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Abstract

This paper analyzes the effects of technological risk on long–run growth

when labor supply is elastic and production gives rise to a pollution external-

ity. For the social planner as well as for the market economy we show that the

randomness of production as well as the endogeneity of labor supply matter with

respect to the equilibrium solution. The direction in which changes in the model

parameters as well as changes of policy instruments influence labor supply and

growth depends crucially on the volatility of output.
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JEL classification: Q5, O4, D8, D9

1 Introduction

As the debate on climate change shows very clearly, the consequences of environ-

mental degradation for economic development is subject to a large degree of uncer-

tainty. This uncertainty arises from a variety of different sources such as ecological

and technological risks, but also the stochastic dynamics of population. Yet, although

uncertainty features prominently in the current debate on sustainability, its potential

implications have rarely been analyzed in the literature on growth and the environ-

ment. In this paper we show that incorporating uncertainty might not only affect the

optimal static and dynamic characteristics of optimal policy design, but might also

alter the growth implications of, for example, environmental taxation.

∗Otto-von-Guericke University Magdeburg, Germany, Christiane.Clemens@ww.uni-magdeburg.de
∗∗ETH Zurich, Switzerland, kpittel@ethz.ch



To keep the analysis tractable we concentrate on one potential source of uncer-

tainty, technological risk, and show that in the presence of this risk the effects of

environmental policy might even be reversed compared to the a deterministic set-

ting. In contrast to the main body of literature in this field, we assume labor supply

to be endogenously determined. We show that neglecting the reaction of the labor-

leisure choice to changes in environmental policy might result in a wrong assessment

of policy implications.1

In recent years an large body of literature has dealt with the mutual interde-

pendency of economic growth and environmental degradation. Especially the de-

velopment of endogenous growth theory has renewed the interest in this field,

leading to an extensive analysis of the general conditions under which long–

run growth can be feasible and optimal in the presence of environmental restric-

tions. These restrictions originate from a large number of sources such as rival

and non–rival productivity effects as well as environmental amenities of renew-

able resources (e.g. Bovenberg and Smulders, 1995, 1996; Smulders, 1998; Grimaud,

1999; Elíasson and Turnovsky, 2004), exhaustible resources (e.g. Aghion and Howitt,

1998; Scholz and Ziemes, 1999; Schou, 2000) and stock or flow pollution (e.g.

Gradus and Smulders, 1993; Smulders, 1996; Stokey, 1998).2 The vast majority

of this literature, however, does not consider the effects of uncertainty, but rather

assumes that technological as well as ecological components are deterministic.

There are some exceptions to this rule however. Baranzini and Bourguignon

(1995), for instance, consider a non–zero probability of extinction while

Beltratti et al. (1998) and, more recently, Ayong Le Kama and Schubert (2004)

include uncertainty about future preferences. Technically closest to our analysis is

probably Soretz (2003, 2004, 2007) who discusses perception and policy issues of

environmental pollution in an AK–type framework, but disregards trade–off effects

between consumption and leisure, as well as how individual household’s savings

decision relates to a differentiated factor income risk.

In this paper we combine the traditional environmental economics literature on

growth and the environment with the strand of literature dealing with labor sup-

ply in a stochastic setting. The analysis is motivated by the well–known result from

the literature that the riskiness of capital returns and labor income is an important

determinant of the intertemporal savings decision of risk averse agents. In his pi-

oneering work Leland (1968) stressed the role of precautionary savings, which he

defined as savings, a risk averse household additionally undertakes in order to self–

insure against the riskiness of future income flows. Especially in the context of mod-

1For a general overview of the role of uncertainty in economics see Pindyck (2006).
2An extensive review of the related literature can be found in Pittel (2002).
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ern growth theory, this draws a link between intertemporal choice, risk, and growth.

Sandmo (1970) was the first to point out the importance of factor–specific risk related

to the degree of risk aversion for the emergence of precautionary saving.

The majority of modern contributions dealing with continuous–time stochastic

growth, where the economy follows a stochastic trend, suffers from the impor-

tant shortcoming that they confine their analysis to a single income type (mostly

capital risk), in order to maintain analytical tractability (cf Obstfeld, 1994; Smith,

1996; Soretz, 2003, 2004, 2007). Others either view the intertemporal flow of la-

bor income as human wealth and treat it as a ‘quasi accumulating’ hedgeable as-

set (Corsetti, 1997) or assume labor incomes to be instantaneously deterministic

Turnovsky (2000, 2003). Notably exceptions for the case of inelastic labor supply

are Clemens and Soretz (2004) and Clemens (2004b, 2005). Only recently Clemens

(2004a) and Turnovsky and Smith (2006) succeeded in deriving closed–form solu-

tions for the equilibrium growth path of an economy with endogenous labor–leisure

choice, where households simultaneously are subject to capital and income risk.

Besides the phenomenon of precautionary savings, the presence of risk substan-

tially alters the policy implications derived within deterministic environments. This

is due to the fact that taxes (or transfers respectively) also affect the riskiness of

the policy target under consideration. The higher–order effects from the variance of

the underlying risk might even reverse the direction of impact of policy instruments

in a stochastic environment. The insurance effect of taxation was first discussed by

Domar and Musgrave (1944) and Stiglitz (1969), or in a continuous–time growth

context by Turnovsky (1993), Smith (1996) or Clemens and Soretz (1997).

Our model is a stochastic version of the Romer (1986) endogenous growth model

with endogenous labor supply and a negative pollution externality. Pollution is gen-

erated from production activities and can be reduced by devoting part of output to

abatement. Production and abatement are subject to a random disturbance that stems

from an aggregate productivity shock. The economy follows a stochastic trends with

the assumed uncertainty leading to second–order effects on expected labor supply

and growth. The relatively simple model structure with constant private returns to

scale and linearity in capital allows us to derive closed–form solutions.

The paper proceeds as follows: Section 2 introduces the model for which the

socially optimal growth path is derived as a benchmark solution in Section 3. Section

4 focuses on the market economy. It derives an optimal policy mix and regards the

general implications of regulatory activities on growth and labor supply. Section 5

then compares the results of Section 3 and 4 to the case of exogenous labor supply.

Section 6 concludes.
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2 The Model

We assume a closed economy in which a homogeneous good is produced from labor

and capital. Individual production is stochastic, i.e. at each increment of time, the

economy is subject to an aggregate productivity shock. The production and invest-

ment processes generate two types of externalities: First, we assume that production

is subject to learning by doing. Production of a single producer is positively affected

by aggregate production experience, and investment activities in privately–owned

capital create a positive externality by raising the productivity of all firms. For sim-

plicity it is assumed that this positive spillover effect is represented one–to–one by

the aggregate level of capital input. This is the standard type of Romer (1986) model.

A second externality arises from environmental pollution P̄(t). Production leads to a

flow of pollution generating a negative effect on production which can be mitigated

by abatement activities. The production technology is assumed to be of the stochastic

Cobb–Douglas type

dY (t) = K(t)αK̄1−α(1− l(t))1−αP̄(t)−η (dt+ dz(t)) . (1)

dz(t) is the serially uncorrelated increment to a standard Wiener process z(t) with

zero mean and an instantaneous variance of σ2 d t. Due to the productivity shock, the

returns to the two factors of production are stochastic. In terms of Sandmo (1970),

the household is subject to a capital risk and an income risk.

To generate the instantaneous output flow dY (t), producers employ physical capi-

tal, K(t), and labor, 1− l(t), as a fraction of time endowment. The production displays

constant returns to scale in K(t) and 1− l(t) on the individual firm level. Aggregate

capital accumulation, K̄(t), exerts a positive effect on productivity. In macroeconomic

equilibrium K(t) equals K̄(t), as we normalize the population to unity. Production is

linear in capital on the aggregate level which ensures that the conditions for ongoing

growth of per capita incomes are met. This, together with the assumption that the

productivity shock is proportional to the mean rate of output, implies that the ran-

domness of production does not disappear asymptotically as the output grows. The

economy evolves according to a stochastic trend.

The negative pollution externality is represented by P(t) with the effective flow of

aggregate pollution being given by the ratio of mean output over aggregate abatement

Ā:

P̄(t) =
KαK̄(t)1−α(1− l(t))1−α

Ā(t)
. (2)

Following Pittel (2002) we assume an elasticity of substitution of unity between

abatement and raw pollution as a prerequisite for balanced growth to be consistent

with non–increasing effective pollution in the long–run. Pollution is assumed to be
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a flow variable3 that can be reduced by devoting a share of the output to abatement

activities. As we assume perfect competition with a large number of producers, the

effect of individual production on aggregate pollution is negligible such that, on the

individual level, producers take pollution as exogenous to their production decision.

Consequently, producers would—in the absence of environmental regulation—not

conduct abatement as their perceived marginal return would be zero and effective

pollution would asymptotically grow to infinity. Along the equilibrium growth path,

aggregate pollution should be constant and equal to P̄ = 1/a, with a denoting the

abatement ratio.

The economy is populated by a continuum [0,1] of identical infinitely–lived indi-

viduals who maximize their intertemporal utility out of consumption and leisure

E0

Z ∞

0

[
lnC(t)+

l(t)1−δ

1−δ

]
e−βt dt, if δ > 0, δ �= 0 (3)

and lnc(t)+ ln l(t), if δ = 1. l(t) denotes leisure time with δ measuring the household’s

disliking of labor. C(t) is individual consumption and β the rate at which agents

discount future utility.

This intertemporal utility function comprises a number of important characteris-

tics: First, (3) is log–linear in consumption which simultaneously implies that house-

holds are risk averse, with the Arrow/Pratt measure of relative risk aversion RR being

equal to unity. From the literature on precautionary savings under uncertainty (cf.

Levhari and Srinivasan, 1969; Sandmo, 1970) it is well–known that—in this case—

the intertemporal income and substitution effects from capital risk completely offset.

In a model without a preference for leisure, the randomness of production would

then generate certainty–equivalence results regarding the allocation of personal in-

come on consumption and saving. The equilibrium expected growth rate of this econ-

omy would be identical to the growth rate in a deterministic economy, although the

household suffers a welfare loss due to the presence of uncertainty. Since our model

also takes account of risky labor incomes, the chosen specification allows us to focus

entirely on the growth and policy effects of labor income risk. As will become obvious

below, the riskiness of wage incomes affects the labor–leisure choice and influences

optimal pollution as well as optimal pollution taxation.4

Second, by assuming the preferences of agents to be additively separable, the cross

derivatives vanish and the effects of leisure on the marginal utility of consumption

3In the context of deterministic growth models Smulders (1996) have shown that the qualitative

implications of a flow or stock formulation of pollution are equivalent as long as the focus is on balanced

growth.
4The effect of the capital risk on pollution and the optimal policy mix were analyzed, for example,

by Soretz (2003, 2004, 2007).
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and vice versa are eliminated. Finally, (3) is consistent with a balanced growth path

along which the time share devoted to leisure as well as the return to capital is

constant while consumption grows at a constant rate King and Rebelo (cf 1999).

The aggregate capital stock follows the Itô diffusion process

dK(t) = dY (t)(dt+ dz(t))−C(t)dt− Ā(t) [d t+ dzA(t)] , (4)

where Ā(t) denotes aggregate abatement expenditure, which also follow a stochastic

process dzA(t) to be endogenously determined in equilibrium.

We now proceed with the derivation of the Pareto–optimal growth path of the

economy which serves as a benchmark solution. The subsequent sections then are

devoted to the analysis of an economic and environmental policy aiming at mimick-

ing the Pareto–optimal path. It will be shown that the Pareto–efficient allocation can

be implemented by means of a subsidy on physical capital and a pollution tax giv-

ing rise to incentives to engage in abatement, combined with lump–sum payments.

Two instruments will be sufficient to induce the efficient time path in a knife–edge

scenario.

3 Social Planner

The benevolent social planner internalizes the two externalities present in the econ-

omy and also takes account of the fact that the diffusion process of abatement is

governed by the exogenous productivity shock, such that dzA = dz. In contrast to

individual producers who only take account of the private returns to capital, the so-

cial planner considers the social return and chooses the intertemporal consumption

path, working time, and abatement efforts such that the spillover effects are inter-

nalized, and capital is payed its social return. In contrast to the standard Romer

(1986) model, where the private capital return unambiguously falls short of the so-

cial returns to investment, this is not necessarily the case in our setting, the results

depending on whether or not the positive learning spillovers are outweighed by the

negative pollution effects.

The maximization problem of the social planner reads5

max
C,l

E0

Z ∞

0

[
lnC(t)+

l1−δ

1−δ

]
e−βt d t, (5)

s.t. dK = dY (d t+ dz)−Cd t−A(dt+ dz] , K(0) > 0,z(0) = 0 (6)

5In what follows, we drop the time index of variables for expository convenience.
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The stochastic Hamiltonian can be set up as follows (cf. Malliaris and Brock, 1982,

ch. 2.10):

H

(
C,K,A, l,λ,

∂λ
∂K

)
= e−βt

[
lnC+

l1−δ

1−δ

]
+ λ

[
K1−η(1− l)1−αAη −C−A)

]
+

σ2
K

2
∂λ
∂K

with σ2
K =

(
K1−η(1− l)(1−α)(1−η)−A

)2 σ2. Maximization yields the following FOCs,

where pollution is already substituted with the abatement ratio a= 1/P̄:

∂H

∂C
= e−βtC−1 −λ = 0 (7)

∂H

∂l
= e−βt l−δ − (1−η)(1−α)K(1− l)−αaη

(
λ +

∂λ
∂K
K(1− l)1−ασ2 (aη −a)

)
= 0 (8)

∂H

∂A
=

(
ηaη−1 −1

)(
λ +

∂λ
∂K
K(1− l)1−ασ2 (aη −a)

)
= 0 (9)

dλ = −
∂H

∂K
d t+

∂λ
∂K

σK dz

= −(1−η)(1− l)1−αaη
(

λ +
∂λ
∂K

σ2K(1− l)1−α (aη −a)
)

d t (10)

+
∂λ
∂K
K(1− l)1−α (aη −a)dz

together with the transversality condition

lim
t→∞

Et [λ(t)K(t)] = 0.

Conditions (7) and (8) relate the marginal utility of consumption and leisure

respectively to the shadow price λ, but (8) also accounts for the random nature

of labor productivity. From condition (9) follows the optimal level of abatement

activities. Equation (10) is a modified version of the optimality condition usually

derived for the state variable K. It describes the stochastic evolution of the shadow

price over time, which also follows a diffusion process.

The solution procedure for the stochastic system (7) to (10) is similar to the

one well–known for deterministic models. We proceed with differentiating (7) with

respect to time to obtain a second expression for the law of motion of the shadow

price λ, which later on can be equated to (10). Application of Itô’s lemma yields the

following expression for dλ:

dλ = e−βtC−1
(
−βdt−

dC
C

+
(dC)2

C2

)
. (11)

With aggregate output being subject to a technological disturbance, consumption and

saving become stochastic too. The associated diffusion process for consumption, dC,

can be obtained by applying Itô’s lemma

dC =C′(K)dK+
1
2
C′′(K)(dK)2. (12)

7



Since a balanced growth path of the economy is characterized by a time–invariant

growth rate, the consumption-wealth ratio, µ=C/K, the abatement ratio a, as well

as the time fractions allotted to labor and leisure, l and 1− l, have to be constant

over time, too. Otherwise the conditions for balanced growth would not be met. The

solution conjecture of a time–invariant µ is consistent with the underlying isoelastic

preferences and typical for this macroeconomic version of the CCAPM (Eaton, 1981;

Turnovsky, 1993). Hence C′(K) = µ, C′′(K) = 0, dC = µdK, and (dC)2 = µ2(dK)2.

Using the Itô multiplication rules6 finally yields

dλ = λ
[(
−β+µ− (1− l)1−α (aη −a)

(
1−σ2(1− l)1−α (aη −a)

))
dt− (1− l)1−α (aη −a)dz

]
.

(13)

Equating (10) to (13), dividing by λ, and sorting with respect to deterministic and

stochastic components results in[
−β+µ+a(1− l)1−α (

1−ηaη−1)+ σ2(1− l)2(1−α) (aη −a)

×

(
aη −a+(1−η)aη ∂λ

∂K
K
λ

)]
dt = −aη(1− l)1−α

(
∂λ
∂K
K
λ

+ 1
)

dz. (14)

For µ to be non-stochastic over time, the random components on the RHS of (14)

have to exactly offset, which is only the case if

∂λ
∂K

= −
λ
K

. (15)

Employing this condition and rearranging finally gives the following expression for

the consumption-capital ratio, reflecting the consumption–saving tradeoff7

µ∗1 = β+a(1− l)1−α (
ηaη−1 −1

)(
1−σ2(1− l)1−α (aη −a)

)
. (16)

Going back to the first-order condition related to labor–leisure choice, (8), utilizing

(15) and rearranging, we derive a second condition for µ, this time reflecting the

consumption–leisure tradeoff

µ∗2 = lδ
(1−α)(1−η)aη

(1− l)α

(
1−σ2(1− l)1−α (aη −a)

)
. (17)

In order to have a positive value for (17) and η < 1, the last term on the RHS has to

be of positive sign. By (10) this represents the certainty equivalent to capital return

r∗s = (1−η)aη(1− l)1−α (
1−σ2(1− l)1−α (aη −a)

)
. (18)

The certainty equivalent to capital return is the real interest rate of a (hypothetical)

safe asset, which falls below the rental rate to capital by the amount of the risk

6d t×d t = 0, dzi×dz j = ρi jσiσ j dt for i �= j, and dzi×dz j = σ2 d t for i= j.
7In what follows asterisks denote the Pareto–efficient values of the macroeconomic variables.
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premium aη(1−η)(1− l)2(1−α) (aη −a)σ2, because risk averse households demand a

higher expected return for bearing the risk of capital accumulation.8

Utilizing this in the first-order condition for A, (9), we find that this is only satisfied

if 1 = ηaη−1, i.e. when abatement activities take place at the optimal level, if the

marginal damage generated by pollution equals the marginal costs of abatement.

Solving for the optimal level of the abatement ratio we get

a∗ = η
1

1−η . (19)

a∗ is solely determined by the pollution elasticity of production. As economic intu-

ition suggests, the more vulnerable output with respect to pollution, the higher the

abatement ratio, i.e. the higher the share of production used for abatement purposes.

Using this information allows us to rewrite (16) and (17) which reduce to

µ∗1 = β , (20)

µ∗2 = lδ
(1−α)(1−η)η

η
1−η

(1− l)α

(
1−σ2(1− l)1−α(1−η)η

η
1−η

)
. (21)

µ∗1 and µ∗2 are functions of the model primitives and the time allocation only. They

have to be equal in order to be consistent with balanced growth, which also implies

that the time share devoted to leisure has to be time–invariant, too. Since (21) is

a nonlinear function in working time, the optimal time allocation is only implicitly

determined by µ∗1 = µ∗2 and cannot be derived explicitly. Equation (20) also reflects

the well–known certainty equivalent result, which is typical for logarithmic prefer-

ences. Since the social planner internalizes the external effects, capital accumula-

tion is rewarded the social return to capital, which amounts to a pure capital risk.

The optimal consumption–capital ratio is solely determined by the rate of time pref-

erence, and the intertemporal income and substitution effects originating from the

riskiness of the income source exactly offset. This also implies that the consumption-

accumulation decision of the household is independent from the pollution generated

through production.

By substituting (20) and (19) into (21), we get an expression, which implicitly

describes the optimal allocation of time on labor and leisure in the Pareto–efficient

economy:

l−δ =
(1−α)(1−η)η

η
1−η

β(1− l)α

(
1−σ2(1− l)1−α(1−η)η

η
1−η

)
. (22)

An equilibrium growth path is characterized by capital and consumption growing

at a common stochastic rate, that is dK/K = dC/C. The equilibrium expected growth

8The safe asset is purely hypothetical, since we are dealing with an aggregate risk which—by

assumption—cannot be diversified away. There is no safe outside option available.
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rate can be derived by employing the aggregate resource constraint, (4), together

with (20) and (21) and taking expectations. We obtain two expressions for the opti-

mal expected growth rate, which—similarly to the consumption–capital ratios µ∗1 and

µ∗2—implicitly determine the equilibrium allocation of labor:

g∗1 = (1−η)η
η

1−η (1− l)1−α −β (23)

g∗2 = (1−η)η
η

1−η (1− l)1−α

(
1−

(1−α) lδ

1− l

(
1−σ2(1−η)η

η
1−η (1− l)1−α

))
(24)

The economy is in equilibrium if the two growth rates are equal, i.e. g∗1 = g∗2 = g∗, or

equivalently

Δg∗ = g∗1 −g∗2 = −β+
(1−α)(1−η)η

η
1−η lδ

(1− l)α

(
1−σ2(1−η)η

η
1−η (1− l)1−α

)
= 0 (25)

Proposition 1 A unique balanced growth path exists, if the certainty equivalent to cap-

ital return is positive and Δg∗ satisfies the following conditions:

(i) Δg∗ is a continuous and monotonic function in the domain l ∈ (0,1).

(ii) The limits of Δ∗ are of opposite sign, that is

sgn lim
l→0

Δg∗ = −sgn lim
l→1

Δg∗ . (26)

Proof: Differentiation of (25) with respect to l gives

∂Δg∗

∂l
= (1−α)lδ

⎡
⎣ rs

(1−η)(1− l)

(
δ
l

+
α

1− l

)
+α(1−η)

(
η

η
1−η

(1− l)ασ

)2⎤⎦
For rs > 0, Δg∗ is monotonically decreasing in l, l ∈ (0,1). The limits of Δg∗ with respect to l → 0 and

l→ 1 are given by:

lim
l→0

Δg∗ =−β and lim
l→1

Δg∗ = ∞ �

Optimal leisure is implicitly determined by (20), (21) and (23):

l∗ = 1−
(

η
η

1−η (g∗ + β)
) 1

1−α
. (27)

Figure 1 illustrates the result of Proposition 1 and shows that there is an interior

solution for the optimal time allocation.
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Figure 1: Unique equilibrium labor supply in the Pareto–efficient economy

Comparative static analysis of the Pareto–efficient allocation While the optimal

consumption–capital–ratio (20) is only determined by the rate of time preference,

optimal growth and leisure depend on the other model parameters. By employing

the implicit function theorem to (22) we can show how optimal leisure—and labor

input respectively—responds to changes in the model parameters. We focus on those

parameters which seem most interesting to us: η, which reflects the vulnerability of

production with respect to pollution; σ2 which measures the impact of changes in the

riskiness of production; and finally δ, representing the elasticity of marginal utility

with respect to leisure.

From (22), we get the following comparative static results for a variation in the

three model primitives:

d l∗

dσ2 =
lδ

βA
1−α

(1− l)2α−1

(
(1−η)η

η
1−η

)2
> 0 , (28)

d l∗

dδ
= −

ln l
A

> 0 , (29)

d l∗

dη
= −

lδ

βA
1−α

(1− l)α

(
1−2σ2(1− l)1−α(1−η)η

η
1−η

)
B� 0 (30)

with

A=
δ
l
+

α
1− l

+
σ2(1−η)η

η
1−η 1−α

(1−l)α

1−σ2(1−η)η
η

1−η 1−α
(1−l)α

> 0 and B= η
η

1−η
lnη

1−η
< 0 .

(28) and (29) show that the planner responds qualitatively in the same way to an

increase in the variance of the technology shock as to an increase in the utility pa-

rameter δ.

In the presence of logarithmic preferences with respect to consumption, an in-

crease in σ2 does not have an effect on the household’s optimal propensity to con-
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sume. Nevertheless, second–order effects from the productivity shock on the labor–

leisure trade–off can be observed. By facing a higher technological risk, the planner

substitutes leisure for labor time in order to compensate for a higher variance associ-

ated with labor input. The increase in σ2 affects the shadow price between consump-

tion and leisure. This becomes obvious, if we go back to equation (22), implicitly

determining the optimal time allocation and derived by equating (7) to (8). The RHS

of (22) becomes smaller. In order to still satisfy the first–order condition (8), the LHS

of (22), measuring marginal utility of leisure, Ul, has to become smaller too, which

is only the case for the underlying concave function and δ given, if the amount of

leisure consumed increases.

As can be seen from (23) the associated decrease in working time causes nega-

tive growth effects. It reduces the net output–capital ratio (output minus abatement

effort) while leaving µ unchanged at the cost of savings and growth

dg∗

dσ2 = −(g∗ + β)
1−α
1− l

d l
dσ2 < 0 .

An increase in δ reflects an increase in the marginal utility of leisure which also

induces the planner to substitute leisure for labor. As (23) shows, this, too, reduces

savings and growth
dg∗

dδ
= −(g∗ + β)

1−α
1− l

d l
dδ

< 0 .

The response to a change in the pollution elasticity of output, η, crucially depends

on whether the first–order effects (stemming from the mean) or the second–order

(variance) effects prevail

dg∗

dη
= −(g∗ + β)

1−α
1− l

d l
dη

+(1− l)1−αB� 0 .

If we consider the benchmark of a riskless economy (σ = 0), an increase in η un-

ambiguously increases leisure and decreases growth. In this case, a higher η leads

to a reduction in the marginal productivities of the input factors capital and labor,

which—in a market economy—would amount to a decline in the associated factor

prices, thus making working efforts less attractive. The growth effect is further aggra-

vated by an associated increase in optimal abatement (19). In a stochastic setting, we

additionally have a second–order effect from the risk premium, which becomes obvi-

ous, if we substitute (18) into (22), which then reduces to l−δ = (1−α)rs/(β(1− l)).
The social planner takes account of the fact that the households are risk averse and

dislike deviations from a smooth income flow. Changes in η also affect the expected

risk premium, by this translating into labor supply and growth effects, which counter-

act (and even may outweigh) the negative effects from the mean return. As a result,

a higher pollution reagibility of output might raise labor supply and—given that this

increase is sufficiently large—even raise expected growth.
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4 The Market Economy

We now proceed with discussing the market economy. Households ultimately own

firms. Since we initially assumed all individuals to be identical, we will confine our

analysis to the representative consumer, who chooses his intertemporal consumption

flow, working and leisure time, as well as his abatement efforts in order to maximize

his intertemporal welfare (3) subject to his budget constraint, while treating public

policy as exogenous.

We assume that the household is subject to environmental taxation. As a firm

owner he pays a pollution tax but disregards his individual contribution to the overall

level of pollution as a by–product of production activities. The firm owner is subject

to a linear pollution tax at the rate τp. Since the firm–specific flow of pollution, P(t),
generated through production also is subject to the geometric Brownian motion, we

postulate the following diffusion for individual tax payments:

dT p(t) = τpP(t)(d t+ dz(t)) . (31)

We assume identical rates for the taxes levied on the deterministic and the random

components of pollution.

The household furthermore receives a subsidy on capital accumulation. The sub-

sidy rate τk is constant and proportional to the level of investment undertaken, such

that subsidy payments follow the diffusion:

dTk(t) = τkK(t)(dt+ dz(t)) . (32)

Net government revenues (may they be positive or negative) are redistributed to

households in a lump–sum fashion. The diffusion for lump–sum payment T (t) in case

of a balanced government budget is then given by

dT (t) = dT p(t)−dTk(t) = T (t)(d t+ dz(t)) (33)

and, depending on the expenditure and revenue flows, can be stochastic too. We

require the government budget constraint to be met in each period of time, so there

is no government debt or surplus.

The representative agent maximizes individual welfare (3) subject to his budget

constraint dK = dY −Cdt−A(d t+ dz)−dT p+ dT k+ dT , or equivalently

dK =

(
Kα (K̄(1− l))1−α P̄−η −C−A+T − τp

(
Kα (K̄(1− l))1−α

A

)
+ τkK

)
d t

+

(
Kα (K̄(1− l))1−α P̄−η −A+T − τp

(
Kα (K̄(1− l))1−α

A

)
+ τkK

)
dz , (34)
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while taking prices, tax rates and lump-sum payments as exogenously given.

The stochastic Hamiltonian can be set up as follows:

H

(
C,K,A, l,λ,

∂λ
∂K

)
= e−βt

(
lnC+

l1−δ

1−δ

)

+ λ

(
KαK̄1−α(1− l)1−αP̄−η −C−A+T − τp

(
Kα (K̄(1− l))1−α

A

)
+ τkK

)
+

σ2
K

2
∂λ
∂K

where aggregate pollution is exogenous, and

σ2
K =

(
Kα (K̄(1− l))1−α aη −A+T − τp

(
Kα (K̄(1− l))1−α

A

)
+ τkK

)2

σ2. (35)

Maximization leads to the following FOCs, where we already haven taken account of

P= 1/a and the government budget constraint (33):

∂H

∂C
= e−βtC−1 −λ = 0 (36)

∂H

∂l
= e−βt l−δ −λK

1−α
1− l

(
aη(1− l)1−α −

τp

aK

)(
1 + σ2 ∂λ

∂K
K
λ

(1− l)1−α(aη −a)
)

= 0 (37)

∂H

∂A
=

(
τp

1
aA

−1
)(

1 + σ2 ∂λ
∂K
K
λ

(1− l)1−α(aη −a)
)

= 0 (38)

dλ = −
∂H

∂K
dt+

∂λ
∂K

σK dz

= −λ
[(

αaη(1− l)1−α + τk−α
τp

aK

)(
1 + σ2 ∂λ

∂K
K
λ

(
(1− l)1−α(aη −a)

))
d t

+
∂λ
∂K
K
λ

(
(1− l)1−α(aη −a)

)
dz

]
. (39)

The first–order conditions (36) and (37) with respect to consumption and leisure are

identical in structure compared to the associated conditions of the planner problem.

The pollution tax is tied to individually generated pollution. The representative agent

knows that he can avoid/reduce tax payments by voluntarily undertaking abatement

efforts, which is reflected in condition (38).

The solution procedure is similar to the one already outlined above. From (39)

follows the certainty equivalent to capital return, rs:

rs =

(
αaη(1− l)1−α + τk−α

τp

aK

)
(1−σ2(1− l)1−α(aη −a)). (40)

The equilibrium riskless rate of a (hypothetical) safe asset nicely demonstrates the

multiple ways of how fiscal policies affect accumulation in a risky environment. The

two policy instruments have a twofold impact on the riskless rate. Both affect the
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mean return as well as the risk premium on capital holdings, the latter reflecting the

second–order effects stemming from the variance of the technological disturbance.9

First, the subsidy payed on capital accumulation generally makes savings more at-

tractive. Therefore, the mean real interest rate of a (hypothetical) safe asset has to

increase too, due to the general equilibrium nature of our approach. Second, by

raising the expected capital return, a subsidy also increases the volatility of future

capital income flows, which risk averse agents dislike and makes them demand a

larger risk premium on capital holdings. Although the induced intertemporal income

and substitution effects of changes in the real return to capital offset for the case

of logarithmic preferences in consumption (see (41) and (42) below), they still are

present in the equilibrium value of rs. The effects reverse, if it comes to the pollution

tax. Being tied to current production and putting a burden on capital accumulation,

the pollution tax reduces the deterministic part of the interest rate while raising the

stochastic component. A reduction in the volatility of future capital incomes leads to

a lower risk premium on capital accumulation.

In order to have a positive value of the certainty equivalent to capital return, we

need the first–order effects to prevail, such that the last term on the RHS of (40) is

of positive sign.10

If we next differentiate (36) with respect to time and equate the resulting diffu-

sion process dλ for the shadow price to condition (39), we obtain the desired rela-

tionship for the consumption–capital ratio µ, which we expect to be constant along

the balanced growth path. By additionally taking into account that the government

has to run a balanced budget, we arrive at:

µ1 = β+

(
(1− l)1−α((1−α)aη −a)+ τk+ α

τp

aK

)
[1−σ2(1− l)1−α(aη −a)]. (41)

As before, another expression for µ can be obtained from the first–order condition for

leisure:

µ2 =
(1−α) lδ

1− l

(
aη(1− l)1−α −

τp

aK

)[
1−σ2(1− l)1−α(aη −a)

]
. (42)

A comparison between the propensity to consume out of wealth chosen by the social

planner (20) with the one of decentralized market economy (41), shows very clearly

the impact of factor income risk on intertemporal consumption choice, because both

measure the consumption–saving tradeoff. Whereas the social planner rewards cap-

ital its social return—which equals the value of output—and therefore indirectly ne-

glects labor income risk, labor and capital inputs of the market economy are payed

9Recall that r = rs+ risk premium.
10A positive sign of rs is important for existence and uniqueness of the steady state. See also Clemens

(2004a) for an extensive discussion of the feasibility of balanced growth paths in continuous–time

stochastic growth models with elastic labor supply.
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according to their marginal product in production. As Leland (1968) pointed out, de-

creasing absolute risk aversion is necessary and sufficient for households to save out

of precautionary motives in the presence of pure income risk. This condition is met

for any positive value of the coefficient of relative risk aversion RR > 0, which in our

model equals unity by the assumption of log–utility in consumption. Furthermore,

as demonstrated by Levhari and Srinivasan (1969) as well as by Sandmo (1970),

households have to be sufficiently risk averse in the presence of a pure capital risk in

order to undertake buffer stock savings, which for the underlying isoelastic prefer-

ences corresponds to all values of RR > 1. There is no savings effect from the riskiness

of capital incomes for RR = 1. Consequently, if we observe any impact from risk on

intertemporal consumption choice, this can entirely be attributed to the presence of

labor income risk.

The underlying tax–transfer system indirectly redistributes income between labor

and capital, since it subsidizes accumulation while simultaneously taxing pollution

which is created as a by–product of private capital and labor inputs in production.

For any given policy–mix not mimicking the Pareto–efficient allocation, the effects

of labor income risk on consumption and saving prevail and we find µ to be smaller

if compared to a riskless environment (i.e. σ = 0). This indicates the presence of

precautionary savings the household undertakes in order to self–insure against the

fluctuations of future income flows. Compared to the Pareto–efficient allocation and

other things equal, µ is more likely of being too large, because the households only

take into account the lower market returns. They neglect the Marshallian knowledge

externality in their intertemporal decision and consequently save too little.

From the first–order condition for A, (38), we are able to derive an expression for

the optimal relation between l and a:

0 =

(
τp

A
−a

)(
1−σ2(1− l)1−α (aη −a)

)
. (43)

which only is satisfied for a positive value of rs, if τp = aA. From (43) it can be

seen that a constant abatement ratio over time is only consistent with household

optimization if the tax rate increases over time. Due to the accumulation of capital,

the marginal value of a unit of pollution rises over time. Consequently, to keep

pollution from increasing over time, its costs in terms of the tax have to increase as

well (see also Pittel, 2002). At the same time the tax on pollution serves as an implicit

subsidy on abatement which increases in a growing economy. Along any balanced

path the growth rate of the tax has to equal to joint growth rate of abatement and

capital. Substituting τp = aA into (31) shows that tax revenues exactly suffice to pay

for abatement expenditures.
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Considering (41) shows that a constant propensity to consume, which is a prereq-

uisite for balanced growth, requires the subsidy rate on capital to be constant over

time. However, although the rates of the two policy instruments develop differently

over time, their growth rates are of course identical as in the subsidy case the subsidy

basis grows at the same rate as the pollution tax. Nevertheless a balanced budget of

the regulating authority without any lump–sum transfers, i.e. T = 0, can only hold

for an optimal policy in a knife edge case, as will be shown below.

The expected growth rate of the decentralized economy can be obtained from the

aggregate resource constraint (34) under consideration of a balanced government

budget and the two expressions for the propensity to consume, (41) and (42):

g1 = (1− l)1−α(aη −a)−µ1 (44)

g2 = (1− l)1−α(aη −a)−µ2 . (45)

The impact of risk, which negatively affects consumption is of opposite sign in the

expected growth rate of the economy (44), thereby indicating the presence of pre-

cautionary saving, which is empirically supported, e.g. by Zeldes (1989), Caballero

(1990), and Hubbard et al. (1994).

The economy is in equilibrium if the two growth rates are equal, i.e. g1 = g2 = g,
which implicitly determines the equilibrium level of labor supply:

Δg= g1 −g2 = −β +
[
1−σ2(1− l)1−α (

(τpA)
η − τpA

)]
×

[
(1− l)1−α(1−α)

(
(τpA)

η − τpA
)(

lδ

1− l
−1

)
− τk

]
= 0 (46)

where we considered τp = aA from (43). The associated conditions for existence and

uniqueness of a macroeconomic equilibrium along the balanced growth path closely

resemble those stated for the Pareto–efficient solution in Proposition 1 and therefore

are relegated to the Appendix.

The optimal policy The growth path of the social planner can be replicated by the

appropriate choice of the pollution tax and the capital subsidy. Similar to the standard

deterministic economy, a policy is chosen optimally if we set the two instruments

equal to the marginal externalities of pollution and capital:

τp∗ = ηaηA and τk∗ = (1−η)(1−α)aη(1− l)1−α (47)

Substituting (47) into (43) yields the familiar condition

a
(
ηaη−1 −1

)(
1−σ2(1− l)1−α (aη −a)

)
= 0 , (48)
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which is identical to (9), the condition for an optimal provision of A in the social

planner case. Consequently we get for the above described policy:

a= a∗ = η
1

1−η . (49)

If the policy instruments are chosen according to (47) the decentralized economy

replicates the efficient allocation with conditions for propensities to consume and

expected growth rates equal to (20), (21), (23), and (24).

In contrast to a riskless environment, taxation and subsidization now both target

equally at mean economic activities as well as at random fluctuations around the

mean. This potentially opens up the alternative to examine more complex–structured

tax–transfer–systems, for instance, by treating stochastic and deterministic activities

differently at differentiated rates, but is beyond the scope of the present paper (see

e.g. Clemens and Soretz, 1997, 2004; Soretz, 2007).

Although the technology shock has zero mean, the variance of the capital stock

increases over time. Neglecting the stochastic structure of production and abatement

in the policy–mix, would leave polluting economic activities partly untaxed and these

effects would accumulate over time. As the social planner takes account of the tech-

nology risk in his allocation decisions, a solely deterministic fiscal policy runs short

of its target and never suffices to internalize the external effects.

Regarding (47), it can be seen that the pollution externality affects the optimal

level of the capital subsidy. In contrast to an economy without pollution, the learning–

by–doing spillover in our economy has a twofold effect on production: The positive

direct effect on the social return and an indirect negative effect from the repercussions

of capital accumulation on pollution. The optimal subsidy rate in (47) corrects for

the net of the two effects.

Substituting (47) to (49) into (33) shows that lump–sum transfers/taxes are non–

zero except for the knife–edge case in which the negative pollution externality is

exactly offset by the positive net capital externality, i.e. iff α = (1−η)−1. In all other

cases

T ≷ 0 ⇐⇒ η ≷ (1−η)(1−α) . (50)

Comparative static analysis of the decentralized allocation In contrast to the so-

cial planner case, the equilibrium propensity to consume differs from the rate of time

preference in the decentralized setting. As households do not internalize the produc-

tion externalities and capital is only awarded its private return, the labor income risk

is not neutralized and influences the consumption decision of households. This also

implies that the consumption–accumulation decision of the household now depends
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not only on the pollution elasticity of production and the other model parameters,

but also on the tax and subsidy rates.11

To compute the comparative statics of l and g, we equate µ1 to µ2 from (41) and

(42), and additionally take regard of τp = aA, such that

β =
[
1−σ2(1− l)1−α (

(τpA)
η − τpA

)][
(1− l)1−α(1−α)

(
(τpA)

η − τpA
)(

lδ

1− l
−1

)
− τk

]
, (51)

where we define τpA ≡
τp
A for notational simplicity, which measures. As β > 0 and rs > 0

for feasibility reasons, such that also lδ
1−l > 1, the second term on the RHS is positive

in equilibrium. Employing the implicit function theorem we can derive the following

comparative static results for the policy instruments:

Proposition 2 The equilibrium labor supply decreases with a rise in the subsidy rate

payed on capital accumulation, if the technological risk does not become too large. The

effect of a change in the pollution tax, as measured by τpA, generally is of ambiguous sign

d(1− l)
dτk

< 0 for 1 > 2σ2(1− l)1−α (
(τpA)

η − τpA
)

, (52)

d(1− l)
dτpA

� 0 for τp∗A � τpA . (53)

Proof: see Appendix.

An increase in capital subsidization leads an increase in capital formation and a sub-

stitution of capital for labor, such that households can enjoy more leisure. To this

extent our results coincide with the implications of a deterministic setting. However,

besides this static effect, we have a negative dynamic effect of labor–leisure choice on

expected growth. A reduction in labor supply not only reduces total wage income but

also the associated wage income risk, thereby leading to a decline in precautionary

savings. Hence we have counter–acting effects from capital subsidization on growth,

such that the negative effect prevails, if we additionally take account of the govern-

ment budget constraint. For a sufficiently large technology risk, the sign of (57) even

may reverse without violating the imposed feasibility conditions on rs.
Regarding the by–effects on expected growth of a change in τpA, it is not possible

to derive clear–cut results, due to the multitude of interacting adjustments of labor

supply and the marginal productivity of abatement. Nevertheless, it is possible to

identify the response of the equilibrium expected growth rate to a change in the

policy instruments numerically, where the results can be shown to hold for a large

range of parameter values.

11As the comparative static results of a variation in η, σ2, and δ only get more complex without

changing the qualitative results already derived above for the planner economy, we concentrate on the

results for the policy instruments only.
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Figure 2: Comparative static results of a variation in the pollution tax

The response of labor supply to an increase in τpA crucially depends on τp∗A � τpA, i.e.,

whether or not the chosen policy overshoots or falls below its optimal value. Given

that e.g. 1 > 2σ2(1− l)1−α (
(τpA)

η − τpA
)
, labor supply decreases due to a rise in the tax

rate while growth increases if the pollution tax is below its optimal level. Raising

τpA induces an increase in marginal abatement that raises production by more than

the marginal costs of abatement in terms of output. The opposite holds if taxation is

above its optimal level. Figure 2 depicts two such scenarios in which the pollution tax

is either higher (Figure 2(a)) or lower (Figure 2(b)) than the optimal pollution tax

τpA ≈ 0.77.12 In both subfigures, the right–hand plot shows equilibrium leisure at the

respective tax rate, while the left–hand plot displays the comparative static results for

the growth rate with respect to a change in τpA.

12The parameters in Figure 2 were set to α = 0.2, β = 0.1, δ = 1, η = 0.1, σ = 0.1. For simplicity, the

capital subsidy was set to zero in both subfigures.
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5 Exogenous labor supply

We want to conclude our analysis with some final remarks on the case of inelas-

tic labor supply. When households have no preference for leisure, the entire time–

endowment is devoted to working, i.e. l = 0. Consequently, the solution for the

exogenous case can be obtained by setting (1− l) equal to unity and disregarding the

FOCs for leisure in the preceding sections.

Social planner It can immediately be seen from (9) and (20) that the optimal

abatement ratio (i.e. optimal pollution, P∗e = 1/a∗e) as well as the optimal propensity

to consume are unaffected by the endogeneity of labor supply:13

a∗e = η
1

1−η , µ∗e = β g∗e = (1−η)η
η

1−η −β . (54)

Although the optimal share of output devoted to abatement activities remains un-

changed, optimal expected growth rises as production increases due to the higher

input of labor:

g∗e−g∗ = (1−η)η
η

1−η (1− (1− l)1−α) > 0 . (55)

The functional form and sign of this growth differential is independent from the

technology risk. Nevertheless, the randomness of production has an indirect effect

on (55) by affecting the optimal choice of l.
Let us now consider the growth effects of an increase in η, the pollution elasticity

of production, under the two scenarios. If labor supply is exogenous, an increase in

η unambiguously increases growth by raising the abatement ratio. In the endoge-

nous labor setting however, the increase of η additionally changes the optimal labor

choice. As we have seen before, the change in labor supply depends on whether or

not the first–order effect is dominated by the second–order effect stemming from the

variance of the productivity shock. If the first–order effect dominates, optimal labor

supply increases due to an increase in η which raises growth and lowers the growth

differential in (55). If the second–order effect dominates, growth is lowered by a

decrease in labor supply. So while an increase in η unambiguously increases growth

when labor supply is exogenous, it might lower growth for endogenous labor–leisure

choice case. Whether growth rises or falls, crucially depends on the magnitude of the

production risk σ2.

Market economy As can be seen from (38) the equilibrium abatement ratio in

the market economy is still solely determined by the chosen tax policy, a = τpA = τp
A .

Hence, setting τpA = τpeA results in identical pollution levels for the exogenous and

13The superscript e refers to variable values in the exogenous labor scenario.
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the endogenous labor setting. This also implies that the optimal tax policies are

identical in both cases (τp∗eA = τp∗A = η
η

1−η ). The non–normalized tax rates, τp = η
η

1−ηA,

will however differ between the two scenarios, as A follows a different time path.

Recalling that optimal growth is higher in the exogenous labor case, τp∗e increases

faster than τp∗.
With respect to the optimal capital subsidy, its level is higher when labor is exoge-

nously supplied (τk∗e− τk∗ = (1−η)(1−α)η
η

1−η (1− (1− l)1−α). This result originates

from the fact that the marginal capital externality is higher for exogenous labor sup-

ply, where aggregate labor input is comparably larger.

With respect to the difference between growth rates in the endogenous and ex-

ogenous labor case, the difference again crucially depends on the technological risk:

ge−g= [(τp)η − τp](1− (1− l)1−α)[
α−σ2((1−α)(1−η)((τp)η − τp)(1+(1− l)1−α)+ τk)

]
. (56)

If production is deterministic, growth again is unambiguously higher when labor sup-

ply is inelastic, i.e. the growth differential is positive. Yet, if production is stochastic,

the riskiness of labor income lowers the growth differential and may even reverse its

sign.

As for the growth differential itself, the change in ge− g due to a change in the

capital subsidy is unambiguous in a deterministic setting. In this case τk only has

an indirect effect on growth via its impact on labor supply, leading to an increase

in growth. If production is stochastic, however, an increase in the capital subsidy

additionally increases the volatility of labor income which affects the growth differ-

ential negatively. Whether ge−g rises or falls due to an increase in τk again depends

crucially on the magnitude of the production risk σ2.

The effect of an increase in the pollution tax on the growth gap is not even un-

ambiguous in the deterministic scenario. In this case, higher taxation increases the

abatement ratio but lowers working time, the net effect depending crucially on the

underlying parameter values. Matters get even more complicated in the stochastic

setting, where not only the effect of taxation on labor can either be positive or nega-

tive, but where also the impact of the riskiness of production is of ambiguous sign.

6 Conclusions

This paper has analyzed the effects of technological risk on long-run growth when

labor supply is elastic and production gives rise to two types of externalities. On

the one hand, production generates a flow of pollution that the individual producer

takes as exogenous and that can be reduced by abatement activities. On the other
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hand, the input of capital induces a positive knowledge spillover. For the described

economy we have then examined the optimal as well as the decentralized balanced

growth path.

With respect to the optimal solution, we have shown that expected growth is not

affected by the aggregate technology shock. As preferences are logarithmic and the

social planner perfectly internalizes the externalities, intertemporal substitution and

income effects exactly offset. Along the balanced path the optimal abatement ratio

is constant and solely determined by the pollution elasticity of output. Whether an

increase in the pollution elasticity affects labor supply and growth positively or neg-

atively depends largely on the volatility of technology. If production is deterministic,

optimal labor supply and growth decrease due to an increase in the pollution reagibil-

ity of production. If production is stochastic, however, second–order effect arise from

the risk premium. Given that the variance of the technology shock is sufficiently high,

these effects might prevail and give rise to an increase in labor supply and growth.

For the market economy, we have first focused on optimal policies that repli-

cate the social planner solution. It has been shown that the randomness of out-

put requires optimal policy schemes to comprise a stochastic component to take ac-

count of the rising volatility of output. Deterministic and stochastic activities can be

taxed/subsidized equally, but might also be treated differently by the policy maker.

In the present paper, we have concentrated on a uniform treatment of stochastic and

deterministic income parts and have left differentiated policies to future research. It

has been shown that a combination of pollution taxation and capital subsidization

can give rise to the optimal solution if the deterministic and stochastic part of the

tax/subsidy rates are set equal to the respective marginal externalities.

Furthermore, we have examined more general properties of non–optimal taxation

and subsidy policies. We showed that these properties can, but do not have to be in

line with the well–known results from deterministic models of pollution and growth.

The inclusion of the technology risk might lead to a reversal of the responses of

labor supply and growth to changes in the model primitives and policy variables. A

comparison of exogenous and endogenous labor supply has furthermore shown that

it is the endogeneity of the labor supply that allows for these potential sign reversals.

In the paper at hand we have assumed pollution to be a flow, thereby allowing

for a straightforward integration into the existing literature on stochastic growth.

Yet, modeling pollution or resources as stock variables might give rise to interesting

additional insights. Especially in the context of climate change, the consideration of

risky stocks seems to be a promising field for future research.
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A Existence and Uniqueness of the Growth Equilibrium in the Market

Economy

Proposition 3 A unique balanced growth path exists for the decentralized econ-
omy if the certainty equivalent of the capital return is positive and 1 > 2σ2(1 −

l)1−α (
(τpA)

η − τpA
)
. Under these conditions

(i) Δg is a continuous and monotonically increasing function in the domain l ∈ (0,1).

(ii) The limits of Δ are of opposite sign

sgn lim
l→0

Δg= −sgn lim
l→1

Δg .
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Proof: Differentiation of (46) with respect to l gives

∂Δg∗

∂l
= (1−α)(1− l)−α [

(τpA)
η − τpA

]([
1−2σ2(1− l)1−α [

(τpA)
η − τpA

]]
(1−α)

+
[
1−σ2(1− l)1−α [

(τpA)
η − τpA

]]
lδ

(
δ
l

+
α

1− l

)
+σ2((1−α)lδ(1− l)−α [

(τpA)
η − τpA

]
− τk)

)

which is positive for rs > 0 and 1 > 2σ2(1− l)1−α (
(τpA)

η − τpA
)
.The limits of Δg∗ with respect to l→ 0 and

l→ 1 are given by:

lim
l→0

Δg=−β−
[
1−σ2 (

(τpA)
η − τpA

)]
(1−α)

(
(τpA)

η − τpA
)
< 0 and lim

l→1
Δg= ∞ �

Proof of Proposition 2

d l
dτk

=
D
C

> 0 (57)

d l
dτp

=
E
C

� 0 for τp∗A � τpA (58)

with

C = (1−α)(1− l)−α [
(τpA)

η − τpA
]([

1−2σ2(1− l)1−α [
(τpA)

η − τpA
]]

(1−α)

+
[
1−σ2(1− l)1−α [

(τpA)
η − τpA

]]
lδ

(
δ
l
+

α
1− l

)

+σ2((1−α)lδ(1− l)−α [
(τpA)

η − τpA
]
− τk)

)
> 0

D=
[
1−σ2(1− l)1−α (

(τpA)
η − τpA

)]
> 0

E = −
[
η(τpA)

η−1 −1
]
(1− l)1−α ×

×

[
(1−α)

[
1−2σ2(1− l)1−α [

(τpA)
η − τpA

]](
lδ

1− l
−1

)
+ σ2τk

]
� 0 for τp∗A � τpA

From (51) it follows that (1−α)lδ(1− l)−α [
(τpA)

η − τpA
]

> τk. The signs of C and E
again depend on 1− 2σ2(1− l)1−α (

(τpA)
η − τpA

)
. A sufficient condition for C and E to

be positive (as postulated in (57) and (58)) is 1 > 2σ2(1− l)1−α (
(τpA)

η − τpA
)
. In case

this condition does not hold, i.e., if the stochastic part dominates the deterministic
part, the sign of C becomes ambiguous while the sign of E switches.
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