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Abstract As we move into an increasingly connected world for urban travel
planning, we need to expand our concept of itinerary planning to meet the mul-
timodal and diverse needs of today’s traveler. Often, urban itinerary planning
applications seek to minimize route travel time between two specific places at
a certain time. Our approach provides travelers with a set of optimal nearby
stops that presents a number of traveler preferences in an easily comprehen-
sible and quickly calculable manner. We display first and last mile stops that
fall on a Pareto front based on multiple criteria such as travel time, number
of transfers, and frequency of service. Our algorithm combines stop and route-
based information to quickly present the traveler with numerous nearby quality
options for their itinerary decision-making. We expand this algorithm to in-
clude multimodal itineraries with the incorporation of free-floating scooters to
investigate the change in stop and itinerary characteristics. We then analyze
the results on the star-shaped urban transit network of Göttingen, Germany,
to show what advantages stops on the Pareto front have as well as demon-
strate the increased effect on frequency and service lines when incorporating
a broadened multimodal approach.
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1 Introduction

Modern transit travelers expect a high quality of service and have varying
priorities when creating their individual itineraries. Currently, urban itinerary
planning is focused on using time-dependent, route-based optimization to min-
imize the traveler’s travel time. However, while this itinerary may be optimal
at a given moment, this may change with the time of day or with traveler
itinerary preferences. While applications like GoogleMaps, City Mapper, and
others have made large strides in recent years of developing their navigation
tools to be traveler-friendly, there still needs to be a way to make information
about relevant nearby stops for the first and last mile more transparent to the
traveler considering a multitude of traveler preferences. Studies like Sharples
(2017) focus qualitatively on what is needed to educate travelers in order
to increase “traveler competence” to be able to make better use of available
transport options. Our stop-based optimization (SBO) aggregates detailed in-
formation from transit timetables to give the traveler a simplified overview of
multiple criteria for their itinerary planning.

Our SBO approach incorporates a mixture of route and stop-based informa-
tion to provide a Pareto-optimal set of nearby stops for the first and last mile
of the traveler’s itinerary. The identification of these stops gets more complex
as multiple innovative mobility services, such as scooter-sharing, have emerged
recently. Therefore, the number of available nearby stops, in particular for the
first and the last mile, increases greatly. This implies higher complexity of
identifying a Pareto-optimal set of request-specific relevant initial and final
stops, but it also gives the traveler additional options. The complexity in-
creases further as travelers have varying individual preferences. For instance,
besides travel time, price, and number of transfers, travelers care about fre-
quency and number of transit lines. Additionally, the overall walking distance
can be of high importance for the traveler. Presenting diversified solutions in
a multimodal setting to the traveler is important as it broadens a traveler’s
decision making according to personal preferences and context, like personal
mobility or time of day.

We choose to complement standard route-based parameters with stop-
based information to enrich our SBO approach, which uses both quickly calcu-
lable route information as well pre-computed stop information. Therefore, the
computational time for a specific request can be reduced significantly and the
most relevant nearby stops can be presented to the traveler to refine itinerary
planning. Figure 1 shows an illustrative example. Here, we assume for sim-
plicity that a traveler has three stops available in walking distance with two
traveler preferences considered (travel time and number of transfers for exam-
ple). The comparison of stop characteristics is made transparent to the traveler
using bubbles. Stop S3 would not be displayed to the traveler in this fictitious
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Fig. 1: Generic Example For Identifying Alternative Stops

example as is it dominated by at least one other stop. While Stop S1 is best for
the first preference, and Stop S2 is best for the second considered preference.
This simplified approach can incorporate multiple preferences while giving the
most relevant, non-dominated nearby stops and their characteristics to the
traveler.

In the following, we will analyze the potential of combining route-based
and stop-based information to better inform the traveler of the characteristics
of their first and last mile decisions. Our experiments are based on the public
urban bus network of Göttingen, Germany. In addition to the bus network
with walking edges, we will consider unscheduled, innovative modes of trans-
portation, such as electric scooters. The novelty of this approach differs from
route-based planning to focus more on the choice of stops for the first and last
mile of the itinerary by including stop-based information into the decision-
making process. We incorporate multiple traveler preferences and allow for
various modes of transportation within our model to build upon recent work
in travel planning.

Section 2 focuses on how our work contributes and builds upon current ur-
ban itinerary planning literature. Section 3 highlights the problem structure,
our stop-based methodology, and the algorithm we use to identify the Pareto-
optimal stops. Section 4 outlines our experiments that analyze the quality of
stops on the urban transit network of Göttingen, Germany, and also incorpo-
rates scooters as a comparative example of how our approach can expand to
multimodal networks. Finally, Section 5 summarizes our approach and its im-
pact on multimodal urban transit as well as offering further research avenues
for expansion of this approach.



4 Thomas Horstmannshoff, Michael Redmond

2 Related Work

Urban itinerary planning research has markedly expanded in recent years as
it becomes easier to incorporate into travelers’ decision-making. In this sec-
tion, we review how traveler preferences can help expand classic route-based
optimization to help multi-preference travelers navigate complex multimodal
networks. Section 2.1 highlights various multi-criteria and multimodal opti-
mization research that motivated the development of our algorithm for find-
ing high quality, Pareto-optimal first and last mile stops. Section 2.2 explores
current work on incorporation of traveler preferences on itinerary decision-
making.

2.1 Multimodal Routing

Traditional route-based optimization typically requires a fixed origin, destina-
tion, and start time. However, recent research has expanded this route-based
optimization view. Delling et al. (2013a,b) use public transit route planning
techniques to propose a bi-criteria journey planning algortihm. The authors
use optimization rounds of the multimodal network to produce a Pareto-
optimal set while limiting the computational time. Dib et al. (2017) introduce
a label-based multi-criteria routing algorithm considering travel time, num-
ber of transfers and the total walking time as traveler preferences. Nasibov
et al. (2016) examine route planning from a perspective of stop-based prefer-
ence degrees. The authors develop a fuzzy preference model that factors in the
stop’s activity, the count of the transit lines that run through that stop and
the walking distance to the stop. Our approach introduces a user-oriented ag-
gregation of detailed route-based search into more comprehensible stop-based
information.

Redmond et al. (2020) limit the computational time of multimodal driving
and flight networks by focusing on a set of nearby first and last mile airports
for the traveler’s decision. This focus on selecting nearby airports showed that
always myopically choosing the closest or largest nearby airport can result in
less reliable itineraries. Bucher et al. (2017) propose to pre-compute candidate
stops for the first and the last mile in a pre-processing step of the actual rout-
ing. Based on the candidate solutions, the routing algorithm focuses primarily
on these. Therefore, the computational effort can be significantly reduced by
considering a select set of nearby first and last mile stops.

Nykl et al. (2015) integrate these multiple traveler preferences using a
meta-graph that is able to incorporate multimodal journeys. They also use
a multi-criteria approach with time, distance, emissions, physical effort, and
price as their parameters. Their approach is defined by a two-stage algorithm
that capitalizes on using existing journey planning meta-data to set the weights
on their graph. McKenzie (2019) examines scooter and bike-share usage in the
United States capital of Washington, D.C. The author focuses on the spatial
and temporal distributions of scooter-sharing itineraries in the area, and the
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similarities and distinctions around the city highlight itinerary purpose and
regional differences. Our research integrates multimodal networks with traveler
preferences for an easily-to-understand and quickly computed tool for itinerary
planning.

2.2 Traveler Preferences

Understanding what is important to a traveler while navigating an urban
transit network is key to developing itinerary planning tools. A considerable
amount of literature has been published to identify traveler preferences for mul-
timodal mobility by mainly analyzing traveler surveys (Willing et al. (2017);
Ehmke et al. (2016); Spickermann et al. (2014); Stopka (2014); Esztergár-Kiss
and Csiszár (2015); Clauss and Döppe (2016)). Besides the preferences of travel
time, price and number of transfers, which are already considered by the ma-
jority of mobility apps, further relevant traveler preferences can be identified
such as walking distance and waiting time.

Grotenhuis et al. (2007) outlines how integrated multimodal information
can affect a traveler’s choice. The authors highlight what types of information
are necessary and the importance travelers place on travel time and mini-
mizing effort in itinerary planning. Mulley et al. (2018) demonstrate through
stated choice experiments that travelers are generally willing to walk further
for a more frequent transit service. Additionally, Yan et al. (2019) show the
significance that low quality last-mile stops have in deterring travelers from
using transit options. Thus, there is a need to incorporate additional prefer-
ences to increase the option quality of first and last mile stops in itinerary
planning. Recent research has attempted to model these preferences in trav-
eler decision-making. Yang et al. (2020) develop a Markov game to sequence
travelers’ interactive transit mode choices based on a set of features. Wu et al.
(2018) use a preference-learning algorithm to predict traveler decisions when
evaluating a new transit plan. The goal of this paper is to incorporate these
traveler preferences into a comprehensive decision tool for travelers trying to
navigate a multimodal urban transit network.

3 Framework for Identifying Relevant First and Last Mile Stops

We propose a new framework to identify request-specific stops for the first
and the last mile for travelers. As shown in Section 2.1, enormous progress has
been made in multimodal routing in recent years. These approaches neglect
evaluating stops to start and end the itinerary and making the stop charac-
teristics transparent to the traveler. Hence, we focus on these in the presented
framework.

As mentioned in Section 2, there is extensive research on the benefits of
incorporating unscheduled modes into an itinerary that takes advantage of
popular trends in bike-sharing and scooter-sharing. We address how this would
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look in our algorithm by showing how relevant stops for the first and last mile
can change based on the availability of these modes. We will model them
based on simulated and schedule-based data and see in our experiments how
this could affect the traveler’s decision criteria and the Pareto-optimal set.

3.1 Stop-based Methodology

Travelers expect quick identification of relevant nearby stops for their individ-
ual itinerary from their specific origin O to their destination D. As shown in
Section 2, most itinerary planning algorithms merely consider route-based in-
formation to enable door-to-door mobility for the traveler. Our approach incor-
porates stop-based information as additional parameters, and thereby enriches
existing route-based information with stop-based information. In the following
section, we identify relevant stops for travelers based on their respective re-
quests on an undirected network graph (3.1.1), which has been supplemented
by stop-based information (3.1.2). This sets the framework for discussion of
our algorithm for identifying and presenting these stops in Section 3.1.3.

3.1.1 Network graph

We define a public urban transit network of an undirected graph G = (V,A)
where V represents all possible stops in the transit network. The set of edges A
represents legs between these stops. Each leg a ∈ A is defined by a determinis-
tic travel time, either using the existing bus network or a deterministic walking
or scooter time.

By running a standard Dijkstra’s algorithm (Dijkstra et al., 1959) on this
network optimized by overall travel time, we are able to calculate the following
route-based information quickly:

– Overall travel time: This parameter provides information on the travel time
to get from O to D. The overall travel time includes the time from origin O
to the first transit stop, the cumulatively summed travel times of all modes
used in public transit, and from the final transit stop of the itinerary to
destination D.

– Overall walking time: This parameter provides information on the required
combined walking time for the specific itinerary. Hereby, we assume a pre-
defined walking speed.

– Number of transfers: This parameter provides information on the minimum
times the traveler has to transfer from one service to another.

3.1.2 Stop-based information

We enrich the discussed route-based parameters with additional stop-based
information for every stop v ∈ V to have a more sophisticated multi-criteria
decision-making approach identifying relevant nearby stops for the traveler.
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This stop-based information can be easily precomputed using the timetable
for the respective transit network. As additional stop-based parameters, we
consider the following:

– Frequency: This parameter provides information on how often a bus is
scheduled on average to access a specific stop. This information gives in-
sight into how long a traveler has to wait in case of missing a bus or if a bus
fails on short notice. A stop with a smaller frequency in average minutes
between bus lines is more ideal for a traveler than a stop with a larger,
more infrequent average time between service.

– Number of bus lines: This parameter provides information on how many
bus lines service a stop. As more bus lines service a stop, the traveler has
more alternatives available. Thus, a higher number of bus lines is advanta-
geous for the traveler in comparison to a lower number of bus lines servicing
a bus stop.

For route-based information as well as for stop-based information an exten-
sion with further parameters is possible. For instance, additional route-based
information can be the overall waiting time. Additional stop-based informa-
tion network centrality measures, such as closeness and degree centrality, can
be integrated in future work.

3.1.3 Framework for identification of relevant nearby stops

Based on the network graph and additional stop-based information, we present
the framework for identifying a set Straveler of traveler-oriented nearby stops to
achieve door-to-door mobility. Algorithm 1 shows the basic components of the
framework. Given O andD, we identify a set of stops nearby the origin SChoice

O ,
which are in walking distance (line 1). Then, for each s ∈ SChoice

O (line 2), the
overall travel time sdijk as well as the optimal path from s to D is calculated
by solving a standard Dijkstra’s algorithm minimizing the overall travel time
(line 3).

Algorithm 1 Stop-based optimization framework

1: SChoice
O ← IdentificationOfStopsInWalkingDistance(O,D)

2: for s ∈ SChoice
O do

3: sdijk, path ← Dijkstra(s,D)
4: s#transfers, swalkingT ime ← FurtherRouteBasedInformation(s, path)
5: sfreq, s#lines ← StopBasedInformation(s)
6: end for
7: Straveler ← RemovalOfDominatedStops(SChoice

O )

The parameters for number of transfers s#transfers as well as walking time
swalkingTime are derived easily in a subsequent step after solving Dijkstra’s
algorithm using path information retrieved in the preceding step (line 4).
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In the next step, based on available scheduled network data, pre-computed
information about the frequency sfreq and number of bus lines s#lines are
added as additional stop-based information for each stop s ∈ SChoice

O (line 5).
This stop-based data needs to be pre-computed based on the transit network
details to ensure a quick runtime of the algorithm.

Finally, after all parameters for each stop s ∈ SChoice
O have been quickly cal-

culated, dominated stops are removed. This results in a set of Pareto-optimal
stops Straveler, which can then be presented to the traveler with all relevant
information. A stop s1 dominates a stop s2 if s1 is superior to s2 according to
at least one parameter and not inferior regarding all other parameters (Delling
et al., 2013a). It is worth mentioning that we apply a minimization objective in
this multi-criteria decision-making setting. Therefore, s#lines has to be trans-
formed for a minimization setting before it is considered in any domination
rules. Remaining stops build up the Pareto front and give the traveler their
set of high quality first and last mile stops.

Fig. 2: Districts for Experiments
Adapted by Klatt and Walter (2011)

4 Experimental Results

This section implements Algorithm 1 from Section 3.1.3 in a medium-sized
transit network in the city of Göttingen, Germany. This is a university town
with a star-shaped structure with the downtown and train station at the center,
similar to many other European cities. Section 4.1 outlines the experiments
run with our dataset to provide varied results from different areas of the city.
We demonstrate in Section 4.2 the benefit and effect that considering stop and
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route information simultaneously can have in expanding the traveler’s options.
Sections 4.3 and 4.4 detail the differences that arise when scooters are added
to the network.

4.1 Design of Experiment

To discover the effects that our stop-based algorithm has on transit networks,
we consider all 18 districts of the city of Göttingen as shown in Figure 2.
Our experiments run Algorithm 1 from each of the 18 districts to every other
district for a total of 306 Origin-Destination combinations. The origin and
destination for each experiment is located at the center of the district, and
nearby stops (within 0.5 kilometers) are potential relevant stops for the first
and last mile.

The bus network is based on the real-world schedule of Göttingen, Ger-
many, reduced to one day of scheduled operations. We limit the maximum
walking distance between two stops to 500 meters, but this could be expanded
later to see the effect on experimental results. We assume a walking speed of
5km/h.

Figure 3 demonstrates an example output of Algorithm 1 of nearby stops
in Göttingen. Here, the traveler’s origin is marked in gray. The stops that are
dominated are displayed in red and would not be shown to the traveler. Each
stop on the Pareto front is shown in blue, and its characteristics are displayed
with bubbles to represent how each stop compares to others on the Pareto
front. For example, the optimal travel time would be displayed as a full circle
with “best” while an alternative stop choice may be partially shaded and have
+1.2 minutes in the label. This algorithm output gives the traveler a complete
picture of the benefits and drawbacks of all nearby stops.

4.2 Stop-relevant Results

To investigate the impact that Algorithm 1 had on identifying relevant stops,
we performed experiments between Origin-Destination (OD) centroids of each
district only considering walking and bus edges for v ∈ V . We found that
there were on average 10 stops within walking distance of both the origin
or destination. However, when using Algorithm 1, there were only a quarter
(2.4) of these stops on the Pareto front. Additionally, the average travel time
between origin and destination was approximately 23 minutes with buses that
frequent the chosen stops coming every 24.5 minutes.

Table 1 presents a comparison between relevant stops on the Pareto front
to dominated stops. While on average around 2% overall travel time savings
and 4% walking time can be seen, relevant stops have a 21% more frequent
schedule in comparison to stops not presented to the traveler. Thus, the largest
savings for travelers using this method arise in the frequency, number of lines,
and number of transfers.
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Fig. 3: Example Identification of Nearby Stops for a Traveler

Table 1: Savings Potential with respect to different Parameters

Time (min) Walk (min) Freq (min) Lines Transfers
Relevant Stops 22.7 6.6 24.5 2.6 1.4
Dominated Stops 23.1 6.9 31.0 2.1 1.5
Savings Potential 2% 4% 21% 20% 12%

Further examining the non-dominated stops yields the closeness to opti-
mality for stops on the Pareto front in each category as shown in Figure 4.
Here, we can see that 75% of the stops on the Pareto front add an additional
2-3 minutes of overall time and walking time to the traveler’s itinerary. Thus,
most stops on the Pareto front reveal first and last mile stops that do not add
unreasonable amounts of time to the itinerary.

These results indicate that by evaluating multiple preferences when con-
sidering nearby stops, we can identify high quality stops with a number of
advantages. The Pareto front stops give much more frequent service and num-
ber of lines while displaying options that are usually adding only a few minutes
to travel and walking time. This approach can help travelers focus on these
non-dominated stops and evaluate the preferences that are important in their
itinerary planning.
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Fig. 4: Additional Time for Stops in the Pareto Set

4.3 Results from Scooter Implementation

Following the initial experiments that tracked how stops were chosen based
on the parameters, we investigated the effect that incorporating an additional
mode of transportation had on the results. Specifically, we focused on how
positioning scooter nodes close to bus stops in each region of the city would
expand and alter the Pareto-optimal stops shown to the traveler.

To achieve this, in each region we assume there are scooter nodes located
near the region center and also scooter edges that connect any two bus nodes
within 1.5 kilometers of each other. If the two bus nodes are within 0.5 kilo-
meters of each other, then a walking edge supersedes this scooter edge and is
added to the network instead. The results of these added free-floating scooter
edges are displayed in Table 2.

Table 2 demonstrates that by adding scooters as first and last mile modes
to the network, the options for travelers are expanded to more than twice
that of the original network. While the average time of the shortest path
slightly increases, the traveler is presented with stops that have a number of
attractive qualities. In addition, slightly less walking is required in case scooters
are considered. The stops considered have more frequent service, are serviced
by two more bus lines on average, and have less transfers on the traveler’s
itinerary. This demonstrates the benefits that increasing the range of nearby
stops by adding scooters can provide more options that may more closely suit
travelers’ preferences.

This benefit is further illustrated in Figure 5. Here, the average number of
transfers as well as the average frequency between buses in seconds is shown
for each of the 18 districts. The relationship intuitively indicates an increas-
ing number of minimum transfers as the stop becomes less frequent. The blue
marks and line show that on average implementing scooter access to the trav-
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Table 2: Average differences between Scooter and Non-Scooter Experiments

Mode
Stops on
Pareto Front

Time
(min)

Walk
(min)

Freq
(min)

Lines Transfers

No Scooters 2.4 (29.6%) 22.7 6.6 24.5 2.6 1.4
Scooters 5.4 (16%) 23.2 6.3 18 4.4 0.9

eler results in use of bus stops that have more frequent service as well as less
transfers for the traveler.

Fig. 5: Comparing Frequency of Service with Number of Transfers
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4.4 Visualizing Results of Comparative Scooter Implementation

For a specific comparison of the effect of scooter usage by region, we examine
Figure 6. These two regions are Innenstadt, represented in orange and near
the city center, and Weststadt, represented in blue and away from downtown.
The solid line represents the average across categories when scooters are uti-
lized. While the average travel time is comparable between the modes, slightly
longer runtime is necessary if scooters are considered as an additional ser-
vice. Additionally, buses arrive more frequently for stops accessed by scooters.
These expanded stop options also service more bus lines and require fewer
transfers. These averages vary across the regions, but the benefit of including
scooters into a multimodal network persists throughout. Incorporating a first
or last mile on-demand option, such as scooters, can identify stops with more
frequent and varied service and less transfers that can expand the traveler’s
information availability and decision making.

Fig. 6: Parallel Coordinates Plot of Different Pareto Front Parameters

5 Conclusion

In this research, we have demonstrated a framework to improve the over-
all experience in urban travel planning. We enhance current mobility apps
by making relevant first and last mile stops and their characteristics trans-
parent to the traveler. To accomplish this, we combine stop and route-based
information in the decision-making progress. This enables travelers to make
better-informed decisions. We evaluate the proposed framework for identifying
alternative stops for first and last mile urban travel planning using a medium-
sized transit network of Göttingen, Germany. We show that the traveler has
several non-dominated nearby stops with different characteristics available to
choose from. Stops on the Pareto front have on average much more frequent
and more transit lines than dominated stops. This trend is also true for in-
corporation of scooter nodes that expand the traveler’s nearby stop options.
We envision this technique being implemented in the future as the demand for
integrated multimodal transportation information increases.
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