
effort. Eventually, a spectrum of five 3L-PDP variants was introduced that allow for different portions
of reloading effort and reciprocal savings of travel distance.

A hybrid algorithm was then proposed to tackle three of the five 3L-PDP variants. It is composed
of the adapted large neighborhood search algorithm by Ropke and Pisinger (2006) for the 1D-PDP and
the tree search algorithm for packing boxes by Bortfeldt (2012). We tested the algorithm with the
1D-PDPTW instances with 50 and 100 requests by Li and Lim (2001) and found that it is on a par
with the best PDP(TW) solution methods available. For testing the hybrid 3L-PDP algorithm 54
3L-PDP instances with up to 100 requests and up to 300 boxes were introduced. The results for the
three 3L-PDP variants are plausible in that there is a clear tradeoff between travel distance and
reloading effort.

In our future research, we will deal with the residual 3L-PDP variants defined here and including
the reloading ban, a packing constraint to preclude any reloading effort. In these problem variants, we
can expect even better travel distances given the same assumptions in terms of reloading effort.

References
Baldacci, R; Bartolini, E; Mingozzi, A (2011): An Exact Algorithm for the Pickup and Delivery Problem with Time Win-

dows. Operations Research, 59(2):414-426.

Bartók, T; Imre, C (2011): Pickup and Delivery Vehicle Routing with Multidimensional Loading Constraints. Acta
Cybernetica, 20, 17-33.

Bent, R; van Hentenryck, P (2006): A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time

windows. Computers & Operations Research, 33:875-893.

Berbeglia, G; Cordeau, JF; Gribkovskaia, I; Laporte, G (2007): Static pickup and delivery problems: A classification scheme

and survey. Top, 15:1-31.

Bortfeldt, A (2012): A Hybrid Algorithm for the Capacitated Vehicle Routing Problem with Three-Dimensional Loading

Constraints. Computers & Operations Research, 39:2248-2257.

Bortfeldt, A; Homberger, J (2013): Packing First, Routing Second - a Heuristic for the Vehicle Routing and Loading Problem.

Computers & Operations Research, 40:873-885.

Bortfeldt, A; Hahn, T; Männel, D; Mönch, L (2015): Hybrid algorithms for the vehicle routing problem with clustered back-
hauls and 3D loading constraints. European Journal of Operational Research, 243:82-96.

Crainic, TG; Perboli, G; Tadei, R (2008): Extreme Point-based Heuristics for Three-dimensional Bin Packing. INFORMS
Journal on Computing, 20:368-384.

Derigs, U; Döhmer, T (2008): Indirect search for the vehicle routing problem with pickup and delivery and time windows.

OR Spectrum, 30:149-165.

Fuellerer, G; Doerner, KF; Hartl, R; Iori, M (2010): Metaheuristics for Vehicle Routing Problems with Three-dimensional

Loading Constraints. European Journal of Operational Research, 201:751-759.

Gendreau, M; Iori, M; Laporte, G; Martello, S (2006): A Tabu Search Algorithm for a Routing and Container Loading

Problem. Transportation Science, 40:342-350.

Gendreau, M; Potvin, J Y (2010): Handbook of Metaheuristics, second edition. Springer, New York etc.

Iori, M; Martello, S (2010): Routing Problems with Loading Constraints. Top, 18:4-27.

Iori, M; Martello, S (2013): An Annotated Bibliography of Combined Routing and Loading Problems. Yugoslav Journal of
Operations Research, 23(3):311-326.

Koning, D (2011): Using Column Generation for the Pickup and Delivery Problem with Disturbances. Technical Report,
Department of Computer Science, Utrecht University.

Lacomme, P; Toussaint, H; Duhamel, C (2013): A GRASP x ELS for the vehicle routing problem with basic three-

dimensional loading constraints. Engineering Applications of Artificial Intelligence, 26:1795-1810.

Li, H; Lim, A (2001): A metaheuristic for the pickup and delivery problem with time windows. 13th IEEE International

Conference on Tools with Artificial Intelligence (ICTAI’01). IEEE Computer Society, Los Alamitos, CA, 333-340.

Lim, H; Lim, A; Rodrigues, B (2002): Solving the pickup and delivery problem with time windows using squeaky wheel

optimization with local search. American Conference on Information Systems, AMICS 2002, Dallas, USA.

Lu, Q; Dessouky, MM (2006): A new insertion-based construction heuristic for solving the pickup and delivery problem with

time windows. European Journal of Operational Research, 175:672-687.

24

Malapert, A; Guéret, C; Jussien, N; Langevin, A; Rousseau, LM (2008): Two-dimensional Pickup and Delivery Routing

Problem with Loading Constraints. Proceedings of the First CPAIOR Workshop on Bin Packing and Placement
Constraints (BPPC’08), Paris, France.

Moura, A; Oliveira, JF (2009): An Integrated Approach to Vehicle Routing and Container Loading Problems. Operations
Research Spectrum 31:775-800.

Nagata, Y; Kobayashi, S (2010): A Memetic Algorithm for the Pickup and Delivery Problem with Time Windows Using

Selective Route Exchange Crossover. Parallel Problem Solving from Nature, PPSN XI, R. Schaefer et al. (eds.), 536-

545, Springer: Berlin.

Nanry, WP; Barnes, W (2000): Solving the pickup and delivery problem with time windows using reactive tabu search.

Transportation Research Part B: Methodological, 34:107-121.

Pankratz, G (2005): A grouping algorithm for the pickup and delivery problem with time windows. OR Spectrum, 27:21-41.

Parragh, SN; Doerner, KF; Hartl, RF (2008): A Survey on Pickup and Delivery Problems. Part II: Transportation between

pickup and delivery locations. Journal für Betriebswirtschaft, 58:81-117.

Pollaris, H; Braekers, K; Caris, A; Janssens, G; Limbourg, S (2015): Vehicle routing problems with loading constraints: state-

of-the-art and future directions. OR Spectrum, 37:297-330.

Ropke, S; Cordeau, JF (2009): Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows. Trans-
portation Science, 43(3):267-286.

Ropke, S; Pisinger, D (2006): An Adaptive Large Neighborhood Search for the Pickup and Delivery Problem with Time

Windows. Transportation Science, 40:455-472.

Ruan, Q; Zhang, Z; Miao, L; Shen, H (2013): A Hybrid Approach for the Vehicle Routing Problem with Three-dimensional

Loading Constraints. Computers & Operations Research, 40:1579-1589.

Sintef (2015): www.sintef.no/projectweb/top/pdptw/li--lim-benchmark, last visited 01.04.2015

Tao, Y; Wang, F (2015): An effective tabu search approach with improved loading algorithms for the 3L-CVRP. Computers
& Operations Research, 55:127-140.

Tarantilis, CD; Zachariadis, EE; Kiranoudis, CT (2009): A Hybrid Metaheuristic Algorithm for the Integrated Vehicle

Routing and Three-dimensional Container-loading Problem. IEEE Transactions on Intelligent Transportation Systems,
10:255-271.

Toth, P; Vigo, D (2014): Vehicle Routing: Problems, Methods, and Applications, second edition. MOS-SIAM series on

optimization, Philadelphia.

Wang, L; Guo, S; Chen, S; Zhu, W; Lim, A (2010): Two Natural Heuristics for 3D Packing with Practical Loading

Constraints. Computer Science, Vol. 6230, 256-267.

Wisniewski, M; Ritt, M; Buriol, LS (2011): A Tabu Algorithm for the Capacitated Vehicle Routing Problem with Three-

dimensional Loading Constraints. Anais do XLIII Simpósio Brasileiro de Pesquisa Operacional. Ubatuba, Brazil,

1502-1511.

Xu, H; Chen, ZL; Rajagopal, S; Arunapuram, S (2003): Solving a practical pickup and delivery problem. Transportation
Science, 37:347-364.

Zachariadis, E; Tarantilis, C; Kiranoudis, C (2012): The pallet-packing vehicle routing problem. Transportation Science, 46

(3): 341-358.

Zhu, W; Qin, H; Lim, A; Wang, L (2012): A two-stage Tabu Search Algorithm with Enhanced Packing Heuristics for the

3L-CVRP and M3L-CVRP. Computers & Operations Research, 39:2178-2195.

Otto von Guericke University Magdeburg
Faculty of Economics and Management
P.O. Box 4120 | 39016 Magdeburg | Germany

Tel.: +49 (0) 3 91 / 67-1 85 84
Fax: +49 (0) 3 91 / 67-1 21 20

www.ww.uni-magdeburg.dewww.fww.ovgu.de/femm

ISSN 1615-4274

