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Abstract

In a recent contribution, Teunter et al. [2006. Dynamic lot sizing with
product returns and remanufacturing. IJPR 44 (20), 4377-4400] adapted three
well-known heuristic approaches for the single-item dynamic lot sizing problem
to incorporate returning products that can be remanufactured. The Silver-Meal
based approach revealed in a large numerical study the best performance for
the separate setup cost setting, i.e. the replenishment options remanufacturing
and manufacturing are charged separately for each order. This contribution
generalizes the Silver-Meal based heuristic by applying methods elaborated for
the corresponding static problem and attaching two simple improvement steps.
By doing this, the percentage gap to the optimal solution which has been used
as a performance measure has been reduced to less than half of its initial value
in almost all settings examined.

1 Introduction

Due to the increasing environmental awareness of firms and the public the research
field of reverse logistics has grown steadily over the past decades. By analyzing not
only the forward flow of products from a firm to its customers but also including
the corresponding backward flow from the customers to the firm this research area
provides valuable insights on how these flows can be managed efficiently. Among
many options (see, e.g., Thierry et al., 1995, for an overview on different alternatives),
remanufacturing has been well established in several industries as has been reported in
Kumar and Putnam (2008). When including remanufactured products in their product
portfolio firms take back products from their customers, rework them to a sufficient
condition in order to resell them afterwards. This saves not only a part of the value
embedded in the original product but also reduces the demand for natural resources
and landfill space substantially (de Brito and Dekker, 2004). In industry, the process
of remanufacturing is affected by many stochastic influences as has been depicted,
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for instance, by Guide (2000) as well as Inderfurth and Langella (2006). Yet, this
contribution neglects any uncertainty and presents an entirely deterministic system.

By assuming setup costs for replenishment orders and holding costs for carrying
products in different conditions in stock a lot sizing problem arises. Such problems
have been analyzed thoroughly for the case of static and continuous demand and return
rates (see e.g. Minner and Lindner (2004) as well as Schulz and Ferretti (2008) for
a brief literature review). However, the case of dynamic and discrete demands and
returns has not achieved that much attention in the recent literature. Teunter et al.

(2006) introduce a dynamic lot sizing model with returns and remanufacturing and
distinguish between the case of joint and seperate setup cost for the replenishment
sources remanufacturing and manufacturing. They test in a large numerical experiment
three well-known heuristic approaches that were adapted from the single-item dynamic
lot sizing problem without returns. In both model settings, the Silver-Meal based
heuristic has been shown to be the best heuristic resulting in an average deviation of
3% from the optimal solution in the joint and 8.3% in the seperate setup cost setting.
Using heuristics to handle these problems has been motivated by the fact that the
authors conjecture the underlying problem of the seperate setup cost setting to be
NP-hard.

Several other contributions have been made to this specific research field whereas
only two shall be mentioned exemplarily. Richter and Sombrutzki (2000) discuss the
dynamic lot sizing problem with returns and remanufacturing and analyze a situation
in which a sufficiently large number of returned products is available. They proof
that the zero-inventory property known from the dynamic lot sizing problem without
returns and remanufacturing must hold in such an environment. Furthermore, they
apply a Silver-Meal based algorithm to illustrate the stability of its solution. Pan et

al. (2009) extend the analysis of Teunter et al. (2006) by including a disposal option
for returned products and by restricting production, remanufacturing, and disposal
capacities. They illustrate different problem formulations and elaborate dynamic pro-
gramming algorithms to solve some of these problems to optimality.

This work proposes a generalization of the Silver-Meal based heuristic introduced
by Teunter et al. (2006) for the separate setup cost setting by applying methods known
from the corresponding static problem. Furthermore, a simple improvement heuristic is
applied to the solution obtained to enhance the heuristic’s performance. The remainder
of this contribution is organized as follows. Section 2 presents the basic assumptions
of the model analyzed in this work and describes some solution methods for the under-
lying problem context. Next to a mixed-integer linear program the Silver-Meal based
heuristic introduced in Teunter et al. (2006) and our extension are depicted in this
chapter. Both heuristics are tested extensively in a numerical study in the subsequent
Section 3. Afterwards, Section 4 points out the improvement heuristic and tests its
ideas in a numerical experiment. Finally, the last section concludes this contribution
and gives a short outlook on future research opportunities.
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2 Model formulation and proposed solution meth-

ods

2.1 Basic assumptions and mixed-integer linear program

In their contribution, Teunter et al. (2006) introduced a dynamic lot sizing model with
separate setup costs for remanufacturing and manufacturing as an extension of the well-
known Wagner/Whitin model (Wagner and Whitin, 1958). The basic assumptions of
this modeling approach can be outlined as follows. As depicted in Figure 1, we consider
an original equipment manufacturer (OEM) that sells one product to his customers over
a planning horizon of T periods. In each period t = 1, .., T his customers demand a
discrete and known amount of this product which will be further on denoted by Dt.
The OEM provides each customer the opportunity to return her product if it is broken
or when she has no further use for it. Whenever a product is returned to the OEM it
is inspected whether it can be sufficiently remanufactured. All returns that pass the
inspection (which will be denoted by Rt) are brought to a recoverables stock. Per unit
time a recoverable product incurs holding costs of hR and disposing it of preliminarily
is assumed to be prohibitively expensive. If required, the OEM can (by paying the
setup cost KR) remanufacture xR

t recoverable products in period t in order to bring
them to an as-good-as-new condition. It shall be mentioned, that the recovery itself
is always successful. After remanufacturing, the recovered products are brought to a
serviceables inventory from which the customer demand is satisfied. Yet, as it is not
possible to serve the entire demand from remanufacturing returned products the OEM
can replenish his serviceables inventory alternatively by manufacturing xM

t products
in period t. Setting up a manufacturing lot in period t incurs fixed costs of KM while
holding a serviceable product for one period in the respective inventory costs hM .
Finally, the inventory level at the end of period t is denoted by yR

t for the recoverables
and yM

t for the serviceables inventory.
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Figure 1: Dynamic lot sizing model with returns and remanufacturing

By means of mixed-integer linear programming this model can be solved to optimal-
ity. Next to the notation introduced above two more decision variables are required. If
a remanufacturing lot is initiated in period t (i.e. xR

t > 0) the binary decision variable
γR

t becomes one. However, if xR
t = 0 the decision variable γR

t remains zero. Likewise,

3



γM
t is set to one when a manufacturing lot is produced in period t and to zero if no

product needs to be manufactured. The optimization model can be formulated as:

min Z =
T∑

t=1

(
KR · γR

t + KM · γM
t + hR · yR

t + hM · yM
t

)
(1)

s.t.:

yR
t = yR

t−1 + Rt − xR
t ∀t = 1, .., T (2)

yM
t = yM

t−1 + xR
t + xM

t − Dt ∀t = 1, .., T (3)

xR
t ≤ Q · γR

t ∀t = 1, .., T (4)

xM
t ≤ Q · γM

t ∀t = 1, .., T (5)

xR
0 = xM

0 = 0 (6)

γR
t , γM

t ∈ {0, 1} ∀i = 1, .., T

yR
t , yM

t , xR
t , xM

t ≥ 0 ∀i = 1, .., T

The objective function (1) minimizes the sum of all relevant setup and holding
costs. Constraints (2) and (3) represent inventory balance equations that describe the
inventory at the end of period t as the inventory at the beginning of this period plus
its inflows and minus its outflows. In order to ensure that fixed costs have to be paid
whenever a lot is scheduled restrictions (4) and (5) have to be established whereas
Q needs to be a sufficiently large number (e.g. the sum of all demands during the
planning horizon). By imposing constraint (6) the initial inventories in both stocks are
set to zero. Finally, non-negativity and binary constraints have to be defined as well to
assure validity of the decisions made. Interestingly, the zero-inventory property that
holds for a dynamic lot sizing model without returns and remanufacturing needs not
necessarily to be valid in this model setting (as has been discussed by Teunter et al.,
2006), i.e. it can be optimal to schedule a (re)manufacturing lot in period t even when
the serviceables inventory at the beginning of t is not depleted. This extends the results
of Richter and Sombrutzki (2000) who proved the zero-inventory property to hold when
there is a sufficiently large number of returned products in the recoverables stock at
the beginning of the planning horizon. Moreover, Teunter et al. (2006) conjecture
that the underlying optimization problem is NP-hard, i.e. it becomes very difficult to
obtain the optimal solution for a long planning horizon. Hence, they propose several
heuristic algorithms on how to handle this problem. In a large numerical study, the
Silver-Meal based heuristic which will be introduced subsequently revealed the best
average performance when compared to the optimal solution.

2.2 The adapted Silver-Meal heuristic by Teunter et al. (2006)

Unfortunately, the original Silver-Meal heuristic (Silver and Meal, 1973) cannot be ap-
plied to the model context presented above as the serviceables inventory from which all
customer demands are satisfied can be replenished from two sources: manufacturing
and remanufacturing. Thus, Teunter et al. (2006) adapted the original Silver-Meal
heuristic to include both sources in form of manufacturing (option 1) as well as reman-
ufacturing and manufacturing (option 2) in the decision-making process. The basic
idea of clustering the entire planning horizon into smaller time windows (starting in
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period τ and ending in period z) and choosing those time windows with the smallest
cost per period is kept. However, both options that will be described subsequently
assume the zero-inventory property to hold.

Option 1: Manufacture only

When applying this option the entire demand in a time window is satisfied by ini-
tiating a manufacturing run in period τ . Its lot size would be

xM
τ =

z∑
i=τ

Di. (7)

The associated cost per period for the entire time window (which will be denoted as
C1

τ,z) contains the setup cost for scheduling a manufacturing lot in τ as well as the cost
for carrying products in the serviceables inventory. Furthermore, the cost for holding
the recoverable products in stock need to be taken into account as well. This gives for
the cost per period for option 1 by using equation (2) for determining yR

t and equation
(3) for yM

t

C1

τ,z =

KM + hM ·
z∑

t=τ

yM
t + hR ·

z∑
t=τ

yR
t

z − τ + 1
. (8)

Option 2: Remanufacture (and manufacture if necessary)

The second option introduced by Teunter et al. (2006) seeks to remanufacture in pe-
riod τ . However, as the amount of recoverable products might not be sufficient to
cover the entire demand up to period z a manufacturing lot is set up in τ if necessary.
Thus, both lot sizes depend on the available number of recoverable parts which is by
definition yR

τ−1 + Rτ . Both lot sizes are presented in the following formulae:

xM
τ = max

(
z∑

t=τ

Dt − yR
τ−1 − Rτ , 0

)
, xR

τ = min

(
yR

τ−1 + Rτ ,

z∑
t=τ

Dt

)
. (9)

Forcing the possibly required manufacturing lot to be scheduled in τ can result in
an inefficient solution when there is no immediate demand for at least one of the
manufactured products. Hence, all products manufactured in τ will be held in the
serviceables inventory unnecessarily until they are needed. An opportunity to overcome
this deficiency will be presented later in this chapter.

Next to the holding cost for the recoverables and serviceables stock, the cost per
period for the second option C2

τ,z can contain both setup costs. As a manufacturing
lot is only needed when the number of recoverable parts is not sufficient, the binary
variable γM

τ represents this fact by being one if a manufacturing run is required and
zero else. Therefore, the cost per period for the second option can be formulated as

C2

τ,z =

KR + KM · γM
τ + hM ·

z∑
t=τ

yM
t + hR ·

z∑
t=τ

yR
t

z − τ + 1
. (10)
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For each time window, C1
τ,z is compared to C2

τ,z and the smaller one is chosen.
Moreover, the basic idea of the Silver-Meal heuristic is applied which means that a
time window is extended as long as the smaller cost of both options does not increase.
Further on, the heuristic approach introduced by Teunter et al. (2006) will be referred
to as the SM2 heuristic since two distinct options are evaluated. Teunter et al. (2006)
have tested this heuristic extensively in their contribution. As a result of their numerical
study a mean deviation to the optimal solution of 8.3% was observed over all instances.
By generalizing the SM2 heuristic with two additional options derived from the results
of the corresponding static model we will enhance the heuristic’s performance. This
approach (which will be further on denoted as the SM4 heuristic) is presented in the
following.

2.3 The SM4 heuristic

Although the dynamic lot sizing model with returns and remanufacturing has not
been analyzed extensively in the literature so far, the corresponding static model (with
constant demand and return rates) has received much more attention. Among many
contributions, two shall be mentioned explicitly. In his work, Schrady (1967) was the
first author who examined this model context. His option on how to handle this prob-
lem effectively was to create a cyclic pattern that is repeated over the entire infinite
planning horizon. This cyclic pattern begins with a manufacturing lot and is always
followed by a constant number of remanufacturing lots R. Teunter (2001) generalizes
these findings by introducing cycles that commence with one remanufacturing lot which
is always succeeded by a constant number of manufacturing lots M . He argues as well
that in order to be efficient each cycle should have either one remanufacturing or one
manufacturing lot. As this provides very good solutions to the static problem both
cyclic patterns can be incorporated into the dynamic lot sizing model with returns and
remanufacturing which will be presented subsequently. While the third option analyzes
time windows with a manufacturing lot in τ that is followed by remanufacturing lots in
later periods, a time window in the fourth option commences with a remanufacturing
lot in τ that is succeeded by a number of manufacturing lots. Two promising effects can
be observed when applying both additional options. At first, by considering more than
one lot in each time window the recoverables inventory which is a critical cost factor
can be controlled more accurately. Furthermore, contrary to the first two options the
zero-inventory property is only presumed to hold for the first period of a time window
but not within each time window any more. Hence, a (re)manufacturing lot can be
scheduled although the initial serviceables inventory of the period under consideration
is not zero.

Option 3: Manufacture first, remanufacture (in multiple lots) later

When applying this option, a manufacturing lot is scheduled in τ that is followed
by one or more remanufacturing lots in the consecutive periods τ + 1 to z. As the
amount of products available in the recoverables stock needs not to be sufficient the
manufacturing lot in period τ must replenish the unavailable products. The number of
unavailable products in each period t ranging from τ + 1 to z (which will be referred

6



to as the net requirement NRt) can be determined as

NRt =
t∑

i=τ

(Di − Ri) − yR
τ−1 ∀t = τ + 1, .., z. (11)

As a manufacturing lot has to be scheduled in period τ and no remanufacturing takes
place in that period, the lot size xM

τ cannot be smaller than Dτ as the entire demand in
the first period of the time window has to be met. On the other hand, this lot must be
able to complement all unavailable products and corresponds therefore at least to the
maximum of all net requirements. Calculating the manufacturing lot size for period τ

differs from equation (9) as the timing of all returns and demands has to be taken into
account for this option. Thus,

xM
τ = max

(
Dτ , max

t=τ+1,..,z
(NRt)

)
, xR

τ = 0. (12)

In all consecutive periods of the time window under consideration no manufacturing
lot will be set up. However, as the amount manufactured in period τ can be sufficient
to satisfy the customer demand at least partly between period τ + 1 and z only the
actually required products are remanufactured in these periods in order to avoid un-
necessary holding cost for the serviceables inventory. By establishing equation (12) it
is ensured that in every period between τ + 1 and z enough products are available in
the recoverables stock to be remanufactured. The resulting lot sizes can be visualized
as

xM
t = 0, xR

t = max

(
t∑

i=τ

Di −

t−1∑
i=τ

xR
i − xM

τ , 0

)
∀t = τ + 1, .., z. (13)

After creating a first initial solution for option 3 using formulae (12) and (13)
it must be noticed that the total cost per period of this option can be very high
especially when the setup cost KR is large. Therefore, a greedy algorithm has been
formulated in addition that commences in τ + 1 and checks two possible improvement
opportunities for each remanufacturing lot. Common to both opportunities is that
all products obtained in the remanufacturing lot under consideration (which has been
originally scheduled in period k and contains P products) are replenished alternatively.
Therefore, no remanufacturing lot is scheduled in period k in order to save the setup
costs incurred. Firstly, the potential cost saving is evaluated if the manufacturing lot
in τ is increased by P . Since this decision affects all remanufacturing lots between τ +1
and k− 1 formula (13) is applied to determine the corresponding lot sizes. The second
opportunity comprises the option to increase the last remanufacturing lot before period
k by P products as long as this amount can be found in the recoverables stock. On the
other hand, if the recoverables stock does not contain enough recoverable products the
difference is manufactured additionally in period τ and again all remanufacturing lots
that are affected by this decision are determined using formula (13). Obviously, this
option cannot be evaluated for the first remanufacturing lot in a time window. Both
improvement opportunities are checked for each remanufacturing lot between τ + 1
and z, i.e. at most 2 · (z − τ) different schedules are examined. The schedule yielding
the largest cost saving is chosen and the entire proceeding is repeated until no further
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improvement can be achieved. Finally, after the greedy local search has been applied,
a number of remanufacturing lots R succeeds one manufacturing lot. The total cost
per period for option 3 can thus be formulated as

C3

τ,z =

R · KR + KM + hM ·
z∑

t=τ

yM
t + hR ·

z∑
t=τ

yR
t

z − τ + 1
. (14)

Option 4: Remanufacture first, manufacture (in multiple lots) later

This option seeks to establish a time window in which a remanufacturing run is started
in period τ which is followed by at least one manufacturing lot in the consecutive peri-
ods. By assumption, the entire recoverables stock is remanufactured in the first period
of the time window τ and no manufacturing lot is set up. Obviously, if the number
of available recoverable products in period τ is not sufficient to meet the demand of
that period Dτ , option 4 cannot be applied and option 2 provides the only solution
incorporating a remanufacturing lot in τ . On the other hand, whenever at least one
manufacturing lot is required to satisfy the demand up to period z and xR

τ > Dτ option
2 will be always dominated by option 4 because the holding cost for the serviceables
inventory is smaller. This gives for period τ

xM
τ = 0, xR

τ = yR
τ + Rτ . (15)

In order to create an initial solution to this option the lot sizes of the remaining periods
have to be determined as well. In each period from τ + 1 to z all missing parts are
manufactured as there are no further remanufacturing lots allowed in this time window.
The respective formulae are:

xM
t = max

(
t∑

i=τ

Di −
t−1∑
i=τ

xM
i − xR

τ , 0

)
, xR

t = 0 ∀t = τ + 1, .., z. (16)

Similar to option 3, the initial solution can be quite expensive if a large setup cost
KM prevails. Therefore, a greedy algorithm can be used again to search for possible cost
reductions. In contrast to the third option, this algorithm reviews all manufacturing
lots. It begins by checking whether it would be less expensive to combine the second and
the third manufacturing lot of the time window and proceeds in this manner (merging
the third and the fourth manufacturing lot, ...) to the end of the corresponding time
window. The alternative revealing the largest cost reduction is implemented and the
proceeding is restarted until no further cost reductions are possible. Consequently, one
remanufacturing lot is followed by a number of manufacturing lots M which can be
used to determine the associated cost per period of the fourth option:

C4

τ,z =

KR + M · KM + hM ·
z∑

t=τ

yM
t + hR ·

z∑
t=τ

yR
t

z − τ + 1
. (17)

Including options 3 and 4 into the decision-making process extends the original
Silver-Meal based heuristic introduced by Teunter et al. (2006). We will refer to this
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heuristic as the SM4 heuristic as the decision to extend the time window will be made
by comparing the resulting costs per period of all four options. The following chapter
tests both heuristics extensively in a numerical experiment to assess its performance.

3 Numerical experiments

In order to guarantee a fair comparison to the original heuristic of Teunter et al.

(2006) the experimental design that has been to used to conduct the numerical study
presented in this section corresponds mostly to their design. A full factorial study
has been chosen in which all instances examined have a planning horizon T of twelve
periods in common. Both setup cost parameters KM and KR can take on values of
200, 500, and 2000. While the rate of keeping a serviceable product for one period in
stock (hM) is set to one holding a recoverable product for one period (hR) can cost
0.2, 0.5, and 0.8. All customer demands Dt have been drawn randomly from a normal
distribution with a mean of 100 units per period. Likewise, the amount of returned
products per period Rt has been drawn from a normal distribution with a mean of
30 (i.e. a return ratio of 30% prevails), 50, and 70. Both normal distributions were
further distinguished into a small and a large variance setting. While the coefficient
of variation in the small variance setting has always been set to 10% it takes on the
value of 20% in the large variance setting. Contrary to the experiment conducted in
Teunter et al. (2006), we omit the use of different demand and return patterns such as
positive/negative trends and seasonal patterns. For each demand and return setting
20 instances (instead of 4 in their study) were drawn randomly. Therefore, the full
factorial study considers in total 34 · 22 · 20 = 6480 different examples.

For all examples both heuristic results have been calculated whereas CPLEX 11 has
been used to determine the optimal solution. Both heuristics are evaluated by using
the percentage gap to the optimal solution as a performance measure. The results of
the numerical experiments are presented in Table 1.

By including two additional options in the decision-making process, the average
performance of the SM2 heuristic improves slightly from 7.5% to 6.1% over all in-
stances. Comparing the performance of the SM2 heuristic to the original numerical
study in Teunter et al. (2006) it must be noticed that the performance in our study is
slightly better which can be attributed to the differences in the experimental design.
Although the SM4 heuristic reduces the average percentage gap in almost all settings,
an improvement of more than 2% can only be observed for a small setup cost for
remanufacturing (KR = 200) and a large holding cost for the recoverables inventory
(hR = 0.8). Both heuristics seem to perform well when the return ratio or the setup
cost for manufacturing KM is low and when the setup cost for remanufacturing KR is
high. Contrary, for the opposite directions the performance of both heuristics is not
sufficient with average errors of more than 7%. In the next section the heuristic solu-
tions are examined whether small modifications can be made to the initially obtained
solution in order to reduce the total cost significantly.
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Table 1: Performance of the SM2 and SM4 heuristic

Percentage cost error to the optimal solution
Average Standard deviation Maximum

SM2 SM4 SM2 SM4 SM2 SM4

All instances 7.5% 6.1% 7.9% 7.6% 49.2% 47.3%

Demand
Small variance 7.2% 6.0% 7.9% 7.6% 43.6% 47.3%
Large variance 7.8% 6.1% 8.0% 7.5% 49.2% 43.9%

Returns
Small Variance 7.3% 6.1% 7.8% 7.6% 47.2% 47.3%
Large Variance 7.7% 6.1% 8.0% 7.5% 49.2% 46.3%

Return ratio
30% 5.5% 3.7% 5.5% 4.5% 31.3% 28.5%
50% 8.5% 7.3% 9.4% 8.2% 40.1% 41.8%
70% 8.4% 7.2% 8.0% 8.7% 49.2% 47.3%

KM

200 4.3% 3.4% 4.5% 3.6% 20.2% 17.6%
500 5.4% 3.9% 5.2% 3.9% 25.1% 19.3%
2000 12.8% 10.9% 9.9% 10.4% 49.2% 47.3%

KR

200 10.9% 6.6% 9.1% 7.8% 49.2% 40.2%
500 7.9% 8.1% 6.6% 8.2% 34.7% 47.3%
2000 3.7% 3.5% 6.0% 5.7% 29.4% 25.7%

hR

0.2 5.9% 5.3% 8.0% 8.0% 42.9% 47.3%
0.5 7.5% 6.5% 7.7% 7.6% 49.2% 42.4%
0.8 9.1% 6.3% 7.7% 7.0% 44.4% 40.3%

4 Improvement phase

A commonly applied methodology to improve the performance of lot sizing heuristics
is to use metaheuristics (see, for instance, Jans and Degraeve, 2007, for an overview).
However, metaheuristics rely on an appropriate selection of parameter values which
itself might be hard to determine. Therefore, this contribution omits the use of meta-
heuristics and tries to enhance the solutions found by the SM2 and SM4 heuristic by
examining two possible improvement opportunities.
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Improvement 1: Check whether two consecutive time windows can be combined

A first improvement to the initial solution can be found by checking whether a cost
reduction can be achieved if two consecutive time windows are combined. Hence, it is
examined whether one of the four (two) options introduced in chapter 2 for the SM4

(SM2) heuristic could improve the solution for an integrated time window that com-
prises both initial time windows.

Improvement 2: Check whether a remanufacturing lot can be increased

Being a myopic heuristic approach, the SM2 and SM4 heuristics neglect all decisions
beyond the time window currently examined. Thus, some solutions revealed that re-
coverable products are held in stock until the end of the planning horizon although they
could have been used instead of manufacturing them. Hence, the second improvement
commences in the first period of the planning horizon and checks for every remanufac-
turing lot if more could be remanufactured to save holding costs in the recoverables
inventory. However, by doing this the holding costs increase in the serviceables inven-
tory. Since hM > hR this procedure can only be profitable if carrying those units in the
serviceables inventory is shorter than holding them in the recoverables stock. In order
to be efficient, the manufacturing lot that is reduced must be scheduled either directly
before or after the remanufacturing lot under consideraton, i.e. no other remanufac-
turing lot is scheduled in between. Whenever a remanufacturing lot suffices these
prerequisites, the maximum amount that can be remanufactured in addition without
changing the initial solution structure is the least recoverable inventory of the current
and all subsequent periods. By remanufacturing more, either the next or the last man-
ufacturing lot can be decreased by the same amount. Of course, the additional amount
to be remanufactured in period t cannot exceed xM

l (whereas l indicates the period of
the chosen manufacturing lot) and needs to be adapted if this situation occurs. If the
associated total cost can be decreased, the remanufacturing lot in period t is increased
and the procedure goes on until the end of the planning horizon.

As mentioned above, both improvements can be applied to the solutions obtained
by the SM2 and SM4 heuristic. Table 2 summarizes the results of the numerical study
in which the superscript + indicates that the initial solution has been examined for
both improvements.

It can be seen that the performance of the SM4 heuristic could be enhanced sub-
stantially from 6.1% to 2.2% by applying both improvements. The larger influence on
the solution improvement can be credited to improvement 1 which was able to affect
the SM4 heuristic especially. That is because by analyzing all four options introduced
in Section 2 a larger flexibility in satisfying the customer demand is established in
comparison to the SM2 heuristic. Regarding the zero-inventory property, 61.4% of all
heuristic solutions obtained by the SM4 heuristic revealed at least one period in which
the zero-inventory property did not hold. In contrast to the original results of the
SM2 heuristic the SM+

4 heuristic could reduce the percentage gap to less than half of
its original value in almost all settings examined. When comparing the median of all
instances the improvement is even more noticeable. While the median of all instances
has been 5.6% for the SM2 heuristic the SM+

4 heuristic could reduce it to around
1.0%. Interestingly, the SM+

4 heuristic is able to stabilize the average performance of
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Table 2: Performance of the SM+

2 and SM+

4 heuristic

Percentage cost error to the optimal solution
Average Standard deviation Maximum

SM+

2 SM+

4 SM+

2 SM+

4 SM+

2 SM+

4

All instances 6.9% 2.2% 7.9% 2.9% 49.2% 24.3%

Demand
Small variance 6.6% 2.1% 7.9% 2.8% 43.5% 18.9%
Large variance 7.2% 2.4% 8.0% 3.0% 49.2% 24.3%

Returns
Small Variance 6.8% 2.2% 7.8% 2.9% 47.2% 21.1%
Large Variance 7.1% 2.3% 8.0% 2.9% 49.2% 24.3%

Return ratio
30% 4.9% 1.2% 5.4% 1.8% 31.3% 12.1%
50% 8.0% 2.3% 9.3% 2.7% 39.8% 16.2%
70% 8.0% 3.3% 8.0% 3.5% 49.2% 24.3%

KM

200 3.5% 2.3% 4.0% 2.6% 20.2% 13.5%
500 4.8% 2.1% 4.9% 2.5% 23.7% 12.8%
2000 12.6% 2.3% 9.9% 3.4% 49.2% 24.3%

KR

200 10.0% 1.9% 9.4% 2.1% 49.2% 11.8%
500 7.3% 3.4% 6.6% 3.2% 34.7% 19.1%
2000 3.6% 1.4% 5.9% 2.9% 29.4% 24.3%

hR

0.2 5.8% 1.7% 8.0% 2.5% 42.9% 21.1%
0.5 7.0% 2.3% 7.7% 3.0% 49.2% 24.3%
0.8 8.1% 2.8% 7.8% 3.0% 44.4% 20.6%

all settings to lie between 1.2% and 3.4%. Although the SM+

4 heuristic has reduced the
maximum deviation from the optimal solution considerably as can be observed in the
right hand side of both Tables 1 and 2 there are still instances which perform poorly.
Nevertheless, the SM+

4 heuristic was able to achieve that in only 2% of all instances the
percentage gap was larger than 10%. On the contrary, 18% of all instances exhibited
a percentage gap of more than 10% when using the SM2 heuristic.
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5 Conclusion and Outlook

This contribution extends the seminal work of Teunter et al. (2006) in the area of simple
heuristics for the dynamic lot sizing problem with returns and remanufacturing. In their
work the authors introduced a Silver-Meal based heuristic that analyzes two options to
meet the customer demand. This work included two more options to be analyzed that
are well-known from the corresponding static lot sizing problem. By doing this, the
percentage gap to the optimal solution which has been used as a performance measure
could be reduced slightly from 7.5% to 6.1% (mean over all instances). Afterwards,
two simple procedures were applied to the initial solutions found by the SM2 and
SM4 heuristic to improve the results they created. The average percentage gap to
the optimal solution could be reduced over all instances to 2.2% when using the SM4

heuristic’s solution as initial one. Comparing this result to the heuristic introduced by
Teunter et al. (2006), the average percentage gap has thus been reduced to less than
half of its original value.

Future research efforts can be directed to a more detailed modelling of the reman-
ufacturing process. While in this contribution all remanufacturing operations have
been subsumed to a single stage, in industry the process of remanufacturing contains
next to the disassembly of returned products also the cleaning and rework of the parts
obtained, and finally the re-assembly into as-good-as-new products. Furthermore, in-
cluding the option to dispose of recoverable parts when they are not required and
variable unit cost for remanufacturing and manufacturing alter the decision-making
process. Another promising research opportunity would be to test the heuristics in a
rolling planning horizon environment. As has been shown by Blackburn and Millen
(1980) the heuristic might outperform even the optimal solution because of its schedule
stability. Another interesting aspect of rolling planning horizon environments that can
be analyzed in this context is the uncertainty of demand and return realizations at
the end of each planning roll which becomes more accurate as closer one gets to this
period.
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