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Abstract

In manual order picking systems, order pickers walk or ride through a distribution warehouse in

order to collect items required by (internal or external) customers. Order batching consists of

combining these – indivisible – customer orders into picking orders. With respect to order batch-

ing, two problem types can be distinguished: In off-line (static) batching all customer orders are

known in advance. In on-line (dynamic) batching customer orders become available dynamically

over time. This report considers an on-line order batching problem in which the total completion

time of all customer orders arriving within a certain time period has to be minimized. The author

shows how heuristic approaches for the off-line order batching can be modified in order to deal

with the on-line situation. A competitive analysis shows that every on-line algorithm for this

problem is at least 2-competitive. Moreover, this bound is tight if an optimal batching algorithm

is used. The proposed algorithms are evaluated in a series of extensive numerical experiments.

It is demonstrated that the choice of an appropriate batching method can lead to a substantial

reduction of the completion time of a set of customer orders.
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1 Introduction

Order Picking is a warehouse function dealing with the retrieval of items (articles) from their stor-

age locations in order to satisfy (internal or external) customer orders. It arises because incoming

articles are received and stored in (large volume) unit loads while customers tend to order small

volumes of different articles (de Koster et al., 2007). Order picking is critical to each supply chain,

since underperformance results in unsatisfactory customer service (long processing and delivery

times) and high costs (labor costs, costs of additional and/or emergency shipments). Even though

different attempts have been made to automate the picking process, systems involving human op-

erators are still prevalent in practice. Such manual order picking systems can be differentiated

into two categories (Wäscher, 2004): Picker-to-parts systems, where order pickers drive or walk

through the warehouse and collect the required items; and parts-to-picker systems, where auto-

mated storage and retrieval systems deliver the items to stationary order pickers. In systems of

the first kind, which are considered in this paper, three activities at the operative level can be dis-

tinguished (Caron et al., 1998): the assignment of items to storage locations (item location), the

transformation of customer orders into picking orders (order batching) and the routing of pickers

through the warehouse (picker routing). This paper stresses the second activity where different

customer orders can be combined into picking orders (batches) and jointly released for picking.

This activity has proven to be pivotal for the efficiency of warehouse operations (de Koster et al.,

1999).

With respect to the availability of the customer orders, two situations for batching customer

orders can occur (Yu and de Koster, 2009): In off-line (static) batching all customer orders are

known at the beginning of the (short term) planning period (shift or day). In on-line (dynamic)

batching customer orders become available dynamically over time. Batches have to be formed

based only on the known customer orders. The aim of this paper is to examine how solution

approaches for the static batching problem can be modified for on-line situations in order to im-

prove the warehouse efficiency. Moreover, decision rules are proposed that define, which customer

orders should be satisfied directly, and which ones should be satisfied later, if on a specific point

in time more than one batch can be released.

The remainder of this paper is organized as follows: In Section 2 the On-line Order Batching

Problem will be defined and an optimization model will be given. Section 3 contains an overview

of the relevant literature. Algorithms for the On-line Order Batching Problem will be presented in

Section 4. To analyze the solution quality of these algorithms and to show the limitations for pos-

sible algorithms, a competitive analysis of the generated solutions, will be performed in Section 5.

Moreover, extensive numerical experiments have been carried out to evaluate the performance of

the proposed algorithms. Purpose and design of the numerical study will be described in Section

6. The test results will be compared for different problem classes in Section 7. The paper will

conclude with a summary and an outlook on further research topics.
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2 On-line Order Batching Problem

2.1 Problem Description

In a manual picker-to-parts system order pickers are guided by pick lists, which specifies the se-

quence in which the storage locations should be visited as well as the number of items demanded

of each article. A pick list may contain the items of a single customer order (pick-by-order) or of

a combination of customer orders (pick-by-batch). The picking process can be described in the

following way: The order picker starts at the depot, walks (or rides on an appropriate vehicle)

through the warehouse and collects items from different storage locations. Afterwards, he/she

returns to the depot and hands over the picked items. The corresponding route through the

warehouse is typically determined by means of a so-called routing strategy. Despite the fact that

an optimal, polynomial time algorithm for the picker routing problem exists (Ratliff and Rosen-

thal, 1983), it is hardly ever used in practice. Order pickers do not seem to accept the optimal

routes, since they are not always straightforward and sometimes even confusing (de Koster et al.,

1999). Two well known strategies are the S-Shape and the Largest Gap heuristic which provide

the required non confusing routing schemes. Figure 2.1 demonstrates the straightforward char-

acter of both routing schemes for a set of items to be picked. The black rectangles symbolize the

corresponding locations where items have to be picked (pick locations).

The S-Shape Heuristic provides solutions in which the order picker enters and traverses an aisle

completely if at least one required item is located in that aisle (an exception would be the last

aisle if the order picker is positioned on the front cross-aisle, i.e. the cross-aisle with the depot).

Afterwards, the order picker moves to the next aisle which has to be visited (Hall, 1993). The

Largest Gap Heuristic gives a solution in which the order picker completely traverses the first

aisle and the last aisle containing a demanded item. All other aisles – containing at least one

required item – are entered from the front and from the back in a way that the non-traversed

distance between two adjacent pick locations or the end of the aisle is maximal.

Order picking is usually done with the help of a picking device (e.g. cart, roll pallet etc.). Conse-

Figure 2.1: Example of S-Shape (left) and Largest Gap (right) heuristic in a single-block ware-

house
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quently, customer orders can be combined until the capacity of the picking device is exhausted.

This capacity is typically defined by a number of items. The splitting of a customer order into

two or more batches is prohibited, since it would result in additional unacceptable sorting effort.

If an order picker has started a tour through the warehouse, an interruption of this process and

a rearrangement of the customer orders is also not permitted.

The time period necessary to complete a batch is called (batch) service time (batch processing

time). It is composed of the travel time, i.e. the time period the order picker needs to travel from

the depot to the first pick location, between the pick locations and from the last pick location to

the depot; the search time, i.e. the time period needed for the identification of articles; the pick

time, i.e. the time period needed for moving the items from the pick location on the picking de-

vice; and the setup time, i.e. the time period for administrative and set-up tasks at the beginning

and end of each tour (Chew and Tang, 1999).

In the situation considered here the customer orders are not known in advance, but become avail-

able over time. At a specific point in time, it is only known if at least one customer orders will

arrive in future. However, no information about how many orders or their characteristics will

arrive is given. The decision, which customer orders should be processed directly, has to be made

without considering information of future incoming orders.

The point in time, when a customer order becomes available, is called arrival time. The start

time (release time) of a batch is the point in time when an order picker starts to process this

batch. The start time of an order is identical to the start time of the batch the order is assigned

to. The point in time when the order picker returns to the depot after collecting all items is called

completion time of a batch or of an customer order, respectively.

The (customer order) waiting time can be determined as the length of the time period between

the arrival time and the start time of a customer order. The turnover time (response time) is

the time period for which a customer order stays in the system, i.e. the time period between the

completion and the start time of a customer order.

If the number of arriving customer orders is too large for processing each customer order sepa-

rately in an appropriate total time, customer orders must be combined to batches. The On-line

Order Batching Problem consists of grouping customer orders into batches such that the comple-

tion time of all orders – identical to the completion time of the last released batch – is minimized.

In the following, we discuss the situation with a single order picker, i.e. all batches must be

processed one after another.

2.2 Optimization Model

We now formulate an optimization model for the off-line version of the Order Batching Problem

described above. The model, which requires the complete information of all incoming orders, is

presented in order to analyze the structure of the problem. The following constants are used:

n: number of customer orders;

m: number of batches;
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ri: arrival time of customer order i for all i ∈ {1, . . . , n}, where 0 ≤ ri ≤ ri+1 holds;

tsetup: setup time, i.e. time necessary for administrative and set-up tasks for each batch;

vtravel: travel velocity, i.e. number of length units the order picker can cover in the warehouse

per time unit;

vpick: pick velocity, i.e. number of items the order picker can search and pick per time unit;

wi: number of items of customer order i (∀i ∈ {1, . . . , n});

W : maximal umber of items can be included in a batch.

The model uses the following variables.

sj : start time of batch j (∀j ∈ {1, . . . , m});

xj : = (xj1, . . . , xjn)
T a vector in Bn where

xji =

⎧⎨
⎩

1 if customer order i is assigned to batch j

0 else
for all j ∈ {1, . . . , m}.

Without loss of generality, we assume that batch j is started after batch j−1 has been completed,

i.e. sj > sj−1. The total length of the picking tour for a particular batch involving a particular

routing method is determined by the function d : Bn �→ Q. For an empty batch the function

value is zero, i.e. d(0) = 0 where 0 = (0, . . . , 0)T . The problem can be modelled as follows:

min max
j∈{1,...,m}

{sj +
d(xj)

vtravel
+

∑n

i=1 wixji

vpick
+ tsetup|at least one xji = 1} (2.1)

s.t.
m∑

j=1

xji = 1, ∀i ∈ {1, . . . , n} (2.2)

n∑
i=1

wixji ≤ W, ∀j ∈ {1, . . . , m} (2.3)

sj ≥ max
i∈{1,...,n}

{ri · xji}, ∀j ∈ {1, . . . , m} (2.4)

sj ≥ sj−1 +
d(xj−1)

vtravel
+

∑n

i=1 wixj−1,i

vpick
+ tsetup, ∀j ∈ {2, . . . , m} (2.5)

sj ≥ 0, ∀j ∈ {1, . . . , m} (2.6)

xj ∈ Bn, ∀j ∈ {1, . . . , m} (2.7)

In the objective function (2.1) the expression d(xj)/vtravel+
∑n

i=1 wixji/vtravel+tsetup represents the

service time of a batch. This sum is composed of the time the order picker needs to travel through

the warehouse, the time he/she needs to pick the items and the setup time. By addition of the

start time sj of the batch j, its completion time is obtained. In summary, (2.1) minimizes the

maximal completion time of all batches with at least one assigned customer order. Equations (2.2)

ensure the assignment of each customer order to exactly one batch. Furthermore, inequalities (2.3)

guarantee that the capacity of the picking device is not violated. The conditions (2.4) indicate

that a batch is started after all customer orders assigned to this batch are known. From (2.5)

follows that a batch is started after the previous one is completed. Finally, the constraints of
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types (2.6) and (2.7) indicate that start times are non-negative and the variables xj are binary

vectors, respectively.

To verify the model, it remains to show that empty batches do not affect the objective function

value. This is necessary since (2.5) causes that sj > sj−1 if tsetup is set greater than 0. This

inequality also holds in the case when no customer order is assigned to batch j − 1. Suppose an

instance for this problem, in which only m̃ batches (m̃ < m) are needed to process all customer

orders. Without loss of generality, we assume that s1 < s2 < · · · < sm̃−1 < sm̃ holds for the start

time of these batches. Then we set the start times sm̃+k to sm̃+k−1 + tsetup and xi,m̃+k to 0 for

all k ∈ {1, . . . , m − m̃} and for all i ∈ {1, . . . , n}. This solution satisfies all constraints. Their

objective function value is the completion time of batch m̃ which is equal to the optimal objective

function value.

3 Literature Review

With respect to order batching, research can be differentiated into two types according to the

availability of data: off-line (static) batching and on-line (dynamic) batching (Yu and de Koster,

2009). In off-line batching complete information of all orders is given at the beginning of the

planning period. The on-line type considers the stochastic arrival process.

For off-line order batching Gademann and van de Velde (2005) and Gademann et al. (2001) show

the NP-hardness of the problem of minimizing the total travel time and respectively minimizing

the maximal service time for any of the batches, if the number of customer orders per batch is

greater than two.

For the off-line Order Batching Problem, where the objective is to minimize the total traveling

time, Gademann and van de Velde (2005) formulate an optimization model. They present also

a branch-and-price algorithm with column generation that was able to solve small instances to

optimality in reasonable computing time. Their formulation is independent from the assumed

routing strategy like the formulation given here in Section 2. For the case of S-Shape routing,

Bozer and Kile (2008) present a mixed integer programming approach, that generates near opti-

mal solutions for small sets of customer orders (up to 25).

Chen and Wu (2005) describe an order batching approach based on data mining and integer

programming. In this approach, at first, similarities of customer orders are determined by means

of an association rule. The following 0-1 integer programming approach is applied to cluster the

customer orders into batches.

For larger problems the use of heuristics is still advisable. These heuristic approaches can be

distinguished in four groups. The first ones are priority rule-based algorithms, where customer

orders are ranked according to a priority value and then are assigned to batches following this

rank (Gibson and Sharp, 1992). The probably best-known and straightforward way is the applica-

tion of the First-Come-First-Served rule (FCFS). Other priority rules include space-filling curves

(Gibson and Sharp, 1992; Pan and Liu, 1995). The assignment of customer orders to batches

can either be done sequentially (Next-Fit-Rule) or simultaneously (First-Fit-Rule, Best-Fit-Rule)



6 Algorithms for On-line Order Batching in an Order-Picking Warehouse

(Wäscher, 2004). The second group consists of seed algorithms, introduced by Elsayed (1981) and

Elsayed and Stern (1983), which generate batches sequentially. They select one customer order

as a start order for a batch. Additional customer orders are assigned to that batch according to

an order-congruency rule. An overview of the various seed selection and order-congruency rules

is given by Ho et al. (2008). Methods of the third group, savings algorithms, are based on the

Clarke-and-Wright-Algorithm for the Vehicle Routing Problem (Clarke and Wright, 1964) and

have been adapted in several ways for the Order Batching Problem. For each pair of customer

orders, the savings can be obtained by collecting the items of the two customer orders in one

(large) tour instead of collecting them in two separate tours (de Koster et al., 1999; Elsayed and

Unal, 1989). Starting with the pair of customer orders with the largest savings, the pairs are con-

sidered for being assigned to a batch in a non-ascending order. Finally, the last group contains

metaheuristics. Hsu et al. (2005) present a Genetic Algorithm for the Order Batching Problem.

Their approach includes an aisle-metric for the determination of the tour lengths and is, therefore,

limited to S-Shape-Routing, only. Tsai et al. (2008) describe an integrated approach, in which

solutions to the batching problem as well as to the routing problem are determined by a Genetic

Algorithm. Iterated Local Search and a variant of Ant Colony Optimization are applied to the

Order Batching Problem by Henn et al. (2009).

With respect to on-line batching Kamin (1998) describes a real world problem, in which greeting

cards have to be retrieved from a warehouse. Order pickers use automated guided vehicles on a

fixed course to collect greeting cards according to customer orders. Besides a theoretical analysis,

the system is simulated and evaluated according to different objectives including the time needed

to complete all customer orders of a day. The impact of different batching strategies and problem

parameters is investigated. In contrast to our problem, Kamin selects the next batch which should

be processed according to a due date, i.e. a point in time when the customer order is due to be

completed.

Apart from this approach, time window batching is prevalent in the on-line situation (Van Nieuwen-

huyse and de Koster, 2009). Time window batching can be carried out in two different variants,

namely fixed and variable time window batching. In fixed time window batching all orders arriv-

ing during a particular time interval are assigned to one batch. In variable time window batching

the order picker waits until a particular number of orders has arrived, and collect the items of

these orders in a joint tour.

Chew and Tang (1999); Tang and Chew (1997) describe an on-line problem in which the number

of order pickers is limited. They carry out a theoretical analysis of travel and service times on

the basis of S-Shape routing. To measure the quality of their estimation the authors simulate the

picking system as a queuing network with two queues. In the first one, customer orders arrive

according to a Poisson-process and batches are generated by means of the FCFS rule. They use

variable time window batching where each batch consists of exactly n0 customer orders. If n0

customer orders are in the first queue, these customer orders are assigned to a batch and move

to the second queue. The batches in the second queue are released successively according to the

availability of order pickers. In numerical experiments the authors focus on the optimal number
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of customer orders which should be assigned to a batch such that the average turnover time is

minimized. The optimal number depends on the storage policy and also on the pick times. For

a 2-block warehouse, Le-Duc (2005) and Le-Duc and de Koster (2007) prove an estimation for

the average turnover time for a random customer order and observe similar results like Chew and

Tang with an uniformly distributed demand frequency. The authors conclude that the average

turnover time of customer orders is a convex function of the number of orders per batch (batch

size). On the one hand, a large batch size leads to a small average service time of each customer

order, but to a large average waiting time. On the other hand, the average service time is large

for a small batch size, whereas the average waiting time is small. The authors conclude that

an optimal batch size exists. Le-Duc and de Koster (2007) also mention possible extensions to

this model, i.e. multiple order pickers, which can be modeled via different queues and multi-line

orders. A queuing model to determine the average turnover time for a customer order in a 2-

block warehouse for variable and fixed time window batching is given by Van Nieuwenhuyse and

de Koster (2009).

A joint batching and picking problem where customer orders arrive at different times is given by

Won and Olafsson (2005). Like in the previously mentioned articles, the authors observe a trade-

off between the total service time and the turnover time of a customer order. They formulate an

optimization model where the objective function is a weighted sum of service and waiting time

of customer orders within a batch. For this approach the arrival times of the customer orders

must be known in advance. To solve the problem the authors propose a two step procedure in

which at first customer orders are batched by means of the FCFS rule. The subsequent routing

problem is then solved by a 2-opt procedure. In the numerical experiments the authors assume

a warehouse with low order volumes and search for the ideal waiting time of a batch. They also

present an improvement heuristic to reduce the turnover times by combining customer orders.

Elsayed and Lee (1996) describe an automated storage and retrieval system where some articles

have to be picked from the warehouse (retrieval orders) and some have to be stored in the ware-

house (storage orders). The arrivals of the retrieval orders are dynamic and due dates have been

assigned to each order. The objective function is meant to form batches and sequence them in

a way that the tardiness (maximum of the completion time minus the due date and zero) of the

customer orders is minimized. The authors distinguish between a static and a dynamic case. In

the static case, customer orders arriving in a particular time interval form a group. This time

interval is determined by the time necessary to process the customer orders of the previous group.

In the dynamic case, a customer order arriving while a group of customer orders is being processed

is added to the set of non-processed customer orders. This results in a new set of batches. In

their approach, customer orders are sequenced according to their due dates and the times needed

to process the customer orders in a single batch. According to this sequence, three decision rules

are proposed and evaluated for the selection of batches: a nearest schedule rule, a shortest service

time rule, and a most common locations rule.
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4 Algorithms

4.1 Basic Principle

The difference between on-line and off-line problems consists in the availability of the input

parameters. Formally, an instance of an on-line problem can be described as a (input) sequence

of requests. This is in the On-line Order Batching Problem a sequence of customer orders, 1, . . . , n,

with different arrival times r1, . . . , rn. An on-line algorithm applied to this sequence has to deal

with each request i at time ri, independent from the requests i + 1, . . . , n. An algorithm for

the On-line Order Batching Problem has to form and release batches without having complete

information on the types and the arrival times of future customer orders.

The points in time when a decision of this kind has to be made are called decision points. These

can be distinguished into three classes. A decision of the first kind is one point when a set of

unprocessed (also called open) customer orders exists and an order picker becomes available.

Decision points of this type appear at the beginning of the planning period or at the completion

time of a batch. At this point either the next batch should be released directly or its start should

be postponed to a later point in time. A decision point of the second type is a point in time when

an order picker is idle and a new customer order arrives. The algorithm can rearrange the set of

batches and determine a start time for the next batch. Decision points of the third type are the

Algorithm 4.1 Basic principle of an on-line order picking algorithm

set t = 0, P (0) = {i ∈ {1, . . . , n}|ri = 0};

repeat

generate a set of batches B(t) by means of batching heuristic Hb to P (t);

if |B(t)| = 0 then

5: set t to the arrival time of the next customer order;

else if |B(t)| = 1 then

let j′ be the batch in B(t);

i′ = arg max{sti|i is assigned to j′};

if t < 2ri′ + sti′ − stj′ and the last customer order is not known then

10: set t to the minimum of 2ri′ + sti′ − stj′ and the arrival time of the next order;

else

start batch j′ and set t to t + stj;

end if

else

15: select one batch j of B(t) according to selection rule Hs;

start batch j;

set t to t + stj;

end if

update P (t);

20: until no further customer order arrives and P (t) is empty;
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points in time when the last customer order arrives. At this point the order picker can start all

remaining batches one after another.

The basic principle of the proposed on-line algorithm combines ideas of Kamin (1998) for a special

warehouse type and of Zhang et al. (2001) for the related on-line scheduling problem of minimizing

the makespan on a batch processing machine. (According to the three field classification for

scheduling problems their problem is classified as 1/rj, B, on-line/Cmax.) At each decision point

t we determine a solution for the off-line version of the Order Batching Problem for all customer

orders which are known but have not been satisfied at that time. The set P (t) of these customer

orders is called set of open orders. In contrast to the scheduling problem mentioned by Zhang

et al. (2001) the off-line version of the Order Batching Problem is NP-hard (Gademann et al.,

2001). Therefore, the application of a batching heuristic Hb is suggested in order to obtain a set

of batches B(t). From this set a batch is selected and released according to a selection rule Hs.

An exception would be the case where a solution for batching P (t) leads only to a single batch j′

with service time stj′. Let i′ be a customer order assigned to j′ which would result in the longest

service time sti′, if each customer order was processed separately. If 2ri′ + sti′ − stj′ is greater

or equal than the actual time t the batch j′ is released directly. Otherwise, this batch is started

at time 2ri′ + sti′ − stj′, unless a new customer order arrives in the meantime. This case would

be a decision point of the second kind and a new set of batches B(t) would be determined. In

case of the arrival of the last customer order, all batches are started sequentially. Algorithm 4.1

summarizes this approach.

4.2 Batching Heuristics

For the batching heuristic Hb we consider three options, namely the First-Come-First-Served

(FCFS) rule, the savings algorithm C&W(ii) and Iterated Local Search (ILS).

In FCFS the customer orders are ranked according to their arrival time. With respect to the

capacity constraint and this list the customer orders are assigned to batches.

In the savings algorithm C&W(ii) at the beginning each customer order is assigned to a different

batch (de Koster et al., 1999; Elsayed and Unal, 1989). The savings are computed for each

combination of batches. These values can be obtained by collecting the items of both batches in

one (large) tour instead of collecting them in two separate tours. The pairs of batches are ranked

according to their savings. The pair with largest savings will be combined if it does not violate

the capacity constraint. Otherwise, the pair with the second largest savings is considered. This

step is repeated until a combination is possible or no pair exists with positive savings which can

be combined. In the latter case the algorithm stops. In case that two batches were combined, the

savings are computed again, and one searches for a further combination of batches.

Iterated Local Search has been successfully applied to the Order Batching Problem (Henn et al.,

2009). It is based on the Local Search principle, where one starts from a candidate solution

and searches iteratively for better neighbor solutions. ILS consists of two alternating phases,

an improvement and a perturbation phase. In the first phase one starts from an initial solution

and terminates in a local optimum. The vicinity of this local optimum (used as an incumbent



10 Algorithms for On-line Order Batching in an Order-Picking Warehouse

solution) will be explored in order to identify a solution with an improved objective function

value. Therefore, in the perturbation phase, the incumbent solution is partially destroyed and

a further improvement search phase is applied to this solution. This new local optimum has

to pass an acceptance criterion in order to become the new incumbent solution, otherwise the

previous solution remains the incumbent solution for a further perturbation. These two phases

are repeated until a termination condition is met. For the detailed application of ILS we refer to

Henn et al. (2009).

4.3 Selection Rules

For the selection rule Hs four different options are suggested. The Selection Rule 4.1 FIRST

chooses the first batch of B(t). If batching is carried out by means of the FCFS rule, this rule

selects a batch whose customer orders have minimal arrival times among all open customer orders.

Selection Rule 4.1 FIRST
select the first batch of B(t);

The following selection rules are meant to control the choice of a specific batch in a way that

will influence the set of customer orders and subsequent decisions. Selection Rule 4.2 SHORT

determines a batch with smallest service time. Batches with a small service time may not include

customer orders which guide the order picker to aisles far from the depot. If the demand frequency

of articles is low in those aisles it may be preferable to collect customer orders, demanding these

items, and process them together at the end of the planning period.

Selection Rule 4.2 SHORT
select the batch of B(t) with smallest service time;

As opposed to the previous strategy Selection Rule 4.3 LONG selects the batch which requires

the longest service time. With this rule the time interval between two batching steps is very large

and while the batch is processed new customer orders may arrive which can be combined more

favorably with the non-processed customer orders.

Selection Rule 4.3 LONG
select the batch of B(t) with longest service time;

The Selection Rule 4.4 SAV computes for each batch a savings value, i.e. the sum of the single

service times of the assigned customer orders and subtracts the total service time of the batch.

By selecting the batch with the largest sum, one intends to release a batch with similar orders.
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Selection Rule 4.4 SAV
for all batches in B(t) do

determine the savings value, i.e. the sum of the service times if each customer order of the

batch is processed in a single batch and subtract this value from the service time of the

batch;

end for

select the batch with largest savings value, in the case of more than one batch with largest

savings value, select the batch with lowest index;

5 Competitive Analysis

5.1 Scope

In the context of on-line optimization, the theoretical investigation of the computational com-

plexity of algorithms may be unappropriate for algorithms dealing with uncertainty (Fiat and

Woeginger, 1998). Also, a traditional worst-case analysis concerning the solution quality of an

on-line algorithm may not be appropriate. Instead, competitive analysis is a common approach

for the evaluation of the performance of an on-line algorithm. It is based on the considerations

of Sleator and Tarjan (1985) and analyzes the performance on each input sequence. This is done

by comparison of an on-line algorithm with an optimal off-line algorithm, i.e. an algorithm that

determines an optimal solution for the complete input sequence. More formally, an on-line al-

gorithm A for a minimization problem is called c-competitive if a constant α exists such that

for all possible input sequences I the inequality A(I) ≤ c · OPT(I) + α holds, where A(I) is

the objective function value provided by algorithm A for instance I and OPT(I) is the objective

function value of an optimal off-line solution for I. The infimum over all c for which the inequality

holds is called competitive ratio.

For the On-line Order Batching Problem we show that the algorithms presented in Section 4.1

are at least 2-competitive for each combination of a batching heuristic with a selection rule. Ad-

ditionally, we show that this bound is tight for an optimal batching approach, independently of

the used selection rule. We assume a single-block warehouse with two cross aisles, one in the front

and one in the back of the picking area. The depot is located in front of the leftmost (picking)

aisle and all (picking) aisles are vertically orientated. The layout of the warehouse is depicted

in Figure 5.1. The warehouse consists of U aisles with C storage locations (cells) on each side

of an aisle. Being positioned in the center of an aisle, the order picker can pick items from cells

on the right, as well as from the cells on the left without additional movements. Whenever the

order picker leaves an aisle he/she has to move in order to reach the cross aisle a distance equal

to the width of a cell lcw in vertical direction from the first storage location, or from the last

storage location, respectively. Let lc denote the center-to-center distance between two aisles, i.e.

the distance an order picker has to move in horizontal direction from one aisle to the next aisle.



12 Algorithms for On-line Order Batching in an Order-Picking Warehouse

5.2 Lower Bound

Selection Rules FIRST, LONG, SAV

In order to obtain the proposed lower bound for the competitive ratio, we first describe an example

for the case that Algorithm 4.1 is applied with an arbitrary batching heuristic and the selection

rules FIRST, LONG or SAV. We assume that the number of storage locations on a side of an aisle

C is greater than max{2, (U − 1) lc
lcw

+ 1} and that the maximal number W of items in a batch,

is even. Let two different customer orders i1 and i2 be available at time 0, of which i1 requires
W
2

+1 items stored in the farmost cell on the left of the leftmost aisle. The second customer order

i2 demands W
2

+ 1 items of the article stored in the first cell of the rightmost aisle. Since both

customer orders cannot be included in the same batch, two batches are needed for completing i1

and i2. The routing of the order picker for both batches according to the S-Shape heuristic and

the Largest Gap strategy, respectively, is shown in Figure 5.1. The batch containing order i1 has

Figure 5.1: Routing for the customer orders i1 (left) and i2 (right)

the service time of

sti1 =
2 · C · lcw

vtravel
+

W
2

+ 1

vpick
+ tsetup,

the second one containing i2 has the service time

sti2 =
2 · (U − 1) · lc + 2 · 1 · lcw

vtravel
+

W
2

+ 1

vpick
+ tsetup.

According to Algorithm 4.1, the order picker processes one of these batches immediately. By

the application of selection rules FIRST, LONG, and SAV the batch with customer order i1 will

be processed first. We now consider the problem instance where at time 1 a customer order i3

becomes available, i.e. when the order picker has just started to collect the items of customer order

i1. This customer order i3 is similar to the first customer order i1 and requires W−(W
2

+1) = W
2
−1

items, of which all are located in the leftmost aisle, while one of them is stored in the last cell

of the aisle. The on-line algorithm generates a solution in which customer orders i2 and i3 are
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assigned to one batch with a completion time of

A4.1(I) = sti1 + st{i2,i3}

=
2 · C · lcw

vtravel
+

W
2

+ 1

vpick
+ tsetup

+
2 · (U − 1) · lc + 2 · (C + 1) · lcw

vtravel

+
W
2

+ 1 + W − (W
2

+ 1)

vpick

+ tsetup

=
2(U − 1) · lc + (4 · C + 2)lcw

vtravel

+
W + W

2
+ 1

vpick

+ 2 · tsetup.

An optimal off-line algorithm generates a solution in which customer order i2 is processed first

and, afterwards, the customer orders i1 and i3 are processed in one batch together. This leads to

OPT(I) = sti2 + st{i1,i3}

=
2 · (U − 1) · lc + 2 · 1 · lcw

vtravel

+
W
2

+ 1

vpick

+ tsetup

+
2 · C · lcw

vtravel
+

W
2

+ W − (W
2

+ 2)

vpick
+ tsetup

=
2(U − 1) · lc + 2(C + 1) · lcw

vtravel
+

W + W
2

+ 1

vpick
+ 2 · tsetup.

In order to provide a lower bound for the competitive ratio we consider

A4.1(I)

OPT(I)
=

2(U−1)·lc+(4·C+2)·lcw

vtravel
+

W+ W
2

+1

vpick
+ 2 · tsetup

2(U−1)·lc+2(C+1)·lcw

vtravel
+

W+ W
2

+1

vpick
+ 2 · tsetup

= 1 +
2·C·lcw

vtravel

2(U−1)·lc+4·C·lcw

vtravel
+

W+ W
2

+1

vpick
+ 2 · tsetup

.

From C→∞ follows that

A4.1(I)

OPT(I)

C→∞
−→ 2.

Selection Rule SHORT

Obviously, for the previous instance the selection rule SHORT does not lead to a competitive

ratio of 2. For SHORT we consider the following example. At time 0, let two customer orders be

available. Customer order i4 requires W − 1 items stored in cells of the first aisle, including one

item located in the last cell of the first aisle. Customer order i5 requires two items stored in the

first cell of the leftmost aisle. The algorithm forms two batches, of which one includes customer

order i4 with service time

sti4 =
2 · C · lcw

vtravel
+

W − 1

vpick
+ tsetup,
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and of which the other includes customer order i5 with processing time

sti5 =
2 · lcw
vtravel

+
2

vpick
+ tsetup.

According to selection rule SHORT, the batch including customer order i5 is started first. At the

completion time of the batch containing i5, a customer order identical to i5 is available and is

processed next. This step is repeated k−1 times where k := min{W
2
, 


sti4
sti5

�}. Algorithm 4.1 using

SHORT will sequentially process each customer order which is identical to i5 in a single batch,

followed by the batch containing customer order i4. In total, this leads to

A4.1(I) = k · sti5 + sti4

= min{
W

2
, 


sti4
sti5

�}(
2 · lcw
vtravel

+
2

vpick
+ tsetup) +

2 · C · lcw
vtravel

+
W − 1

vpick
+ tsetup.

An optimal off-line algorithm releases the batch including i4 and then a batch j containing i5 and

the k − 1 customer orders identical to i5. The definition of k ensures that this second batch does

not violate the capacity restriction. Therefore, we have

OPT(I) = sti4 + stj

=
2 · C · lcw

vtravel

+
W − 1

vpick

+ tsetup +
2 · lcw
vtravel

+
2 min{W

2
, 


sti4
sti5

�}

vpick

+ tsetup.

For the competitive ratio the following expression can be calculated

A4.1(I)

OPT(I)
=

min{W
2
, 


sti4
sti5

�}( 2·lcw

vtravel
+ 2

vpick
+ tsetup) + 2·C·lcw

vtravel
+ W−1

vpick
+ tsetup

2·C·lcw

vtravel
+ W−1

vpick
+ tsetup + 2·lcw

vtravel
+

2min{W
2

,�
sti4
sti5

�}

vpick
+ tsetup

= 1 +
(min{W

2
, 


sti4
sti5

�} − 1)( 2·lcw

vtravel
+ tsetup)

2·(C+1)·lcw

vtravel
+

W−1+2min{W
2

,�
sti4
sti5

�}

vpick
+ 2 · tsetup

.

Additionally to the warehouse assumptions, we assume that vpick → ∞, tsetup = 0, and W = 2 ·C.

In this case, we have

A4.1(I)

OPT(I)
= 1 +

(min{W
2
, 


sti4
sti5

�} − 1)( 2·lcw

vtravel
)

2·(C+1)·lcw

vtravel

= 1 +
(min{W

2
, 


sti4
sti5

�} − 1)

C + 1

= 1 +

(min{W
2
, 


2·C·lcw
vtravel
2·lcw

vtravel

�} − 1)

C + 1
= 1 +

min{2·C
2

, C} − 1

C + 1

= 1 +
C − 1

C + 1
.

For C → ∞ we obtain

A4.1(I)

OPT(I)

C→∞
−→ 2.

Summarizing, Algorithm 4.1 combined with all batching strategies and all selection rules does

not have a better competitive ratio than 2.
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5.3 Upper Bound

It remains to show that an algorithm exists whose competitive ratio is at most 2, independent

of the kind of warehouse. In the following the proof of Zhang et al. (2001) for the problem of

minimizing the makespan on a single bounded batch processing machine is adopted to the On-line

Order Batching Problem. For this proof it is necessary that an optimal batching strategy Hopt

is used, i.e. the algorithm obtains an optimal solution for the (off-line) Order Batching Problem.

Let A�
4.1 be the Algorithm 4.1 using Hopt and an arbitrary selection rule. Furthermore, let A�

4.1(I)

denote the completion time of the latest batch, where I is an arbitrary problem instance. In this

instance the arrival time of the last customer order is rn (for the sake of simplicity it is assumed

that exactly one customer order has the arrival time rn). In order to prove that the competitive

ratio of A�
4.1 is at least 2, we distinguish between the following three cases.

• All customer orders, which have arrived before customer order n, are already completed

before rn: The described algorithm is an optimal one.

• There are unprocessed customer orders and the order picker is idle: In this case the solution

of the batching problem at rn−1 leads to a single batch. According to the algorithm, the

last batch j′ includes all open customer orders without customer order n at time rn and has

the service time stj′. The batch j′ would be started at 2ri′ +sti′ −stj′ where i′ is a customer

order assigned to batch j′ with the longest single service time sti′ . Since the order picker is

idle, 2ri′ + sti′ − stj′ must be greater than rn. Since the batching heuristic is optimal, A�
4.1

will lead to a solution which is at least as good as a solution which will release j′ followed

by a seperated batch for customer order n. For A�(I)4.1 one obtains:

A�
4.1(I) ≤ rn + stj′ + stn < 2ri′ + sti′ − stj′ + stj′ + stn = 2ri′ + sti′ + stn

If sti′ ≥ stn holds, we can estimate the upper bound for A�
4.1(I) as follows:

A�
4.1(I) < 2ri′ + sti′ + sti′ = 2(ri′ + sti′) ≤ 2OPT(I).

Otherwise (sti′ < stn) we obtain

A�
4.1(I) < 2ri′ + stn + stn ≤ 2rn + 2stn = 2(rn + stn) ≤ 2OPT(I).

• There are unprocessed customer orders and the order picker is not idle: Let j̃ be the batch

which is beeing processed while customer order n arrives. Let sj̃ be the start time and

fj̃ be the completion time of j̃, therefore sj̃ < rn ≤ fj̃. Let r be the earliest arrival time

in the time interval (sj̃ , fj̃], i.e. r = mini{ri|sj̃ < ri ≤ fj̃} and A(r) be the set of the

customer orders arriving after r, more formal A(r) := {i|ri > r}. Let st�A(r) and st�P (s
j̃
)

be the total service time of A(r) and the set of open customer orders P (sj̃) at time sj̃,

respectively. Furthermore, the inequalities OPT(I) ≥ r + st�A(r) and OPT(I) ≥ st�P (s)

hold. Let Ĩ be the set of customer orders assigned to batch j̃. All customer orders of Ĩ

must be available before j̃ is started and, therefore, Ĩ ⊂ P (sj̃). The solution of the on-line
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algorithm is A�
4.1(I) = fj̃ + st�

A(r)∪{P (s
j̃
)\Ĩ}

, where st�
A(r)∪{P (s

j̃
)\Ĩ}

is the service time for a

set of batches for the customer orders in A(r) ∪ {P (sj̃) \ Ĩ}. Since the algorithm uses an

optimal batching strategy, st�
A(r)∪{P (s

j̃
)\Ĩ}

is the optimal service time for the customer orders

in A(r) ∪ {P (sj̃) \ Ĩ}. Let further st�
P (s

j̃
)\Ĩ

be the optimal service time for P (s) \ Ĩ.

Then,

st�
A(r)∪{P (s

j̃
)\Ĩ}

≤ st�
P (s

j̃
)\Ĩ

+ st�A(r)

is valid. For the estimation of the upper bound, we obtain

A�
4.1(I) = fj̃ + st�

A(r)∪{P (s)\Ĩ}
≤ fj̃ + st�

P (s
j̃
)\Ĩ

+ st�A(r)

= sj̃ + st�P (s
j̃
) + st�A(r) ≤ r + st�P (s) + st�A(r) ≤ 2OPT(I).

To summarizes, A�
4.1 has at most the competitive factor 2. Combined with the consideration

above, that the competitive factor is at least 2, we can conclude that this bound is tight if an

optimal batching heuristic is used.

6 Purpose and Design of the Numerical Experiments

6.1 Purpose

In order to determine the solution quality of the described algorithms, an extensive series of

numerical experiments has been carried out. A variety of problem classes has been considered and

the behavior of the suggested approaches was simulated. The experiments aims at investigating

which selection rule should be combined with a particular batching strategy in order to generate a

short completion time of all customer orders. Furthermore, we explore and compare the solution

quality of the different batching heuristics.

6.2 Warehouse Parameters

In our experiments a single-block warehouse with two cross aisles, one in the front and one in the

back of the picking area, is assumed. This layout type (cf. Figure 5.1) has been used frequently

in experiments described in the literature (Gademann and van de Velde, 2005; Henn et al., 2009).

We specify the parameters in the following way: The picking area consists of 900 storage locations,

where a different article has been assigned to each storage location. The storage locations are

arranged into 10 aisles (U = 10) with 90 storage locations each (45 cells on both sides of an

aisle, i.e. C = 45). The aisles are numbered from 1 to 10; aisle no. 1 is the leftmost aisle and

aisle no. 10 the rightmost one. Each cell has a width of one length unit (LU) (lcw = 1) and the

center-to-center distance between two aisles amounts to 5 LU (lc = 5). The depot is 1.5 LU away

from the first storage location of the leftmost aisle and the distance between the front cross aisle

and the depot amounts to 0.5 LU. We further assume that an order picker walks 10 length units
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in 30 seconds and he/she needs 10 seconds to search and collect an article from a storage location.

This results in a travel velocity of vtravel = 48[ LU
min

] and a pick velocity of vpick = 6[ items
min

]. For each

tour a setup time tsetup of 3 minutes is needed. We consider a class-based storage assignment, the

articles are grouped into three classes A, B, and C according to their expected demand frequency.

A contains articles with high, B with medium and C with low demand frequency. Articles of class

A are only stored in aisle no. 1, articles of B in the aisles no. 2, no. 3, and no. 4., and articles of

class C in the remaining six aisles. Furthermore, it is assumed that 52 percent of the demanded

articles belong to articles in class A, 36 percent to articles in B and 12 percent to articles in C.

Within a class, the location of an article is determined randomly. All parameters are summarized

in Table 6.1.

Attributes Values

number of aisles (U): 10

number of cells on each side of an aisle: 45

width of a storage location (lcw) [LU]: 1

center-to-center-distance between two aisles (lc) [LU]: 5

distance between depot and front cross aisle: 0.5

pick velocity vpick [articles
min

]: 6

travel velocity vtravel [ LU
min

]: 48

setup time tsetup [min]: 3

Table 6.1: Warehouse layout and order picker parameters

6.3 Problem Classes

To analyze the quality of the proposed algorithms we vary several problem parameters. For the

capacity of the picking device W we assume two different values, namely 45 and 75 items. For the

routing strategy, the S-Shape heuristic and the Largest-Gap heuristic are used. For a customer

order we choose the quantity of items uniformly distributed in {5, . . . , 25}, resulting in 3 or 5

customer orders per batch on average, in accordance with the above defined capacities of the

picking device. For the total number of customer orders n we consider 30, 60, 90 and 120. The

customer orders should arrive within a planning period of eight hours. The interarrival times –

the time between the arrival of customer order i and customer order i + 1 – are exponentially

distributed with the arrival rate λ. Let X(t) be the number of incoming customer orders in the

time interval [0, t]. The stochastic process {X(t)|t ≥ 0} is called arrival process. In the case of

exponentially distributed interarrival times E[X(t)] = λ · t holds. In our numerical experiments

we choose the arrival rate λ in a way that the expectation E[X(t)] is equal to n for t = 8[h]. In

summary, we use the following values for λ: for n = 30: λ = 0.08625, for n = 60: λ = 0.125, for

n = 90: λ = 0.1875, and for n = 120: λ = 0.25.

Chew and Tang (1999) provide the expected travel time related to a batch containing k articles,
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time time time

�P (t) �P (t) �P (t)

a) n = 30 b) n = 90 c) n = 120

8h 8h 8h

Figure 6.1: Number of open orders for different numbers of customer orders

when the routes are determined by means of the S-Shape heuristic. In order to determine the

service time sti of a single customer order i we use a simplified version of this expression and

obtain

E[sti] ≈
la

vtravel

(U −
U∑

u=1

(1 − pu)
k +

1

2
) +

2lc
vtravel

(U −
U−1∑
u=1

(
u∑

r=1

pr)
k) +

k

vpick

+ tsetup, (6.1)

where pu (u ∈ {1, . . . , U}) is the probability that an items is picked in aisle u. According to the

classed based storage policy we obtain an expected travel time of 12.49 min for an customer order

with 15 items. If we assume that each customer order is assigned to a single batch, 48 customer

orders could be processed within eight hours. The different values for n lead to the following

situations: For n = 30 all customer orders can be processed within the eight hours and the order

picker can process each open customer order in a single tour. During this tour new customer

orders arrive. In problem classes where n is greater than 30, customer orders arrive faster than

the order picker can process the open orders. Consequently, the number of open orders increases

till the last customer order has arrived. After that the number of open orders decreases. Figure

6.1 shows the number of open orders during the eight hours for different n.

Combination of the test parameters described above leads to 16 problem classes, which are sum-

marized in Table 6.2. For each problem class 50 instances have been generated, which provided

800 instances in total.

Attribute Values

capacity of a picking device W 45, 75 items

routing strategy S-Shape, Largest Gap

number of customer orders n 30, 60, 90, 120

Table 6.2: Problem classes

6.4 Algorithm Parameters

For the experiments the parameters of the algorithms have to be specified. The topic of this paper

is a real time problem. Therefore, the fast generation of solutions is an essential requirement for
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each solution approach. Since the point in time when the order picker becomes available again is

known at the start time of a batch, the time interval between start time and completion time can

be used to generate solutions. Since new customer orders, which should be considered also, may

arrive during this time interval, a limitation of the computing time is necessary. Therefore, we

restrict the termination condition in ILS (Henn et al., 2009) to one minute. The other parameters

are chosen as described in Table 6.3.

Attributes Values

termination condition [min]: 1.00

rearrangement factor θ: 0.30

threshold factor μ: 0.05

time interval tincumbent[min]: 0.20

Table 6.3: Parameters for batching heuristic ILS

6.5 Implementation and Hardware

The computations for all 800 instances have been carried out on a Pentium processor with 2.21

GHz and 2.0 GB RAM. The algorithms have been implemented with C++ using the DEV Com-

piler Version 4.9.9.2.

7 Results of the Experiments

7.1 Outline

In this section the results of the numerical experiments are presented, differentiated with respect

to the routing strategies S-Shape and Largest Gap. The tables 7.1 and 7.3 depict the average

completion time of all customer orders provided by the algorithms for the problem class. Addi-

tionally, the tables 7.2 and 7.4 contain the average turnover times of a customer order for different

problem classes. The first column in each table describes the problem class, represented by ”total

number of customer orders / capacity of the picking device in number of items” (n/W ). The en-

tries in the other columns show the results of Algorithm 4.1 combined with the batching heuristics

FCFS, C&W(ii), and ILS and the selection rules FIRST, SHORT, LONG, and SAV. The best

average value generated by a selection rule for the application of a particular batching heuristic

is highlighted bold. The results are analyzed as follows: For each routing strategy we compare

the impact of the selection rules for a particular batching method. Therefore, the selection rule,

which leads to the best results, serves as benchmark. Afterwards, we evaluate the solution quality

of the different batching strategies combined with the corresponding selection rule, which leads

to the best results.
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7.2 S-Shape-Routing

Class Algorithm 4.1 with

FCFS and C&W(ii) and ILS and

FIRST SHORT LONG SAV FIRST SHORT LONG SAV FIRST SHORT LONG SAV

30/45 467 488 467 467 471 484 465 465 469 485 467 466

30/75 457 482 457 457 472 483 457 457 456 485 457 458

60/45 519 551 518 518 518 541 511 511 511 531 511 510

60/75 499 526 499 499 505 521 502 502 501 520 501 501

90/45 651 722 638 643 605 682 593 598 579 633 575 576

90/75 520 593 519 518 520 578 513 512 510 549 508 508

120/45 856 930 840 847 766 851 758 762 731 790 732 730

120/45 634 733 627 630 613 701 602 602 589 647 586 585

Table 7.1: Average completion time of the last batch in minutes for S-Shape-Routing

If customer orders are grouped by means of the FCFS rule, the selection rule LONG obtains

the smallest completion times for 7 out of 8 problem classes on average. SAV obtains the best

objective function value for 5, FIRST for 3, and SHORT for no problem class. The results provided

by the selection rules LONG, FIRST and SAV are nearly identical for 30, 60 customer orders,

as well as and for the problem class with 90 customer orders and a capacity of 75 items. For

the remaining problem classes the results obtained for LONG and SAV differ by at least 7 min.

The deviation of the results obtained by LONG and FIRST amounts to 14 min for the problem

class with n = 90 and W = 45; for the problem classes with 120 customer orders the difference

amounts to 16 and 7 min. By the application of SHORT the completion times of all customer

orders are significantly larger than those generated by LONG: around 30 min for problem classes

with 30 and 60 customer orders, more than 70 and less than 90 min for problem classes with 90

customer orders, and more than 90 and less than 106 min for n = 120.

If the batching heuristic C&W(ii) is used, LONG and SAV provide the best results for 7 and 6

problem classes, respectively. The remaining selection rules do not find any best (average) result.

Applying FIRST all customer orders are completed up to 15 min later than in case of LONG. The

deviation between the results of SHORT and LONG amounts to 20 min for n = 30, to 30 min for

n = 60 and a small capacity, and to 19 min for n = 60 and a large capacity. By the application

of SHORT all customer orders for problem classes with 90 customer orders are completed 89 and

65 min later than by the application of LONG. For 120 customer orders the deviation between

SHORT and LONG amounts to more than 90 min.

By the application of ILS, SAV leads to the best results for 6 problem classes, LONG for 3, FIRST

for 2 problem classes. SHORT does again not obtain a best result at all. The behavior of the

selection rules FIRST, LONG, and SAV is almost identical in terms of the completion time of all

customer orders. The differences of the solutions provided by SHORT as compared to the ones

provided by SAV are significantly larger: approximately 20 min for 30 and 60 customer orders,

more than 40 min for 90 customer orders, and around 60 min for n = 120.
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Figure 7.1: Completion time of all orders for W = 45 and S-Shape

The results of the different selection rules are almost identical for small numbers of customer

orders. Due to the fact that, more than 30 customer orders can be processed during the eight

hours, the number of open customer orders is small during this time. At each decision point

the number of generated batches is small. Therefore, the selection rules determine identical

batches, which are released. Also, in the case of a higher capacity of the picking device the

number of available batches at a specific decision point is smaller than in the case of a small

capacity. Therefore, the different selection rules release identical batches for the larger capacity.

The selection rule SHORT tends to select batches with a small capacity utilization, since a small

number of items in a batch results in a small service time. As a consequence, in the case of

SHORT the number of released batches is larger than in the remaining selection rules, which

results in a larger completion time of all customer orders.

Comparing the results of FCFS/LONG (the batching heuristic FCFS in combination with the

best selection rule LONG) to the results obtained by C&W(ii)/LONG, the latter outperforms

the first one for large problem classes, while the results are very similar for the classes with 30

and 60 customer orders, and for the problem class with 90 customer orders and a capacity of 75

items. In the remaining problem classes the difference amounts to 45 min (n = 90/W = 45),

82 min (120/45) and 25 min (120/75). In total, we conclude, that the difference increases with

a smaller capacity of the picking device, as well as with a larger number of customer orders. If

ILS/SAV is compared to C&W(ii)/LONG, the use of ILS is preferred to C&W(ii). The results

of both batching heuristics are similar for the problem classes with 30 and 60 customer orders

and the problem class with 90 customer orders and a capacity of 75 items. For the problem class

with 90 customer orders combined with a capacity of 45 items and in the problem class with 120

customer orders combined with a capacity of 75 items a difference of 17 min can be observed.

In the class with 120 customer orders and a capacity of 45 items the results even differ by 28

min. Figure 7.1 visualizes the development of the solution quality for the three combinations by
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Class Algorithm 4.1 with

FCFS and C&W(ii) and ILS and

FIRST SHORT LONG SAV FIRST SHORT LONG SAV FIRST SHORT LONG SAV

30/45 44 55 44 44 47 50 47 47 46 50 46 46

30/75 57 72 57 57 63 67 60 60 59 69 60 59

60/45 45 66 45 44 45 57 44 43 42 52 42 41

60/75 46 63 46 46 51 56 50 50 48 56 48 48

90/45 113 161 106 96 92 129 94 79 81 102 84 70

90/75 55 102 54 53 57 84 55 53 51 70 51 50

120/45 207 260 195 175 161 203 173 142 148 166 159 128

120/75 101 170 98 93 94 138 95 84 82 109 85 76

Table 7.2: Average turnover time per customer order in minutes for S-Shape-Routing

increasing n and for W = 45.

In summary, the impact of the batching strategy is neglectable for small numbers of customer

orders. For large numbers of customer orders the application of ILS/SAV can save up to 90 min

in comparison to FCFS/LONG. By the application of ILS and C&W(ii) the results obtained by

the used selection rules do not differ as large than in the case where batching is done by means

of the FCFS rule. A more sophisticated batching heuristic generates more balanced batches (in

terms of service time), as well as a smaller number of batches.

If – as an alternative objective function – the minimization of the average turnover times of a

customer order is chosen, slightly different results for the best combination of batching heuristic

and selection rule can be identified. As described in Table 7.2 SAV outperforms the other selection

rules. Comparing the batching heuristics, ILS also leads to significantly smaller turnover times

than FCFS.

7.3 Largest Gap-Routing

Class Algorithm 4.1 with

FCFS and C&W(ii) and ILS and

FIRST SHORT LONG SAV FIRST SHORT LONG SAV FIRST SHORT LONG SAV

30/45 466 485 466 465 468 482 465 466 465 482 468 468

30/75 458 482 458 458 466 485 451 451 452 484 451 451

60/45 514 539 513 514 513 535 509 510 510 528 507 508

60/75 500 523 500 500 506 523 500 500 498 521 500 499

90/45 630 690 618 622 593 660 582 586 573 626 569 572

90/75 525 586 524 523 525 577 515 515 513 555 511 512

120/45 827 893 813 821 755 834 743 750 727 786 725 727

120/75 646 731 641 643 622 704 610 614 601 661 596 597

Table 7.3: Average completion time of the last batch in minutes for Largest Gap routing
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In the problem classes where routing is done by the Largest Gap heuristic, very similar results like

in the case of S-Shape-Routing can be observed. For FCFS and C&W(ii) the selection rule LONG

leads again to the best results on average. Only for ILS a different selection rule, namely LONG,

generates the best results for Largest Gap-Routing than in the case of S-Shape-Routing. The

relations of the results provided by the application of the different selection rules and a particular

batching heuristic are very similar to the case of S-Shape-Routing. Comparing the results of the

different batching heuristic, the combination ILS/LONG outperforms the other strategies. Figure

7.2 visualizes the differences if the capacity of the picking device amounts to 45 items.
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Figure 7.2: Completion time of all orders for W = 45 and Largest Gap-Routing

From the average turnover times depicted in Table 7.4 it can be concluded that the application

of SAV leads in every problem class to the smallest turnover times of a customer order. Similar

to the results of S-Shape routing ILS provides the best average turnover times.

Class Algorithm 4.1 with

FCFS and C&W(ii) and ILS and

FIRST SHORT LONG SAV FIRST SHORT LONG SAV FIRST SHORT LONG SAV

30/45 43 53 44 43 47 48 46 46 44 49 46 46

30/75 58 72 58 58 62 66 59 59 59 68 59 59

60/45 43 59 43 41 44 52 43 41 42 50 42 40

60/75 47 61 47 47 51 55 50 50 49 55 49 49

90/45 102 141 97 88 86 115 87 74 77 98 78 68

90/75 58 95 57 56 60 81 58 55 53 73 53 52

120/45 192 239 183 163 156 193 167 134 147 168 153 127

120/75 107 163 104 98 98 133 102 88 88 116 90 81

Table 7.4: Average turnover time per customer order in minutes for Largest Gap routing
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8 Conclusions and Outlook

This paper deals with the on-line variant of the Order Batching Problem, one of the three main

planning problems in a manual picker-to-parts warehouse. The problem is to transform customer

orders, arriving over time, into picking orders such that the completion time of all customer

orders is minimized. Existing methods for the corresponding off-line Order Batching Problem,

namely First-Come-First-Served, C&W(ii), and Iterated Local Search have been modified for this

on-line problem. By means of a competitive analysis it is shown that the general principle of

this algorithm is 2-competitive in combination with an optimal batching algorithm. The analysis

also showed that every on-line algorithm for this problem is at least 2-competitive. Extensive

numerical experiments have been carried out to evaluate which heuristic leads to the best results.

The selection rules LONG and SAV provide the best completion times independent of the choice

of the batching heuristic. Since ILS provides significantly better results than FCFS and C&W(ii)

it is recommended that batching is done as good as possible while the search for an appropriate

selection rule is less significant. Furthermore, if the turnover time of a customer order is important,

the selection rule SAV should be preferred.

For further research we suggest to investigate the impact of different warehouse layouts (two block

warehouses, non standard warehouses etc.) and other kinds of storage policies. An other research

object should be to consider due dates.
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