
WORKING PAPER SERIES

Supply chain coordination by contracts under binomial 
production yield

Josephine Clemens/Karl Inderfurth

Working Paper No. 11/2014



 

Impressum (§ 5 TMG)  
Herausgeber:  
Otto-von-Guericke-Universität Magdeburg  
Fakultät für Wirtschaftswissenschaft  
D  Dekan  
 

Verantwortlich für diese Ausgabe:  

Otto-von-Guericke-Universität Magdeburg 
Fakultät für Wirtschaftswissenschaft 
Postfach 4120  
39016 Magdeburg  
Germany  

http://www. ww. /femm

Bezug über den Herausgeber 
ISSN 1615-4274 

Josephine Clemens and Karl Inderfurth



1 
 

Supply chain coordination by contracts 
under binomial production yield 

 

Josephine Clemens* and Karl Inderfurth 

 

November 2014 

 

Abstract 

Supply chain coordination is enabled by adequately designed contracts so that decision making by 
multiple actors avoids efficiency losses in the supply chain. From literature it is known that in 
newsvendor type settings with random demand and deterministic supply the activities in supply 
chains can be coordinated by sophisticated contracts while the simple wholesale price contract fails 
to achieve coordination due to the double marginalization effect. Advanced contracts are typically 
characterized by risk sharing mechanisms between the actors, which have the potential to 
coordinate the supply chain. Regarding the opposite setting with random supply and deterministic 
demand, literature offers a considerably smaller spectrum of solution schemes. While contract types 
for the well-known stochastically proportional yield have been analyzed under different settings, 
other yield distributions have not received much attention in literature so far. However, practice 
shows that yield distributions strongly depend on the industry and the production process that is 
considered. 

This paper analyzes a buyer-supplier supply chain in a random yield, deterministic demand setting. It 
is shown how under binomially distributed yields risk sharing contracts can be used to coordinate 
buyer’s ordering and supplier’s production decision. Both parties are exposed to risks of over-
production and under-delivery. In contrast to settings with stochastically proportional yield, 
however, the impact of yield uncertainty can be quite different in the binomial yield case. Under 
binomial yield, the output uncertainty decreases with larger production quantities while it is 
independent from lot sizes under stochastically proportional yield. Consequently, the results from 
previous contract analyses on other yield types may not hold any longer. The current study reveals 
that, like under stochastically proportional yield, coordination is impeded by double marginalization 
if a simple wholesale price contract is applied. However, more sophisticated contracts which penalize 
or reward the supplier can change the risk distribution so that supply chain coordination is possible 
under binomial yield. Thus, even though risk diminishes with larger lot sizes, the supply chain 
benefits from advanced risk sharing contracts because they trigger coordinated behavior. 

Key words: Supply chain coordination, contracts, binomial yield, risk sharing

                                                            
* Corresponding author: Otto�von�Guericke University Magdeburg � Faculty of Economics and Management, 
POB 4120, 39106 Magdeburg, Germany � josephine.clemens@ovgu.de � Phone: (+49)391�6758821 



2 
 

1. Introduction 

Uncertainties are widely spread in supply chains with demand and supply uncertainties being the 
most common types. Regarding the supply side, business risks primarily result from yield uncertainty 
which is typical for a variety of business sectors. It frequently occurs in the agricultural sector or in 
the chemical, electronic and mechanical manufacturing industries (see Gurnani et al. (2000), Jones et 
al. (2001), Kazaz (2004), Nahmias (2009)). Here, random supply can appear due to different reasons 
such as weather conditions, production process risks or imperfect input material. In a supply chain 
context, yield or supply randomness obviously affects the risk position of the actors and, therefore, 
has an effect on the buyer-supplier relationship in a supply chain. The question that arises is to what 
extent random yields affect the decisions of the single supply chain actors and the performance of 
the whole supply chain. In this study we limit ourselves to a problem setting with deterministic 
demand. This is to focus the risk analysis of contracting on the random yield aspect which is of 
practical relevance for production planning in some industries (see Bassok et al. (2002)). Except for 
papers that address disruption risks (e.g. Asian (2014), Hou et al (2010)), all contributions in the field 
of contract analysis under yield randomness restrict to situations where the yield type is 
characterized by stochastically proportional random yields. This also holds for a prior work of 
Inderfurth and Clemens (2014) which considers the coordination properties of various risk sharing 
contracts under this type of yield randomness. In practice, however, also other yield types are found 
(see Yano and Lee (1995)) which need to be considered in decision making and contract analysis. A 
specifically important one is the type of binomially distributed yield which is observed if the 
defectiveness of items within a production lot is independent from unit to unit. This is found if 
failures in manufacturing operations or material defectives occur independently in a production 
process. This paper addresses the analysis of coordination by contracts under such yield conditions 
and investigates to which extent the results for stochastically proportional yields in Inderfurth and 
Clemens (2014) carry over to a situation where yields are binomially distributed.  

In this context, the main purpose of this paper is to study how contracts can be used in order to 
diminish profit losses which are driven by uncoordinated behavior. Therefore, three different 
contracts are applied and analyzed regarding their coordination ability, namely the simple wholesale 
price contract, a reward contract (over-production risk sharing contract, first introduced by He and 
Zhang (2008)) and a penalty contract (compare Gurnani and Gerchak (2007)). Comparable to the 
newsvendor setting with stochastic demand but reliable supply, the double marginalization effect of 
the wholesale price contract is found in our setting. Both advanced contract types can be shown to 
facilitate supply chain coordination if contract parameters are chosen appropriately. 

The rest of this paper is organized as follows. In section 2 the supply chain model and the yield 
distribution are introduced. In part 3 the centralized supply chain is analyzed and benchmark 
decision and profit are derived for the following contract analyses. Section 4 describes and analyzes 
the above mentioned contract designs with respect to their supply chain coordination potential. 
Section 5 summarizes main results and suggests aspects of further research. 

2. Model and assumptions 

This paper considers a basic single-period interaction within a serial supply chain with one buyer 
(indicated by B) and one supplier (indicated by S). It is assumed that all cost, price, and yield 
information is common knowledge. In contrast to that, deterministic end customer demand is not 
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with a standard deviation of  

( ) (1 )Y Q Q� � �= ⋅ − ⋅ .           (2) 

Note that the coefficient of variation ( ( ) ( )Y Q Y Q� � ) decreases as the input quantity grows, i.e. the risk 

diminishes with increasing production quantity. This is different to the situation in Inderfurth and 
Clemens (2014) where production yield is a fraction of production input and neither mean nor 
variance of the yield rate depend on the lot size. Now, a reasonable conjecture is that under 
binomially distributed yields, the risk position of the single actors is different than under 
stochastically proportional yields. Hence, contract schemes with different risk sharing mechanisms 
may perform differently when the lot size influences the “amount of risk” in the supply chain and 
may change the proposed contract types’ coordination efficiency. The subsequent analyses will shed 
light on this issue. 

For large values of demand and the respective production quantity (i.e. if the sample of the binomial 
distribution is large) according to the De Moivre-Laplace theorem2, the binomial distribution can be 
approximated through the Normal distribution which is done in the following.3 This deviation from 
the exact binomial distribution is motivated by the fact that it facilitates the contract analysis by 
modeling the decision problem with continuous instead of discrete variables so that general analytic 
results with closed-form expressions can be derived. Furthermore, the respective numerical results 
are very close to optimal under fairly high demand levels. Further notation is as follows: 

c  production cost [per unit] 
w  wholesale price [per unit] 
p  retail price [per unit] 

( )Sf ⋅  pdf of standard normal distribution 

( )SF ⋅  cdf of standard normal distribution 

( )( )Y Qf ⋅  pdf of random variable ( )Y Q (yield)

( )( )Y QF ⋅  cdf of random variable ( )Y Q  (yield)

 
The problem which arises is how to determine quantities for ordering on the one hand (by the buyer) 
and choosing a production input quantity on the other hand (by the supplier) given the risks 
mentioned above. The general underlying assumption in this analysis is that profitability of the 
business for both parties is assured, i.e. the retail price exceeds the wholesale price which in turn 
exceeds the expected production costs, i.e. /p w c �> > . 

3. Analysis for a centralized supply chain  

Under centralized decision making, the planner has only one decision to make, namely the 
production input quantity Q. Revenues are generated from selling to the end customer the available 

                                                            
2 Compare Feller (1968) pp. 174 ff. 
3 The condition which justifies the use of the Normal distribution is the following: ( )1 5Q � �⋅ ⋅ − >  for 
0.1 0.9�≤ ≤  (compare Evans et al. (2000) p. 45). In later sections, numerical examples will be conducted with 
success probabilities of 0.25 0.75�≤ ≤ . In those cases, the Normal approximation is feasible if 26.67Q ≥  which 
holds for all our examples as shown later. 
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quantity, i.e. the minimum of production output and demand. Production cost, however, is incurred 
for every produced unit. Thus, the total supply chain profit is given by 

( ) ( )( )� min ,SC Q p E D Y Q c Q� �= ⋅ − ⋅� �         (3) 

The first part describes the expected revenue from selling usable units; the second part constitutes 
the costs which are incurred by the respective production quantity. For deriving the optimal decision 
on production input, two cases have to be analyzed separately: Q D≤ and Q D≥ .  

Case SC(I) 
Under case SC(I) ( Q D≤ ) it is obvious that ( )Y Q Q D≤ ≤ , due to 0 1�≤ ≤ . Thus, the supply chain profit 
transforms to 

( ) ( ) ( )�SC Q p E Y Q c Q p c Q�= ⋅ � � − ⋅ = ⋅ − ⋅� � . 

Taking the first order derivative yields 

( ) 0 for /�
0 else

SC p cd Q
p c

dQ
�

�
> >�

= ⋅ − �≤�  

For case SC(I), it follows that the supply chain produces the following 

( )

for /
0 elseSC I

D p c
Q

�>�
= �
�           (4) 

If the condition for profitability of the business holds, i.e. /p c �> , is has to be evaluated whether an 
input quantity Q D≥  is preferable.  

Case SC(II) 
In this case ( Q D≥ ) the supply chain profit to maximize is the one in (3), namely 

( ) ( )( )� min ,SC Q p E D Y Q c Q� �= ⋅ − ⋅� �     

with the sales quantity denoted by ( ) ( )( ) ( ) ( )( )
0

, : min ,
D

Y QL D Q E D Y Q D D y f y dy� �= = − − ⋅� � 	   

Transforming yields4 

( ) ( ) ( )( )( ) , , ,, : Y Q S D Q D Q S D QL D Q D F z z f z�= − ⋅ ⋅ +        (5) 

We define ( )
,

( )

: Y Q
D Q

Y Q

D
z

�
�
−

=  (Note that ,D Qz  depends on demand D  as well as on production input Q 

through mean and standard deviation of the yield ( )Y Q ). Finally, the supply chain profit transforms to 

( ) ( )� ,SC Q p L D Q c Q= ⋅ − ⋅          (6) 

                                                            
4 For details on the transformation see Appendix A1. 
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Taking the first order derivative yields5 

( ) ( )

( ) ( )( )
, ,

( )

� ,

2
2

SC

Y Q
S D Q S D Q

Y Q

d Q L D Q
p c

dQ Q

p F z f z c
��
�

∂
= ⋅ −

∂

 �

= ⋅ ⋅ ⋅ − ⋅ −� 
� 

� �

 

Utilizing the first order condition ( )
!

�   0SCd Q dQ = , the optimal input decision for case SC(II) results 

from the optimality condition below 

( ) ( )( )
, ,

( )

2
2

Y Q
S D Q S D Q

Y Q

c F z f z
p


 �
= ⋅ ⋅ − ⋅� 
� 


� �

��
�

 

and is denoted by ( )SC IIQ . We define  

( ) ( ) ( ) ( )( )
, ,

( )

,
, : 2

2
Y Q

S D Q S D Q
Y Q

L D Q
M D Q F z f z

Q
��
�


 � ∂
= ⋅ ⋅ − ⋅ =� 
� 
 ∂� �

       (7) 

and ,D Qz  as above. Hence, the optimality condition for ( )SC IIQ  can be re-formulated as  

( )( ), SC II
c M D Q
p

=           (8) 

Overall solution 
Since the solution from (4) is contained in (8) for /p c �> , the production decision of the supply 

chain as a whole is given by  

( )* for /
0 else

SC IIQ p c
Q

�>�
= �
�

         (9) 

The corresponding optimal profit of the supply chain results from (6) and takes the following form: 

( ) ( ) ( ) ( )( )� �* * * * * * *
, ( ) ( ) ,� �SC SC S D Q Y Q Y Q S D QQ p D p F z D f z c Q= = ⋅ − ⋅ ⋅ − + ⋅ − ⋅   

with *
*

( ) ( )Y Q Y Q
� �= , *

*
( ) ( )Y Q Y Q

� �= , and 
*

( )*
, *

( )

Y Q
D Q

Y Q

D
z

�
�
−

= . 

Inserting 

( ) ( )* * * * *
( ) , , ( ) ( )

2
2Y Q S D Q S D Q Y Q Y Q

cf z F z
p

� � �
�

⋅⋅ = ⋅ ⋅ − ⋅
⋅

 

(which is given from (7) and (8)) into (6) yields the optimal supply chain profit: 

( )( ) ( )( )* * * *
, ,� 1SC S D Q S D Qp F z D p F z c Q�= ⋅ − ⋅ − ⋅ ⋅ − ⋅        (10) 

                                                            
5 For a detailed analysis of ( ),L D Q Q∂ ∂  see Appendix A2. 
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( )�WHP
Sd Q X

w c
dQ

�= ⋅ −  

is positive if w /  c �>  and negative otherwise. Thus, it implies the following production decision  

( )( )

for /
0 else

WHP
S I

X w c
Q X

�>�
= �
�

         (15) 

If the condition for profitability of the business holds, i.e. /w c �> , it has to be evaluated whether 
Q X≥  is preferable for the supplier.  

Case S(II) 
In this case ( Q X≥ ) the supplier’s profit to maximize is the one in (13) and after transformation given 
by 

( ) ( )� ,WHP
S Q X w L X Q c Q= ⋅ − ⋅          (16) 

We define the delivery quantity from the supplier to the buyer as10 

( ) ( ) ( )( ), , ,, Y S X Q X Q S X QL X Q X F z z f z�= − ⋅ ⋅ +        (17) 

and ( )
,

( )

: Y Q
X Q

Y Q

X
z

−
=

�
�

 (Note that ,X Qz  depends on order quantity X  as well as on production input Q 

through mean and standard deviation of the yield ( )Y Q ). Analogously, the optimal production input 
for case S(II) results from the first order condition below: 

( ) ( ) !� ,
  0

WHP
Sd Q X L X Q

w c
dQ Q

∂
= ⋅ − =

∂
 

with 

( ) ( ) ( ) ( )( )
, ,

( )

,
2 ,

2
Y Q

S X Q S X Q
Y Q

L X Q
F z f z M X Q

Q
��
�


 �∂
= ⋅ ⋅ − ⋅ =� 
� 
∂ � �

      (18) 

which is independent from any cost or price parameter.11 The optimal input quantity under case S(II) 
is denoted by ( )

WHP
S IIQ  and satisfies the optimality condition below 

( )( ), WHP
S II

c M X Q
w

=           (19) 

Theoretically, the supplier can choose a production quantity which is smaller than the order quantity 
and generate positive profits. However, in this case the optimization will follow case S(I) the solution 
of which is included in the solution space of S(II). Summarizing, the supplier’s production decision 
under the simple WHP contract is given by 

                                                            
10 For details on the transformation of the supplier’s delivery quantity, recall Appendix A1. 
11 For the first order derivative ( ), /L X Q Q∂ ∂  recall Appendix A2. 
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( ) ( ) for /
0 else

WHP
WHP S IIQ w c

Q X
�� >�= �

��
         (20) 

The supplier’s profit is concave as the second order derivative is negative: 12 

( ) ( ) ( ) ( )2
2

( ) ( ) ( ) ( )
,2 2

( ) ( )

� ,
( ) 0

4

WHP
Y Q Y Q Y Q Y QS

S X Q
Y Q Y Q

X Xd Q X M X Q ww f z
d Q Q

� � � ��
� �

+ + ⋅ + −∂ ⋅= ⋅ = − ⋅ ⋅ <
∂ ⋅

 

Analogously to the supply chain analysis, the relation between Q  and X  is given by13 

( ) ( )
( )( )

( ) ( )

( ) ( ) ( ) ( )

2( , ) ( , ) 0Y Q Y Q

Y Q Y Q Y Q Y Q

XdQ X M X Q M X Q
X QdX X X

� �
� � � � �

⋅ ⋅ +∂ ∂= − = >
∂ ∂ ⋅ + + + −

   (21) 

Buyer decision 
The buyer as the leader in this Stackelberg game anticipates the decision made by the supplier from 
(20). As the first mover, the buyer’s profit to maximize under a simple WHP contract is the following: 

( ) ( )( ) ( )( )� min , , min ,WHP
B X p E D X Y Q w E X Y Q� � � �= ⋅ − ⋅� � � �       (22) 

The first part of the profit function is the expected revenue from selling to the end customer; the 
second part describes the expected cost from procuring units from the supplier. In the following, it 
has to be evaluated whether it is preferable for the buyer to order below or above demand.  

Case B(I) 
Under case B(I) ( X D≤ ) the buyer’s profit is given by 

( ) ( ) ( )( ) ( ) ( )� min , ,WHP
B X p w E X Y Q p w L X Q� �= − ⋅ = − ⋅� �       (23) 

The first order derivative is rather complex as the buyer is the leader in this Stackelberg game and 
accounts for the supplier’s reaction to his decision, i.e. ( )WHPQ Q X= . Therefore, the total first order 

derivative of this function includes the relation ( ) /dQ X dX  from (21) which describes the change in 

production input given a change in order quantity. The total first order derivative is given by 

( ) ( ) ( ) ( )� � �WHP WHP WHP
B B Bd X X X dQ X
dX X Q dX

∂ ∂
= + ⋅

∂ ∂
       (24) 

Given the first order derivative ( ),L X Q X∂ ∂  (with ( ),L X Q  from (17)) as 

( ) ( ) ( ) ( ) ( )( ) , , , , , ,
( ) ( ) ( )

, 1 1 1
1 1Y Q S X Q X Q S X Q S X Q X Q S X Q

Y Q Y Q Y Q

L X Q
f z z F z f z z F z

X
�

� � �

 �∂

= − ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ = −� 
� 
∂ � �
 (25) 

the total first order derivative of the buyer’s profit is derived below 

( ) ( ) ( ) ( ) ( )( ),

� ,
1

WHP
B

S X Q

X L X Q
p w p w F z

X X
∂ ∂

= − ⋅ = − ⋅ −
∂ ∂

 

                                                            
12 The result is identical to (11) with X instead of D and w instead of p. 
13 The result is identical to (12) with X instead of D. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )� ,
,

WHP
B XX dQ X L X Q dQ X dQ

p w p w M X Q
Q dX Q dX dX

∂ ∂
⋅ = − ⋅ ⋅ = − ⋅ ⋅

∂ ∂
 

with ( ),L X Q Q∂ ∂  from (18). Finally, the total first order derivative is given by 

( ) ( ) ( )( ) ( ) ( ) ( )
,

�
1 ,

WHP
B

S X Q

Xd X dQ
p w F z p w M X Q

dX dX
= − ⋅ − + − ⋅ ⋅      (26) 

Due to ( ), 0M X Q > , ( ) / 0dQ X dX > , and the profitability assumption p w>  it follows that WHPX D=  

because 

( ) 0 for �
0 else

WHP
B p wd X
dX

> >�
�≤�

 

The order decision under case B(I) is formulated below 

( )

for 
0 else

WHP
B I

D p w
X

>�
= �
�

 

Case B(II) 
Analyzing the second case B(II) ( X D≥ ), the buyer’s profit is given by 

( ) ( )( ) ( )( )� min , min ,WHP
B X p E D Y Q w E X Y Q� � � �= ⋅ − ⋅� � � �  

( ) ( ) ( )� , ,WHP
B X p L D Q w L X Q= ⋅ − ⋅         (27) 

As under case B(I), the first order derivative is calculated by 

( ) ( ) ( ) ( )� � �WHP WHP WHP
B B Bd X X X dQ X
dX X Q dX

∂ ∂
= + ⋅

∂ ∂
 

As such, the single parts are given below 

( ) ( ) ( )( ),

� ,
1

WHP
B

S X Q

X L X Q
w w F z

X X
∂ ∂

= − ⋅ = − ⋅ −
∂ ∂

 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

� , ,

, ,

WHP
B X dQ X L D Q L X Q dQ X

p w
Q dX Q Q dX

XdQ
p M D Q w M X Q

dX

∂ 
 ∂ ∂ �
⋅ = ⋅ − ⋅ ⋅� 
∂ ∂ ∂� �

= ⋅ − ⋅ ⋅

  

with ( ),L X Q X∂ ∂  from (25) and ( ),L X Q Q∂ ∂  from (18). Finally, the total first order derivative is 

given by 

( ) ( )( ) ( ) ( )( ) ( )
,

�
1 , ,

WHP
B

S X Q

Xd X dQ
w F z p M D Q w M X Q

dX dX
= − ⋅ − + ⋅ − ⋅ ⋅     (28)
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The buyer decision under case B(II) is denoted by ( )
WHP
B IIX and is derived from the first order condition 

( )
!

� 0WHP
Bd X dX = . Hence, as the order decision under case B(II) includes the solution of case B(I), the 

overall order decision under the WHP contract is formulated below 

WHP ( ) for 
0 else

WHP
B IIX p w

X
� >�= �
��

         (29) 

Interaction of buyer and supplier 

In order to evaluate the coordination ability of the WHP contract it has to be analyzed whether a 
wholesale price value exists which induces the supplier to produce the supply chain optimal quantity. 
From the supply chain’s and the supplier’s optimality conditions in (8) and (19) we know that  

( )*,
c M D Q
p

=  and ( ), WHPc M X Q
w

= , respectively, if p w c �> > . 

Coordination is achieved if *WHPQ Q= . Obviously, this is guaranteed if the following two conditions 

hold: (i) the buyer orders at demand level ( WHPX D= ) which yields ( ) ( )*, ,WHPM X Q M D Q=  and (ii) the 

wholesale price is equal to the retail price which guarantees that c p c w= . Given w p= , the effect 

on the buyer’s profit has to be evaluated. Given case B(II) ( X D≥ ), the first order derivative of the 
buyer profit in (28) transforms to  

( )( ) ( ) ( )( ), ,
�

1 1 0
WHP
B

S X Q S X Q

XdQd c cp F z p p p F z
dX p p dX


 �= − ⋅ − + ⋅ − ⋅ ⋅ = − ⋅ − <� 

� �

 

Thus, for all values of the buyer’s order in the range X D≥ , his marginal profit is negative. 
Consequently, the buyer will not order above end customer demand. Evaluating the decision 
spectrum X D≤ , the buyer profit from (23), given w p= , turns out to be zero: 

( ) ( ) ( )� , 0WHP WHP
B X p p L X Q= − ⋅ = . 

Because the buyer’s profit is zero for any order quantity below end customer demand, he is 
indifferent between all values from 0 to D . Assuming that the buyer orders WHPX D=  units and given 
w p= , it follows from the supply chain’s and the supplier’s profits in (6) and (16) that 

( ) ( ) ( )� , �WHP WHP WHP
S SCQ X D p L D Q c Q Q= = ⋅ − ⋅ =  

Thus, the supplier receives the total supply chain profit while the buyer does not generate any profit 
when ordering D units. Hence, the buyer does not agree on the contract. Ordering zero units results 
in the business to not take place at all. Consequently, coordination cannot be enabled by the simple 
wholesale price contract if the two above conditions hold. The buyer only participates in the business 
if the wholesale price is below the retail price. However, in this case it holds that c p c w<  and 

consequently ( ) ( )*, ,WHPM X Q M D Q> . As ( ), 0M X Q Q∂ ∂ < , it follows that the supplier’s production 

quantity is too low to coordinate the supply chain. Only a wholesale price value as large as the retail 
price incentivizes the supplier to produce the supply chain optimal quantity. Nevertheless, a low 
wholesale price may induce the buyer to order larger amounts which compensate the unwillingness 
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of the supplier to inflate the order enough to reach the supply chain optimum. For that reason, 
another extreme case for the wholesale price is evaluated.  

If the supplier sells at her expected production cost to the buyer ( /w c �= ), it is obvious that a 
production quantity larger than the order quantity makes no sense. Thus, case S(I) Q X≤  must be 
analyzed with the profit function from (14). Setting /w c �=  yields 

( )� 0WHP
S

cQ c Q�
�

 �= ⋅ − ⋅ =� 

� �

. 

Because the supplier’s profit is zero for all possible production choices, she is indifferent between all 

values from 0 to WHPX . That being the case, it will be assumed that the supplier produces WHP WHPQ X=  
units. Anticipating this behavior, the buyer maximizes his profit for case B(II) X D≥  in (27)  

( ) ( ) ( )� , ,WHP
B X p L D Q w L X Q= ⋅ − ⋅  

Given WHP WHPQ X= , it follows that ( ), 1S X QF z =  and ( ), 0S X Qf z = .14 Thus, the buyer’s profit function 

transforms to 

( ) ( ) ( )� , �WHP WHP WHP WHP
B SCX Q X p L D Q c Q Q= = ⋅ − ⋅ =   

because according to (5) ( ) ( ) ( )( )( ), , 1 0Y Q
c c cw L X Q L X Q Q Q Q c Q� �
� � �

⋅ = ⋅ = ⋅ + ⋅ ⋅ − ⋅ + ⋅ = ⋅ . 

As WHP WHPX Q=  and ( ) ( )� �WHP WHP WHP WHP
B SCX Q X Q= = , obviously it follows that *WHPX Q=  and 

( ) ( )*� �WHP WHP
B SCX Q= . 

It can be shown that given /w c �= , coordination of the supply chain will be enabled with the buyer 
ordering the supply chain optimal production quantity and the supplier producing the exact order 
quantity. However, as the supplier is left with no profit, her participation constraint is violated and 
she does not agree on the contract. Thus, coordination of the supply chain is impeded by violating 
the supplier’s participation constraint. 

Summarizing, each case violates the participation constraint of one actor in the supply chain (

� ( ) 0 for WHP
B X w p= =  and � ( ) 0 for /WHP

S Q X w c �= = ) and, thus, terminates the interaction.  The 

numerical examples in the following section provide insight that apart from the extreme values, no 
wholesale price in the range /c w p� < <  can enable supply chain coordination. Thus, it is concluded 

that the simple WHP contract fails to coordinate the supply chain. 

Numerical examples 

The insights become more evident when the results of the preceding analysis are demonstrated by 
means of a numerical example. We set the parameters as follows: 1c = , 14p =  and 100D = . The 

binomially distributed yield is approximated by the normal distribution with mean and standard 

                                                            
14 For the proof see Appendix A5. 



15 
 

deviation from (1) and (2). For 100Q D≥ =  this approximation is feasible for 0.06 0.94�≤ ≤  because 
for these values the condition ( )1 5Q � �⋅ ⋅ − >  is satisfied.15 

In this numerical example, we calculate the impact of different values of the wholesale price (in the 
interval /c w p� ≤ ≤ ) on the profit split in the supply chain for different values of success probability 

� . The benchmarks (supply chain optimal decision and profit) are also given in each table. 

w  
*Q  WHPQ   

WHPX  �WHP
S  �WHP

B  � �WHP WHP
S B+  

*�SC  
WHPQ D  

4 419 419 419 0 958 958 958 4,19 

5 419 412 111 99 858 957 958 4,12 

6 419 407 106 193 763 955 958 4,07 

� � � � � � � � � 

12 419 413 100 762 196 957 958 4,13 

13 419 416 100 860 98 958 958 4,16 

14 419 419 100 958 0 958 958 4,19 

Table 1: Effect of wholesale price on profit distribution for 25% success probability 

 

w  
*Q  WHPQ   

WHPX  �WHP
S  �WHP

B  � �WHP WHP
S B+  

*�SC  
WHPQ D  

2 215 215 215 0 1177 1177 1177 2,15 

3 215 211 109 101 1075 1176 1177 2,11 

4 215 207 104 196 977 1173 1177 2,07 

5 215 205 101 289 881 1170 1177 2,05 

6 215 205 100 384 787 1171 1177 2,05 

� � � � � � � � � 

12 215 213 100 978 199 1177 1177 2,13 

13 215 214 100 1078 99 1177 1177 2,14 

14 215 215 100 1177 0 1177 1177 2,15 

Table 2: Effect of wholesale price on profit distribution for 50% success probability 

 

 

 

                                                            
15 Compare chapter 3 (Analysis for a centralized supply chain). 
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w  
*Q  WHPQ   

WHPX  �WHP
S  �WHP

B  � �WHP WHP
S B+  

*�SC  
WHPQ D  

1,33 142 142 142 0 1254 1254 1254 1,42 

2 142 141 108 68 1186 1254 1254 1,41 

3 142 138 103 166 1086 1252 1254 1,38 

4 142 137 101 262 989 1251 1254 1,37 

5 142 137 100 358 892 1250 1254 1,37 

6 142 138 100 458 794 1252 1254 1,38 

� � � � � � � � � 

13 142 142 100 1154 100 1254 1254 1,42 

14 142 142 100 1254 0 1254 1254 1,42 

Table 3: Effect of wholesale price on profit distribution for 75% success probability 

 

From all tables the interplay of production and order sizes for different wholesale price levels 
becomes visible, and it is illustrated how the supply chain loses efficiency if the supply chain internal 
price deviates from both its minimum and maximum feasible levels.16 

 

4.2.Over�production risk sharing contract 

Under the over�production risk sharing (ORS) contract the risk of producing too many units (i.e. those 
units which exceed the order quantity) is shared among the two parties. Thus, the supplier bears less 
risk and is motivated to respond to the buyer’s order with a higher production quantity. Under this 
contract, the buyer commits to pay for all units produced by the supplier. While he pays the 
wholesale price w  per unit for deliveries up to his actual order volume, quantities that exceed this 
amount are compensated at a lower price Ow . In order to exclude situations where the supplier will 

generate unlimited profits from over-production the following parameter restrictions are set: 
/Ow c w�< < . As the supplier is able to generate revenue for every produced unit she has an 

incentive to produce a larger lot compared to the situation under the simple WHP contract. This 
increase might provide the potential to align the supplier’s production decision with the supply chain 
optimal one.  

In this context two contract variants have to be distinguished depending on the way a possible over-
production is handled by the parties. Under the first variant the buyer just financially compensates 
the supplier for over-production without physically receiving deliveries that exceed his order size. 
This Pull-ORS contract leaves him in a different risk position as when the parties agree that the 

                                                            
16 None of the decisions outside the limiting values of the wholesale price coordinate the supply chain. 
Apparently optimal decisions and profits result from rounding and can be shown to be suboptimal in decimal 
places. 
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supplier will deliver the whole production output irrespective of the buyer’s order. This variant is 
denoted a Push-ORS contract. 

Supplier decision 
The profit to optimize by the supplier is identical for both contract variants. It now also includes the 
compensation for over-production and is given by 

( ) ( )( ) ( )( )� min ,ORS
S OQ X w E X Y Q w E Y Q X c Q

+� �� �= ⋅ + ⋅ − − ⋅� � � �        (30) 

In the following, two cases are analyzed separately, S(I) ( Q D≤  ) and S(II) ( Q D≥  ). 

Case S(I) 
From case S(I) ( Q D≤ ) it results that ( )Y Q Q D≤ ≤  and the supplier’s profit transforms to  

( ) ( ) ( )� 0ORS
S OQ X w E Y Q w c Q w c Q�= ⋅ � � + ⋅ − ⋅ = ⋅ − ⋅� �       (31) 

For the first order derivative it holds that 

( )� 0 for /
0 else

ORS
Sd Q X w c

w c
dQ

�
�

> >�
= ⋅ − �≤�

 

From that, the optimal input decision under case S(I) is given by 

( )( )

for /  
0 else

ORS
S I

X w c
Q X

�>�
= �
�

         (32) 

Consequently, it has to be evaluated whether case S(II) ( Q D≥ ) is preferable for the supplier.  

Case S(II) 
In this case, the supplier profit is given by 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

� min , min ,

min ,

ORS
S O

O O

Q X w E X Y Q w E Y Q X Y Q c Q

w w E X Y Q w E Y Q c Q

� � � �= ⋅ + ⋅ − − ⋅� � � �
� �= − ⋅ + ⋅ � � − ⋅� �� �

 

( ) ( ) ( ) ( )� ,ORS
S O O Y QQ X w w L X Q w c Q�= − ⋅ + ⋅ − ⋅        (33) 

with ( ),L X Q  from (17). The first order derivative of the supplier’s profit is given by 

( ) ( ) ( ) ( ) ( )
� ,

,
ORS
S

O O O O

d Q X L X Q
w w w c w w M X Q w c

dQ Q
� �

∂
= − ⋅ + ⋅ − = − ⋅ + ⋅ −

∂
   (34) 

with ( ),L X Q Q∂ ∂  from (18). It results the optimality condition for the supplier’s production quantity 

under case S(II), ( )
ORS
S IIQ , from the first order condition ( )

!
� 0ORS

Sd Q X dQ= : 

( )( ), ORSO
S II

O

c w
M X Q

w w
�− ⋅

=
−

          (35) 
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Thus, the supplier’s production decision under an ORS contract can be formulated as 

( ) ( ) if /
0 else

ORS
ORS S IIQ w c

Q X
�� >�= �

��
          (36) 

Note that for 0Ow =  the optimal decision is identical to that under a WHP contract. 

The supplier’s profit is concave as the second order derivative is negative: 17 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
( ) ( ) ( ) ( )

,2 2
( ) ( )

� ,
0

4

ORS
Y Q Y Q Y Q Y QS O

O S X Q
Y Q Y Q

X Xd Q X M X Q w w
w w f z

Qd Q

� � � ��
� �

+ + ⋅ + −∂ − ⋅
= − ⋅ = − ⋅ ⋅ <

∂ ⋅
 

Since ( ),M X Q  in (35) is a constant like for the WHP contract, the first-order derivative ( )ORSdQ X dX  

is identical to that in (21). 

Buyer decision 
The buyer’s profit function depends on the specific type of ORS contract that is applied. Under a Pull�
ORS type (exclusion of over-delivery) the buyer maximizes a profit which compared to the WHP 
contract is reduced by the supplier’s compensation for over-produced items 

( ) ( )( ) ( )( ) ( )( )� min , , min ,ORS
B OX p E D X Y Q w E X Y Q w E Y Q X

+� �� � � �= ⋅ − ⋅ − ⋅ −� � � � � �     (37) 

As for the supplier, they buyer analysis considers two separate cases. 

Case B(I) 
Under case B(I) ( X D≤ ), the buyer’s profit is given by 

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )

� min ,

min ,

ORS
B O

O O

X p w E X Y Q w E Y Q X

p w w E X Y Q w E Y Q

+� �� �= − ⋅ − ⋅ −� � � �
� �= − + ⋅ − ⋅ � �� �� �

 

( ) ( ) ( ) ( )� ,ORS
B O O Y QX p w w L X Q w �= − + ⋅ − ⋅        (38) 

with ( ),L X Q  from (17). The total first order derivative of (38) is given by18 

( ) ( ) ( )( ) ( ) ( )( ) ( )
,

�
1 ,

ORS
B

O S X Q O O

Xd X dQ
p w w F z p w w M X Q w

dX dX
�= − + ⋅ − + − + ⋅ − ⋅ ⋅    (39) 

with ( ),M X Q  from (18) and ( )dQ X dX  from (21). Depending on whether the first order derivative 

is positive or negative, the order quantity under case B(I), ( )
ORS
B IX , ranges from zero up to demand D. 

Case B(II) 
For case B(II) ( X D≥ ) the buyer maximizes the following profit 

                                                            
17 For ( ),M X Q Q∂ ∂  see Appendix A3. 
18 A detailed analysis of the first order derivative is given in Appendix 6.1. 
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( ) ( )( ) ( ) ( )( ) ( )� min , min ,ORS
B O OX p E D Y Q w w E X Y Q w E Y Q� � � �= ⋅ − − ⋅ − ⋅ � �� �� � � �  

( ) ( ) ( ) ( ) ( )� , ,ORS
B O O Y QX p L D Q w w L X Q w �= ⋅ − − ⋅ − ⋅       (40) 

with ( ),L D Q  from (5) and ( ),L X Q  from (17). The profit maximizing order quantity for case B(II), ( )
ORS
B IIX

, results from the first order derivative below19 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
,

�
1 , ,

ORS
B

O S X Q O O

Xd X dQ
w w F z p M D Q w w M X Q w

dX dX
�= − − ⋅ − + ⋅ − − ⋅ − ⋅ ⋅  (41) 

with ( ),M D Q  and ( ),M X Q  from (7) and (18), respectively, by setting ( )
!

� 0ORS
Bd X dX = .  

Interaction of buyer and supplier 

As under the WHP contract, it has to be analyzed whether there exists a combination of contract 
parameters which guarantees that the total supply chain profit is maximized while both, supplier and 
buyer accept the contract. Coordination is achieved if the optimality conditions of supply chain and 
supplier under an ORS contract are identical. They are given from (8) and (35), respectively: 

( )*,
c M D Q
p

=  and ( ), ORSO

O

c w
M X Q

w w
�− ⋅ =

−
. 

This condition is fulfilled if (i) the buyer orders at demand level, i.e. if ORSX D=  and (ii) if 

( ) ( )*, , ORSM D Q M X Q=  holds, i.e. if the following condition for the contract parameters is satisfied 

( ) ( )O Oc w w p c w �⋅ − = ⋅ − ⋅          (42) 

which ensures that ( ) ( )O Oc p c w w w�= − ⋅ − . This condition also implies that 

( ) ( )O O Op w w c c w w w�= − ⋅ − ⋅ > − . 

Given the condition for setting the parameters, the supplier’s marginal profit under case S(II) in (34) 
turns out to be 

( ) ( ) ( )
( )

*�
0

ORS ORS ORS
S O

O O
O

d Q Q X D c w
w w w c

dQ w w
�

�
= = − ⋅

= − ⋅ + ⋅ − =
−

. 

The supplier’s marginal profit being zero, shows that the supplier actually chooses the respective 
quantity. As the buyer anticipates this behavior, it can be evaluated which order decision maximizes 
the buyer’s profit. Under case B(II) ( X D≥ ), for *ORSQ Q=  the buyer’s marginal profit from (41) 
transforms to 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

� �,

, ,

�
1 ( )

                 1 ( ) 1 ( ) 0

ORS
B O

O S D Q O O
O

O S D Q O S D Q

d X dQ Xc wcw w F z p w w w
dX p w w dX

dQ X
w w F z c c w w F z

dX


 �
 �− ⋅= − − ⋅ − + ⋅ − − ⋅ − ⋅ ⋅� � � 
� 
� � � 
� 
−� �� �

= − − ⋅ − + − ⋅ = − − ⋅ − <� � � �� � � �

 

                                                            
19 For more details on the derivative, see Appendix 6.1. 
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Due to the first-order derivative being negative, the buyer will not order above demand. Assuming an 
order quantity of ORSX D=  and the coordinating parameter setting from (42), the buyer maximizes 
the profit under case B(I) ( X D≤ ) in (38) according to 

( ) ( ) ( )* *
( )� ,ORS ORS

B O O Y QX D p w w L D Q w �= = − + ⋅ − ⋅ . 

Rearranging the above profit yields: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

* * * * *

* * *

*
* * * *

� , ,

� ,

�
� , �

ORS ORS
B O O

SC O O

SC
SC O O SC O

X D p L D Q c Q c Q w w L D Q w Q

w w L D Q c w Q

cw w L D Q w w Q w w
p p

= = ⋅ − ⋅ + ⋅ − − ⋅ − ⋅ ⋅

= − − ⋅ + − ⋅ ⋅

= − − ⋅ + ⋅ + ⋅ = − − ⋅

�

�  

( ) *� � 1ORS ORS O
B SC

w w
X D

p
−
 �= = ⋅ −� 


� �
         (43) 

Due to (42) it holds that Op w w> −  and thus, ( )� 0ORS ORS
B X D= > . Utilizing the first order condition of 

the above profit, the optimal order quantity is determined. The relation in (43) allows us to conclude 
that ( )� 0ORS

Bd X dX >  if ( )*� 0SCd X dX >  (with ( )* *� �SC SCX =  for D X= ) and thus, ORSX D= :20 

( ) ( )( ) ( )( ) ( )*

,

�
1 ,SC

S X Q

d X dQ X
p F z p M X Q c

dX dX
= ⋅ − + ⋅ − ⋅       (44) 

Given ( ) ( )*, , ORSM D Q M X Q= , it follows that 

( ) ( )( ) ( ) ( )( )
*

, ,

�
1 1 0SC

S X Q S X Q

d X dQ Xcp F z p c p F z
dX p dX


 �= ⋅ − + ⋅ − ⋅ = ⋅ − >� 

� �

 

Due to ( )*� 0SCd X dX > , it is inferred that ( )� 0ORS
Bd X dX >  and the buyer actually orders at demand 

level. So, both conditions for coordination are fulfilled which proves that the Pull�ORS contract can 
enable supply chain coordination, because the buyer incentives the supplier to produce the supply 
chain optimal amount by ordering at demand level if the contract parameters are fixed 
appropriately.  

If the actors agree on a Push�ORS contract the situation changes. In case all produced items are 
physically delivered, the buyer’s sales are not restricted by his own order and his profit turns out to 
be identical for the cases B(I) and B(II), i.e. for X D≤  and X D≥ , and is given from (40): 

( ) ( ) ( ) ( ) ( )� , ,ORS
B O O Y QX p L D Q w w L X Q w �= ⋅ − − ⋅ − ⋅ .  

From the previous analysis of the interaction between supplier and buyer, it is given that 

coordination requests ORSX D=  and ( ) ( )O Oc w w p c w �⋅ − = ⋅ − ⋅ . These conditions result in the 

following marginal profit for the buyer: 

                                                            
20 For more details on the first order derivative, see Appendix 6.1. 
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( ) ( ) ( )( ) ( ) ( )

( ) ( )( )
,

,

�
1

1 0

ORS
B O

O S X Q O O
O

O S X Q

Xd X dQc wcw w F z p w w w
dX p w w dX

w w F z

� �

 �− ⋅= − − ⋅ − + ⋅ − − ⋅ − ⋅ ⋅� 
−� �

= − − ⋅ − <

 

As the buyer’s marginal profit is negative (given Ow w< ), it is no option for the buyer to order at 

demand level. Through the design of the contract, orders below demand may be optimal. As the 
delivered quantity can exceed the order or even end customer demand, the buyer can still meet 
demand by ‘under-ordering’. Assuming the buyer orders below demand, there may be combinations 
of w  and Ow  which incentivize the supplier to produce the supply chain optimal quantity (obviously, 

a larger wholesale price or a higher compensation for over-stock is necessary). However, higher 
prices are less profitable for the buyer who would further reduce his order quantity. This downward 
trend continues until nothing is ordered at all. Yet, the Push�ORS contract cannot coordinate the 
supply chain. 

Numerical examples 

The data for the numerical study were introduced in the section of the WHP contract. In order to 
fulfil the optimality condition for the contract parameters in (42), the following has to hold: 

( ) 14
14 1O

c p w ww
p c� �
⋅ − −= =

⋅ − ⋅ −
.  

The tables below show the impact of the changing contract parameters on the split of profits 
between the buyer and the supplier in the supply chain for various success probabilities � . Again, a 
normal approximation to the binomial distribution is applied. All examples show that the condition 

( )1 5Q � �⋅ ⋅ − >  is satisfied as production quantities are larger than 100.21 
 

w  Ow  
*ORSQ Q=  

ORSX D= �ORS
S  �ORS

B  
*� � �ORS ORS

S B SC+ =  
ORSQ D  

4 4 419 100 0 958 958 4,19 

5 3,6 419 100 96 862 958 4,19 

6 3,2 419 100 192 766 958 4,19 

7 2,8 419 100 287 671 958 4,19 

8 2,4 419 100 383 575 958 4,19 

� � � � � � � � 

12 0,8 419 100 766 192 958 4,19 

13 0,4 419 100 862 96 958 4,19 

14 0 419 100 958 0 958 4,19 

Table 4: Effect of changing values for w  and Ow  on profit distribution for 25% success probability 

                                                            
21 Recall chapter 3 of the paper (Analysis for a centralized supply chain) 
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w  Ow  *ORSQ Q=   ORSX D=  �ORS
S  �ORS

B  
*� � �ORS ORS

S B SC+ =  
ORSQ D  

2 2 215 100 0 1177 1177 2,15 

3 1,83 215 100 98 1079 1177 2,15 

4 1,67 215 100 196 981 1177 2,15 

5 1,50 215 100 294 883 1177 2,15 

6 1,33 215 100 392 785 1177 2,15 

� � � � � � � � 

12 0,33 215 100 981 196 1177 2,15 

13 0,17 215 100 1079 98 1177 2,15 

14 0 215 100 1177 0 1177 2,15 

Table 5: Effect of changing values for w  and Ow  on profit distribution for 50% success probability 

 

w  Ow  *ORSQ Q=   ORSX D=  �ORS
S  �ORS

B  
*� � �ORS ORS

S B SC+ =  
ORSQ D  

1,33 1,33 142 100 0 1254 1254 1,42 

2 1,26 142 100 66 1188 1254 1,42 

3 1,16 142 100 165 1089 1254 1,42 

4 1,05 142 100 264 990 1254 1,42 

5 0,95 142 100 363 891 1254 1,42 

� � � � � � � � 

12 0,21 142 100 1056 198 1254 1,42 

13 0,11 142 100 1155 99 1254 1,42 

14 0 142 100 1254 0 1254 1,42 

Table 6: Effect of changing values for w  and Ow  on profit distribution for 75% success probability 
 

4.3.Penalty contract 

If a penalty (PEN) contract is applied the supplier will bear a higher risk than under a simple WHP 
contract since she will be punished for under-delivery. The supplier is penalized by the buyer (in the 
amount of � ) for each unit ordered that cannot be delivered because of insufficient production 
yield. Given the potential penalty the supplier has an incentive to produce more than under the 
simple WHP contract which might be sufficient to achieve coordination of the supply chain. 
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Supplier decision 
Under the PEN contract, the profit to optimize by the supplier includes the wholesale price as well as 
a penalty for under-delivery and is given by 

( ) ( )( ) ( )( )� min ,PEN
S Q X w E X Y Q E X Y Q c Q�

+� �� �= ⋅ − ⋅ − − ⋅� � � �       (45) 

In the following, the two cases S(I) ( Q X≤ ) and S(II) ( Q X≥ ) are, again, analyzed separately. 

Case S(I) 
Given case S(I) ( Q X≤ ) the supplier’s profit simplifies to 

( ) ( ) ( )( ) ( )( )�PEN
S Q X w E Y Q X E Y Q c Q w c Q X� � � �= ⋅ � � − ⋅ − � � − ⋅ = + ⋅ − ⋅ − ⋅� � � �    (46) 

From the first order derivative of (46) which is given by 

( ) ( )
�PEN

Sd Q X
w c

dQ
� �= + ⋅ −  

it follows that the supplier produces either zero or the ordered amount depending on the parameter 
constellation as formulated below 

( )� 0 for 

0 else

PEN
S

cd Q X w
dQ

��
�
+�> + >�

�
�≤�

. 

Note that if Q X= , then ( ) ( )( )�PEN
S Q X w c X� � �= + ⋅ − − ⋅  which constitutes the parameter condition 

above. Finally, the production quantity under case S(I), (I)
PEN
SQ , is formulated as follows 

( )( )

for 

0 else

PEN
S I

cX w
Q X

��
�
+� + >�= �

��

        (47) 

Case S(II) 
Assuming that ( )� � �/w c+ > +  holds, case S(II) ( Q X≥ ) has to be evaluated. The profit generated by 

the supplier is according to (45) 

( ) ( )( ) ( )( )� min , min ,PEN
S Q X w E X Y Q E X X Y Q c Q�� � � �= ⋅ − ⋅ − − ⋅� � � �  

( ) ( ) ( )� ,PEN
S Q X w L X Q X c Q� �= + ⋅ − ⋅ − ⋅         (48) 

with ( ),L X Q  from (17). Taking the first order derivative yields 

( ) ( ) ( ) ( ) ( )
,�

,
PEN
S X Qd Q X L

w c w M X Q c
dQ Q

� �
∂

= + ⋅ − = + ⋅ −
∂

      (49) 
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with ( ),X QL Q∂ ∂  from (18). Hence, from ( )
!

� 0PEN
Sd Q X dQ=  the optimal production input under 

case S(II), ( )
PEN
S IIQ , satisfies the following equation 

( )( ), PEN
S II

c M X Q
w �

=
+

          (50) 

Hence, the supplier’s production policy under a PEN contract is the following 

( ) ( ) for 

0 else

PEN
PEN S II

cQ w
Q X

��
�
+� + >�= �

��

        (51) 

Note that for 0� =  the optimal decision is identical to that under a WHP contract. 

The supplier’s profit is concave as the second order derivative is negative:22 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
( ) ( ) ( ) ( )

,2 2
( ) ( )

� ,
0

4

PEN
Y Q Y Q Y Q Y QS

S X Q
Y Q Y Q

X Xd Q X M X Q w
w f z

d Q Q
� � � �� �

�
� �

+ + ⋅ + −∂ + ⋅
= + ⋅ = − ⋅ ⋅ <

∂ ⋅
 

Since ( ),M X Q  in (50) is a constant like for the WHP contract, the first-order derivative ( )PENdQ X dX  

is identical to that in (21). 

Buyer decision 
The buyer under a PEN contract is compensated for missing units by the penalty rate. The profit the 
buyer generates is the following 

( ) ( )( ) ( )( ) ( )( )� min , , min ,PEN
B X p E D X Y Q w E X Y Q E X Y Q�

+� �� � � �= ⋅ − ⋅ + ⋅ −� � � � � �  

The two cases B(I) ( X D≤ ) and B(II) ( X D≥ ) are evaluated in the next section. 

Case B(I) 
The buyer’s profit in case B(I) ( X D≤ ) transforms to 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )� min , min ,PEN
B X p w E X Y Q E X Y Q p w E X Y Q X� � �

+� �� � � �= − ⋅ + ⋅ − = − − ⋅ + ⋅� � � �� �
 

( ) ( ) ( )� ,PEN
B X p w L X Q X� �= − − ⋅ + ⋅         (52) 

with ( ),L X Q  from (17). Taking the first order derivative yields the expression below23 

( ) ( ) ( )( ) ( ) ( ) ( )
,

�
1 ,

PEN
B

S X Q

d X dQ X
p w F z p w M X Q

dX dX
� � �= − − ⋅ − + + − − ⋅ ⋅     (53) 

                                                            
22 For ( ),M X Q Q∂ ∂  see Appendix A3. 
23 For more details on the derivative, see Appendix 6.2 
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with ( ),M X Q  from (18) and ( )dQ X dX  from (21). The optimal order quantity under case B(I), ( )
PEN
B IX , 

then results from ( )
!

� 0PEN
Bd X dX = . Nevertheless, it might be preferable to raise the order quantity 

above demand ( X D≥ ). 

Case B(II) 
Under case B(II), the buyer maximizes the subsequent profit 

( ) ( ) ( ) ( )� min , ( ) min , ( )PEN
B X p E D Y Q w E X Y Q X� �= ⋅ � � − + ⋅ � � + ⋅� � � �   

( ) ( ) ( ) ( )� , ,PEN
B X p L D Q w L X Q X� �= ⋅ − + ⋅ + ⋅        (54) 

with ( ),L D Q  from (5) and ( ),L X Q  from (17). The buyer’s decision under case B(II), ( )
PEN
B IIX , is derived 

from taking the first order condition ( )
!

� 0PEN
Bd X dX =  from the derivative below 24 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
,

�
1 , ,

PEN
B

S X Q

d X dQ X
w F z p M D Q w M X Q

dX dX
� � �= − + ⋅ − + + ⋅ − + ⋅ ⋅   (55) 

with ( ),M D Q  from (7), ( ),M X Q  from (18) and ( )dQ X dX  from (21).  

Interaction of buyer and supplier 

As under the ORS contract, it has to be analyzed whether there exists a combination of contract 
parameters which guarantees that total supply chain profit is maximized while both, supplier and 
buyer, accept the contract. In order to coordinate the supply chain, the optimality conditions of 
supply chain and supplier under a PEN contract have to be identical. They are given from (8) and (50), 
respectively: 

( )*,
c M D Q
p

=  and ( ), PENc M X Q
w �

=
+

. 

This condition is fulfilled if the buyer orders at demand level, i.e. if PENX D=  and if 

( ) ( )*, , PENM D Q M X Q= ,i.e. if the following condition for the contract parameters is satisfied 

p w �= +            (56) 

which ensures that ( )c p c w �= + . Given the parameter condition, the supplier’s marginal profit in 

(49) turns out to be zero: 

( ) ( )
�

0
PEN
Sd Q X cw c

dQ w
�

�
= + ⋅ − =

+
. 

As the supplier’s marginal profit is zero, she actually choses the corresponding input quantity. 
Because the buyer anticipates this behavior, it can be evaluated which order decision maximizes his 
profit. Under case B(II) ( X D≥ ), the buyer’s marginal profit from (55) in combination with the 
parameter condition in (56), transforms to 

                                                            
24 For more details, see Appendix 6.2. 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )
,

�
1

PEN
B

S X Q

d X dQ Xc cw F z w w
dX w w dX

� � � �
� �


 �
= − + ⋅ − + + + ⋅ − + ⋅ ⋅� 
� 
+ +� �

  

( ) ( ) ( ),

�PEN
B

S X Q

d X
w w F z

dX
�= − + + ⋅         (57) 

For proving that ( )� 0PEN
Bd X dX < , it has to be shown that the penalty �  must not be too large. Thus, 

the determination of the penalty needs particular analysis. Under coordination (given p w �= +  and 
PENX D=  which leads to *PENQ Q= ), and using the supply chain profit from (6), the supplier’s and the 

buyer’s profits from (48) and (54) can be expressed as follows 

( ) ( ) ( ) ( ) ( )* * *� , , �PEN PEN PEN PEN PEN
S SCQ X D w L D Q D c Q p L D Q c Q D Q D� � � �= = + ⋅ − ⋅ − ⋅ = ⋅ − ⋅ − ⋅ = − ⋅  

and 

( )�PEN PEN
B X D D�= = ⋅ . 

Consequently, in order for the supplier’s participation constraint to hold, i.e. to generate a non-

negative profit, the maximum penalty � +  that results in ( )� 0PEN PEN PEN
S Q X D= = , is given by 

( )*�SC Q

D
�+ =             (58) 

From ( ) ( )( ) ( )( )* * * * *
, ,� 1SC S D Q S D QQ p F z D p F z c Q�= ⋅ − ⋅ − ⋅ ⋅ − ⋅  in (10) we get: 

( )( ) ( )( )
*

* *
, ,1 S D Q S D Q

Qp F z p F z c
D

� � �+< = ⋅ − − ⋅ ⋅ − ⋅  

Given the coordinating parameter constellation p w �= + , the restriction � �+<  transforms to 

( ) ( )( ) ( )( )
*

* *
, ,1 S D Q S D Q

Qw F z p F z c
D

� � �< + ⋅ − − ⋅ ⋅ − ⋅  

From that we further get 

( ) ( ) ( )( )
*

* *
, ,S D Q S D Q

Qw F z w p F z c
D

� �+ ⋅ − < − ⋅ ⋅ − ⋅        (59) 

Under case B(II), from (57), the optimal buyer decision of PENX D=  is only given if  

( ) ( ) ( ),

�
0

PEN
B

S X Q

d X
w w F z

dX
�= − + + ⋅ <  

According to (59) this holds if ( )*
, 0S D Qp F z c�⋅ ⋅ − > . 

From (7) and (8) we know that  



27 
 

( ) ( )
*

( )* *
, ,*

( )2
Y Q

S D Q S D Q
Y Q

cF z f z
p

�
� �

= + ⋅
⋅ ⋅

 

so that ( ) ( )
*

( )* *
, ,*

( )

0
2

Y Q
S D Q S D Q

Y Q

p F z c p f z
�

� �
�

⋅ ⋅ − = ⋅ ⋅ ⋅ >
⋅

. 

Thus, if the participation constraint for the supplier is fulfilled and if the penalty �  is restricted to be 

lower that � + , the buyer’s optimal order quantity will be PENX D=  in case B(II). Since for X D≤  the 
first-order derivative in (55) reduces to � �� 0PEN

Bd X dX �� �  the contract coordinating parameter 

condition p w �= +  also initiates PENX D= in case B(I). Thus, analogously to the ORS contract, the PEN 

contract can enable supply chain coordination because the buyer incentivizes the supplier to produce 
the supply chain optimal amount by ordering at demand level while the contract parameters are 
fixed appropriately, i.e. if p w �= + . 

Numerical examples 

The data for the numerical study were introduced in the section of the WHP contract. The tables 
below show the coordinating ability of the PEN contract as well as the impact of changing contract 
parameters on the split of profits between the buyer and the supplier in the supply chain. As for the 
two previous contract analyses, the binomial distribution is approximated by a normal distribution 
which is feasible as orders and production quantities exceed the critical value of 26.67 which 
guarantees that the condition ( )1 5Q � �⋅ ⋅ − >  holds for success probabilities of 0.25 0.75�≤ ≤ .25 The 

examples below also incorporate the restriction for �  from (58). 

 

w  �  
*PENQ Q=  

PENX D= �PEN
S  �PEN

B  
*� � �PEN PEN

S B SC+ =  
PENQ D  

4,42 9,58 419 100 0 958 958 4,19 

5 9 419 100 58 900 958 4,19 

6 8 419 100 158 800 958 4,19 

7 7 419 100 258 700 958 4,19 

8 6 419 100 358 600 958 4,19 

� � � � � � � � 

12 2 419 100 758 200 958 4,19 

13 1 419 100 858 100 958 4,19 

14 0 419 100 958 0 958 4,19 

Table 7: Effect of changing values for w  and �  on profit distribution for 25% success probability 

 

                                                            
25 Recall chapter 3 of the paper (Analysis for a centralized supply chain) 
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w  �  
*PENQ Q=  

PENX D= �PEN
S  �PEN

B  
*� � �PEN PEN

S B SC+ =  
PENQ D  

2,23 11,77 215 100 0 1177 1177 2,15 

3 11 215 100 77 1100 1177 2,15 

4 10 215 100 177 1000 1177 2,15 

5 9 215 100 277 900 1177 2,15 

6 8 215 100 377 800 1177 2,15 

� � � � � � � � 

12 2 215 100 977 200 1177 2,15 

13 1 215 100 1077 100 1177 2,15 

14 0 215 100 1177 0 1177 2,15 

Table 8: Effect changing values for w  and �  on profit distribution for 50% success probability 

 

w  �  
*PENQ Q=  

PENX D=  �PEN
S  �PEN

B  
*� � �PEN PEN

S B SC+ =  
PENQ D  

1,46 12,54 142 100 0 1254 1254 1,42 

2 12 142 100 54 1200 1254 1,42 

3 11 142 100 154 1100 1254 1,42 

4 10 142 100 254 1000 1254 1,42 

5 9 142 100 354 900 1254 1,42 

� � � � � � � � 

12 2 142 100 1054 200 1254 1,42 

13 1 142 100 1154 100 1254 1,42 

14 0 142 100 1254 0 1254 1,42 

Table 9: Effect of changing values for w  and �  on profit distribution for 75% success probability 

 

5. Conclusion and outlook 

The analyses in this paper revealed interesting insights into the area of supply chain coordination 
through contracts in the case of binomially distributed production yields and deterministic demand. 
The simple WHP contract fails to coordinate the supply due to double marginalization, while contract 
types with reward or penalty scheme enable coordinated behavior in the supply chain without 
violating the actors’ participation constraints. However, the ORS contract’s ability to coordinate a 
supply chain depends on the variant that is applied. If a Pull type contract (without the delivery of 
excess units) is used, coordination can be achieved. However, if physical delivery of overstock is 
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allowed (Push variant), the contract loses its coordination power. For the PEN contract, however, it 
can be shown that the design enables SC coordination and, depending on the parameter setting 
(including a maximum penalty restriction), guarantees an arbitrary profit split. Numerical examples 
confirmed the analytical findings and where used to illustrate each contract’s efficiency to coordinate 
the supply chain as well as the profit split depending on various parameter combinations. 

Compared to the results from Inderfurth and Clemens (2014) for stochastically proportional yields, it 
is revealed that all contract designs retain their ability or disability to trigger coordination. For the 
coordinating contract types, Pull-ORS and PEN, it furthermore holds that only in cases where the 
buyer orders exactly at demand level coordination is achieved. Regarding the production decisions, it 
is found that, as in Inderfurth and Clemens (2014), production input is a multiple of the order size. 
However, the multiplier is not a constant any longer. Due to the characteristic of binomial yields to 
decrease in risk as the input size rises, the multiplier changes in every instance of adjusting demand 
or order sizes (which determine production input decisions). Nevertheless, whether the multiplier 
increases, decreases or alternates, depends on the critical ratio of contract parameters and demand. 
In terms of the numerical examples, the supply chain generates a larger maximum profit under 
binomial (BI) yield than under uniformly distributed stochastically proportional (SP) yield (data as 

given in section 4.1, mean SP yield rate and BI success probability 0,5Z� �= = : � 1177BI
SC =  and 

� 871SP
SC = , see Inderfurth and Clemens (2014) p. 544). However, the distribution of profits between 

buyer and supplier is almost the same for all contracts, apart from medium values for the penalty 
under the PEN contract where the supplier benefits from the higher total supply chain profit under 
binomial yields. 

Further research should focus on extending the supply chain to an emergency option for procuring 
extra units in case of under-delivery. This option was introduced by Inderfurth and Clemens (2014) 
and it was shown to coordinate the supply chain by applying the WHP contract (given that only the 
supplier is utilizing the emergency source). In the current setting, this option may reveal a similar 
performance. Besides, the setting can also be adjusted with respect to supply chain structure. An 
important aspect in this context is the extension from a serial to a converging supply chain. 
Concentrating on further types of yield uncertainty, the all-or-nothing type of yield realization, also 
known as disruption risk (see Xia et al. (2011)), has hardly received any attention in literature so far. 
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Appendix 

A1. Details on transformation of delivery/sales quantity L 
We arrive at the final form of the supply chain’s sales quantity ( ),L D Q  in (5) as shown below. 

Definition: ( ) ( )( ), : min ,L D Q E D Y Q� �= � �  

Rearranging yields the following 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
0 0

,
D D

Y Q Y Q Y QL D Q D D y f y dy D D F D y f y dy= − − ⋅ = − ⋅ + ⋅	 	   

For normal approximation of binomially distributed yield it holds that ( ) ( )( ) ( )
0

D D

Y Q Y Qy f y dy y f y dy
−∞

⋅ = ⋅	 	 . 

For normally distributed random variables the following relationship can be utilized to further 
transform the above expression:26 

( ) � �
� �

� �
( ) ( )

( ) ( ) ( )
( ) ( )

D
Y Q Y Q

Y Q Y Q S Y Q S
Y Q Y Q

D D
y f y dy F f

−∞


 � 
 �− −
⋅ = ⋅ − ⋅� 
 � 
� 
 � 


� � � �
	  

Replacing the integral and further rearranging yields 

( )

( ) ( )( )

( ) ( ) ( )
( )

( ) ( ) ( )

( ) , , ,

, Y Q Y Q Y Q
Y Q S S

Y Q Y Q Y Q

Y Q S D Q D Q S D Q

D D D
L D Q D F f

D F z z f z

� � �
�

� � �

�


 �
 � 
 � 
 �− − −
= − ⋅ ⋅ +� 
� 
 � 
 � 
� 
 � 
 � 
� 
� � � � � �� �

= − ⋅ ⋅ +

 

with ( )SF ⋅  and ( )Sf ⋅  as cdf and pdf of the standard normal distribution and ( ), ( ) ( ):D Q Y Q Y Qz D � �= − . 

The delivery quantity in a decentralized supply chain is identical with the above expression with X  
instead of D  and w  instead of p . The term is the following 

( ) ( )( ) ( ) ( )( )( ) , , ,, min , Y Q S X Q X Q S X QL X Q E X Y Q X F z z f z�� �= = − ⋅ ⋅ +� �  

A2. First order derivatives of sales/delivery quantity L 
In this section the first order derivatives are given for the sales quantity of the supply chain ( ),L D Q  

in (5) and for the delivery quantity of the supplier to the buyer ( ),L X Q  in (17) with respect to 

production quantity Q as well as order quantity X. ( )Y Q�  and ( )Y Q�  are given from (1) and (2). 

Definition: ( ) ( ) ( )( ) ( ) ( ) ( )( )( ) , , , , ( ) ( ) ,, : Y Q S D Q D Q S D Q S D Q Y Q Y Q S D QL D Q D F z z f z D F z D f z� � �= − ⋅ ⋅ + = − ⋅ − + ⋅   

                                                            
26 Compare Chopra and Meindl (2012) p. 404. 
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with 
�

�
−

= ( )
,

( )

: Y Q
D Q

Y Q

D
z  

( ) ( ) ( ) ( ), ( ) ( ) ,

,
S D Q Y Q Y Q S D Q

L D Q F z D f z
QQ Q

� �
∂∂ ∂
 �⋅ −� � � �= − + ⋅� 
� �� �∂∂ ∂� �

 

with 

( )( ),

( ) ( )2
Y QD Q

Y Q Y Q

Dz
Q

� �
� �

⋅ +∂
= −

∂ ⋅ ⋅
 

( ) ( ) ( ) ( )� �
� �

( ),Q ,
,Q

( ) ( )2
Y QS D D QS

S D
Y Q Y Q

DF z zdF z
f z

Q dz Q


 �⋅ +∂ ∂
= ⋅ = ⋅ −� 
� 
∂ ∂ ⋅ ⋅� �

  

( ) ( ) ( ) ( )

( ) ( ) ( )

� �
� �

� � �
� �

( ),Q ,
, ,

( ) ( )

( ) ( ),
2

( ) ( )

2

2

Y QS D D QS
D Q S D Q

Y Q Y Q

Y Q Y QS D Q

Y Q Y Q

Df z zdf z
z f z

Q dz Q

D Df z


 �⋅ +∂ ∂
= ⋅ = − ⋅ ⋅ −� 
� 
∂ ∂ ⋅ ⋅� �

⋅ + ⋅ −
= ⋅

⋅

  

( )Y Qd
dQ
�

�=   

Thus, we get 

( )
( )

( )( ) ( )
2

( )

( )

1 11
2 22 1

2

Y Q Y Q

Y Q

Y Q

d Q
dQ Q QQ

� �� � � �

� �
� �
�

⋅ − ⋅ − ⋅
= = ⋅ =

⋅⋅ ⋅ − ⋅

⋅
=

⋅

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,Q
, ( ) ( ) , ( )

( )
( ), ,

( ) ( )

( ) ( ),
,

( )( )

2

2

S D
S D Q Y Q Y Q S D Q Y Q

Y Q
S Y QD Q S D Q

Y Q Y Q

Y Q Y QS D Q
S D Q

Y QY Q

F z dF z D D F z D
Q Q dQ

D
f z zD F

f z D D
zF

� � �

��
� �� �

� ��
���

∂∂ ⋅ − ⋅ −� � = + ⋅ −� �∂ ∂
⋅ +

= − ⋅ ⋅ − + ⋅ −
⋅⋅

+ ⋅ −⋅
= − ⋅ − ⋅

⋅

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

�
� �

� � �� �
�

� � �

� ��
�

� �

( ) ,
( ) , , ( )

( ) ( ),( )
, ( ) 2

( ) ( ) ( )

( ) ( ),
( )

( ) ( )

2 2

2

Y Q D QS
Y Q S D Q S D Q Y Q

Y Q Y QS D QY Q
S D Q Y Q

Y Q Y Q Y Q

Y Q Y QS D Q
Y Q

Y Q Y Q

d zdf z
f z f z

Q dQ dz Q
D Df z

f z

D Df z

∂∂ � �⋅ = ⋅ + ⋅ ⋅� �∂ ∂
⋅ + ⋅ −⋅

= ⋅ + ⋅ ⋅
⋅ ⋅


 �+ ⋅ −⋅
= ⋅ +� 
� 
⋅ � �
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Summarizing, this yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ), ,
, ( )

( ) ( ) ( ) ( )

,

2 2
Y Q Y Q Y Q Y QS D Q S D Q

S D Q Y Q
Y Q Y Q Y Q Y Q

D Q D D D Df z f zL
F z

Q
� � � �� �

� �
� � � �


 �
 �+ ⋅ − + ⋅ −⋅ ⋅∂
� 
� 
= − − ⋅ − ⋅ + ⋅ +

� 
� 
∂ ⋅ ⋅ � �� �
 

( ) ( ) ( )

( ) ( )

,
( ) ,

( )

( )
, ,

( )

,

2

2
2

S D Q
Y Q S D Q

Y Q

Y Q
S D Q S D Q

Y Q

D Q f zL
F z

Q

F z f z

�
� �

�

��
�


 �⋅∂
= − ⋅ − ⋅� 
� 
∂ ⋅� �


 �
= ⋅ ⋅ − ⋅� 
� 


� �

 

For the delivery quantity from the supplier to the buyer, the analysis is identical with X  instead of D  
and w  instead of p . Thus, the delivery quantity and its first order derivative are given as follows 

( ) ( ) ( )( )( ) , , ,, Y Q S X Q X Q S X QL X Q X F z z f z�= − ⋅ ⋅ +  

( ) ( ) ( )( )
, ,

( )

,
2

2
Y Q

S X Q S X Q
Y Q

X QL
F z f z

Q
��
�


 �∂
= ⋅ ⋅ − ⋅� 
� 
∂ � �

 

A3. First order derivatives of M 
In this section the first order derivatives are given for the right-hand-sides of the supply chain’s and 
the supplier’s optimality conditions, respectively, namely ( ),M D Q  and ( ),M X Q . ( )Y Q�  and ( )Y Q�  are 

given from (1) and (2). 

Definition: ( ) ( ) ( )( )
, ,

( )

, : 2
2

Y Q
S D Q S D Q

Y Q

M D Q F z f z
��
�


 �
= ⋅ ⋅ − ⋅� 
� 


� �
 with 

�
�
−

= ( )
,

( )

: Y Q
D Q

Y Q

D
z   

Calculating 
( ),M D Q
Q

∂
∂

  

( ) ( ) ( )��
�

( ),
,

( )

,
2

2
Y QD QS

S D Q
Y Q

zM D Q dF z d f z
Q dz Q dQ


 �� �∂∂
= ⋅ ⋅ ⋅ − ⋅� 
� �� 
∂ ∂ � �� �� �

 

with 
( ) ,D QS zdF z

dz Q
∂

⋅
∂

, 
( ) ,D QS zdf z

dz Q
∂

⋅
∂

, ( )Y Qd
dQ
�

, and ( )Y Qd
dQ
�

 from section A2 in the Appendix. 

The second part of the derivative is given by 

( ) ( ) ( )� � �
� � �

( ) ( ) ( ) ,
, ,

( ) ( ) ( )

Y Q Y Q Y Q D QS
S D Q S D Q

Y Q Y Q Y Q

zdf zdf z f z
Q dQ dz Q
� � 
 � ∂∂ ⋅ = ⋅ + ⋅ ⋅� 
� � � 
∂ ∂� �� � � �
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with  

� �
� ��

� �

� �
� � �

� � �
� �

( ) ( )
( ) ( )

( )
2

( ) ( )

( )
( ) ( )

( ) ( )
2 2

( ) ( )

2
2

Y Q Y Q
Y Q Y Q

Y Q

Y Q Y Q

Y Q
Y Q Y Q

Y Q Y Q

Y Q Y Q

d d
d dQ dQ

dQ

⋅ − ⋅
 �
=� 
� 


� �
⋅

⋅ − ⋅
⋅ ⋅

= = −
⋅

 

which results in 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ),( ) ( ) ( )
, ,2 2

( ) (Q) ( ) ( ) ( )

2
( ) ( ) ( ),

2
(Q) ( )

2 2

2

Y Q Y QS D QY Q Y Q Y Q
S D Q S D Q

Y Q Y Y Q Y Q Y Q

Y Q Y Q Y QS D Q

Y Y Q

D Df z
f z f z

Q

D Df z

⋅ − ⋅ +� � ⋅∂ ⋅ = − ⋅ + ⋅ ⋅� �∂ ⋅ ⋅� �� �
⋅ − ⋅ + −

= ⋅
⋅

� � �� � � �
� � � � �

� � � �
� �

 

The total first order derivative ( ),M D Q Q∂ ∂  is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2
( ) ( ) ( ) ( ), ,

2
( ) ( ) (Q) ( )

2
( ) ( ) ( ) ( ) ( ),

2
( ) ( )

2
( ) ( ) ( ) (

,

( , ) 2
2 2 2

2

2 2

4

Y Q Y Q Y Q Y QS D Q S D Q

Y Q Y Q Y Y Q

Y Q Y Q Y Q Y Q Y QS D Q

Y Q Y Q

Y Q Y Q Y Q Y
S D Q

D D Df z f zM D Q
Q

D D Df z

D D
f z

� � � � � ��
� � � �

� � � � ���
� �

� � � ��


 �⋅ + ⋅ − ⋅ + −∂
� 
= ⋅ − ⋅ ⋅ − ⋅
� 
∂ ⋅ ⋅� �

⋅ ⋅ + + − ⋅ + −⋅
= − ⋅ ⋅

⋅

+ + ⋅ + −
= − ⋅ ⋅

( ))
2

( ) ( )

Q

Y Q Y Q� �⋅

 

It is obvious that the above derivative is negative if ( ) ( )Y Q Y Q� �> . 

Proof: For 1Q� ⋅ ≥  (which coincides with the condition for validity of the Normal approximation and 
holds for all numerical examples throughout the paper) 

( )( ) ( )1Y Q Y QQ Q Q� � � � � �= ⋅ > ⋅ > ⋅ − ⋅ =   

 

Calculating 
( ),M D Q
D

∂
∂

 

( ) ( ) ( )��
�

( ), ,

( )

,
2

2
Y QD Q D QS S

Y Q

z zM D Q dF z df z
D dz D dz D


 �∂ ∂∂
= ⋅ ⋅ ⋅ − ⋅ ⋅� 
� 
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with  

( ) ( )
�

,
,

( )

1D QS
S D Q

Y Q

zdF z
f z

dz D
∂

⋅ = ⋅
∂
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and 

( ) ( ) ( ) �
� �

( ),
, , , 2

( ) ( )

1 Y QD QS
D Q S D Q S D Q

Y Q Y Q

Dzdf z
z f z f z

dz D
−∂

⋅ = − ⋅ ⋅ = − ⋅
∂

 

The total first order derivative ( ),M D Q D∂ ∂  is given by 

( ) ( ) ( ) ( )

( )

, ,( ) ( ) ( )
, 2

( ) ( ) ( ) ( ) ( )

,

( ) ( )

,
2 2

2 2

1
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S D Q S D QY Q Y Q Y Q
S D Q

Y Q Y Q Y Q Y Q Y Q

S D Q

Y Q Y Q

f z f zD DM D Q
f z

D

f z D

� � �� �
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�
� �


 �
 � 
 �− −∂
= ⋅ ⋅ − ⋅ − ⋅ = ⋅ ⋅ +� 
� 
 � 
� 
 � 
� 
∂ � � � �� �


 �
= ⋅ ⋅ +� 
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� �

 

As all terms in the above derivative are positive, it follows that ( ), 0M D Q D∂ ∂ > . 

The above analysis can again be used for calculating the first order derivatives of the supplier’s right 
hand side of the production decision’s optimality conditions with X  instead of D  and w  instead of 
p . The results are shown below: 

( ) ( ) ( )( )
, ,

( )

, : 2
2

Y Q
S X Q S X Q

Y Q

M X Q F z f z
��
�


 �
= ⋅ ⋅ − ⋅� 
� 


� �
 with (

,
( )

Q): Y
X Q

Y Q

X
z

�
�
−

=   

( ) ( ) ( ) ( )2
( ) ( ) ( ) ( )

, 2
( ) ( )

,
0

4
Y Q Y Q Y Q Y Q

S X Q
Y Q Y Q

X XM X Q
f z

Q
� � � ��

� �
+ + ⋅ + −∂

= − ⋅ ⋅ <
∂ ⋅

 

( ) ( ),

( ) ( )

,
1 0

2
S X Q

Y Q Y Q

f zM X Q X
X

�
� �


 �∂
= ⋅ ⋅ + >� 
� 
∂ � �

 

A4. Proof of Lemma 

Proof that 
1

lim
D

Q
D �→∞

=  with Q  from optimality condition in (8): ( ),
c M D Q
p

=  

Recall ( ) ( ) ( )( ) ( )
, , ,

( ) ( )

, : 2 ;  :
2

Y Q Y Q
S D Q S D Q D Q

Y Q Y Q

D
M D Q F z f z z

� ��
� �


 � −
= ⋅ ⋅ − ⋅ =� 
� 


� �
 and ( )Y Q�  and ( )Y Q�  from (1) and (2). 

( ) ( ) ( )

( ) ( ) ( )

2
2

(1 )
2

2 (1 ) (1 )

Y Q Y Q Y Q
S S

Y Q Y Q Y Q

S S

D Dc F f
p

QD Q D QF f
QQ Q

� � ��
� � �

� �� � �
�� � � �


 �
 � 
 �− −
= ⋅ ⋅ − ⋅� 
� 
 � 
� 
 � 
� 
� � � �� �


 �
 � 
 �⋅ − ⋅− ⋅ − ⋅= ⋅ ⋅ − ⋅� 
� 
 � 
� 
 � 
� 
⋅⋅ − ⋅ ⋅ − ⋅� � � �� �

 

Proving the validity of the above condition for D →∞  can be done in two steps: 

Step 1) Proving that 
( )

( )
1

lim 0
1

SD

Q D Qf
Q Q

� � �
� � �→∞


 �⋅ − ⋅ − ⋅� 
⋅ =
� 
⋅ ⋅ − ⋅� �

: 
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( )
( ) ( )

1 1 1

1 1
S S

Q D Q D Qf f
Q QQ Q

� � � � �
� �� � � �


 � 
 �⋅ − ⋅ − ⋅ − − ⋅� 
 � 
⋅ = ⋅ ⋅
� 
 � 
⋅ ⋅ − ⋅ ⋅ − ⋅� � � �

 

From (12) we know that ( ) 0dQ D dD>  and hence, lim
D

Q
→∞

= ∞ . Consequently, 1lim 0
D Q→∞

= . If that 

holds, the expression under Step 1) approaches zero since ( ),S D Qf z  is bounded from above: 

( )
1 1

lim 0
1

SD

D Qf
Q Q

� �
� � �→∞


 �− − ⋅� 
⋅ ⋅ =
� 
⋅ − ⋅� �
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Step 2) Proving that 
( )1

S
c D QF
p Q

��
� �


 �− ⋅� 
= ⋅
� 
⋅ − ⋅� �

only holds if 
1

lim
D

Q
D �→∞

=  holds: 

Considering 
( )1

D Q
Q

�
� �

− ⋅
⋅ − ⋅

 from the above expression and dividing by D yields  

( )

( ) ( )

1 1
111 1

QD Q D D
Q Q

D DQ Q

� �

� � � �

− ⋅ ⋅ − ⋅
=

⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅
.  

Thus,  
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1
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S

Qc DF
p Q

D Q

�
�

� �


 �
� 
− ⋅
� 
= ⋅
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Further transforming yields 

( )

( )

1

1

1
11

1 1
1

S

S

Q cD F
pQ

D Q
Q cD F

Q p QD

�

�� �

�
� �

�

−

−

− ⋅ 
 �= � 
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− ⋅ 
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From Step 1) above we know that lim
D

Q
→∞

= ∞  and 1lim 0
D Q→∞

= . Consequently, the right hand side of 

the above equation is zero if D approaches infinity. In order for the left hand side to approach zero, 
the following condition has to hold: 

1 0

1

Q
D
Q
D

�

�

− ⋅ =

=
 

Hence, it is proven that if D  approaches infinity, the production quantity Q  approaches 1D �⋅ . 
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A5. Characteristics of distribution and density function of standard normal 
distribution 

Considering the cumulated distribution function (cdf) of the standard normal distribution, for Q X=  
it follows  

( )
( )

( )
,

( )

1

1
Y Q

S X Q S S S
Y Q

X Q QF z F F F Q
Q

� � �
� �� �


 �
 � 
 �− − ⋅ −� 
= = = ⋅� 
 � 
� 
� 
 � 
⋅ − ⋅ � �� � � �
.  

The cdf of the standard normal distribution ranges from −∞  to +∞ . However, intersecting the 
ordinate at 0.5 (i.e ( )0 0.5SF = ), it approaches 1 quickly. For values as low as 4, it is approximately 1 (

( )4 0.99997SF = 27). Considering our numerical examples with success probabilities in 0.25 0.75�≤ ≤ , 

the assumption holds for production quantities of 48Q ≥  which is given for all our examples. 

The probability density function (pdf) of the standard normal distribution can be analyzed 
analogously. For Q X= , it holds that 

( ),Q
1

S X Sf z f Q�
�


 �−= ⋅� 
� 

� �

 

Again, it can be shown that for large values, the pdf takes an extreme value, in this case zero. Given 
( )4 0.00013Sf = , production quantities larger than 48 allow us to assume that the pdf approaches 

zero if Q X=  holds. 

A6. Detailed analyses of first order derivatives of selected profit functions 
under ORS and PEN contract 

6.1 ORS contract 
The general form for calculating the first order derivative is given by 

( ) ( ) ( ) ( )� � �ORS ORS ORS
B B Bd X X X dQ X
dX X Q dX

∂ ∂
= + ⋅

∂ ∂
 with ( )dQ X dX  from (21). 

Case B(I)  

From (38) the buyer’s profit is given by 

( ) ( ) ( ) ( )� ,ORS
B O O Y QX p w w L X Q w �= − + ⋅ − ⋅   

 
Calculation of first order derivative: 

( ) ( ) ( ) ( ) ( )( ),

� ,
1

ORS
B

O O S X Q

X L X Q
p w w p w w F z

X X
∂ ∂

= − + ⋅ = − + ⋅ −
∂ ∂

  

and  
                                                            
27 Consult tables of standard normal distribution or Excel worksheet function. 
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( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

� ,

,

ORS
B

O O

O O

X dQ X L X Q dQ X
p w w w

Q dX Q dX
XdQ

p w w M X Q w
dX

�

�

∂ 
 ∂ �
⋅ = − + ⋅ − ⋅ ⋅� 
∂ ∂� �

= − + ⋅ − ⋅ ⋅

 

with ( ),L X Q X∂ ∂  from (25) and ( ),L X Q Q∂ ∂  from (18). Finally, the total first order derivative in (39) 

is given by 

( ) ( ) ( )( ) ( ) ( )( ) ( )
,

�
1 ,

ORS
B

O S X Q O O

Xd X dQ
p w w F z p w w M X Q w

dX dX
�= − + ⋅ − + − + ⋅ − ⋅ ⋅  

Case B(II) 

From (40) the buyer’s profit is given by 

( ) ( ) ( ) ( ) ( )� , ,ORS
B O O Y QX p L D Q w w L X Q w �= ⋅ − − ⋅ − ⋅  

Calculation of first order derivative: 

( ) ( ) ( ) ( ) ( )( ),

� ,
1

ORS
B

O O S X Q

X L X Q
w w w w F z

X X
∂ ∂

= − − ⋅ = − − ⋅ −
∂ ∂

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

� , ,

, ,

ORS
B

O O

O O

X dQ X L D Q L X Q dQ X
p w w w

Q dX Q Q dX

dQ X
p M D Q w w M X Q w

dX

�

�

∂ 
 ∂ ∂ �
⋅ = ⋅ − − ⋅ − ⋅ ⋅� 
∂ ∂ ∂� �

= ⋅ − − ⋅ − ⋅ ⋅

 

with ( ),L X Q X∂ ∂  from (25), ( ),L D Q Q∂ ∂  from (7) and ( ),L X Q Q∂ ∂  from (18). Finally, the total first 

order derivative in (41) is given by  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
,

�
1 , ,

ORS
B

O S X Q O O

d X dQ X
w w F z p M D Q w w M X Q w

dX dX
�= − − ⋅ − + ⋅ − − ⋅ − ⋅ ⋅  

Interaction of buyer and supplier 

( ) ( )* * *� ,SC X p L X Q c Q= ⋅ − ⋅   

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( )

* * *

*

,

*

� � �

� ,
1

� ,
,

SC SC SC

SC
S X Q

SC

X X X dQ X
dX X Q dX

X L X Q
p p F z

X X
X dQ X L X Q dQ X dQ X

p c p M X Q c
Q dX Q dX dX

∂ ∂
= + ⋅

∂ ∂
∂ ∂

= ⋅ = ⋅ −
∂ ∂

∂ ∂
 �
⋅ = ⋅ − ⋅ = ⋅ − ⋅� 
∂ ∂� �

 

( ) ( )( ) ( )( ) ( )*

,

�
1 ,SC

S X Q

d X dQ X
p F z p M X Q c

dX dX
= ⋅ − + ⋅ − ⋅  

with ( ),L X Q X∂ ∂  from (25) and ( ),L X Q Q∂ ∂  from (18). 
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6.2 PEN contract 
The general form for calculating the first order derivative is given by 

( ) ( ) ( ) ( )� � �PEN PEN PEN
B B Bd X X X dQ X
dX X Q dX

∂ ∂
= + ⋅

∂ ∂
 with ( )dQ X dX  from (21). 

Case B(I)  

From (52) the buyer’s profit is given by 

( ) ( ) ( )� ,PEN
B X p w L X Q X� �= − − ⋅ + ⋅  

 
Calculation of first order derivative: 

( ) ( ) ( ) ( ) ( )( ),

� ,
1

PEN
B

S X Q

X L X Q
p w p w F z

X X
� � � �

∂ ∂
= − − ⋅ + = − − ⋅ − +

∂ ∂
  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

� ,

,

PEN
B X XX dQ L X Q dQ

p w
Q dX Q dX

dQ X
p w M X Q

dX

�

�

∂ ∂
⋅ = − − ⋅ ⋅

∂ ∂

= − − ⋅ ⋅

 

with ( ),L X Q X∂ ∂  from (25) and ( ),L X Q Q∂ ∂  from (18). Finally, the total first order derivative in (53) 

is given by 

( ) ( ) ( )( ) ( ) ( ) ( )
,

�
1 ,

PEN
B

S X Q

d X dQ X
p w F z p w M X Q

dX dX
� � �= − − ⋅ − + + − − ⋅ ⋅  

Case B(II) 

From (54) the buyer’s profit is given by 

( ) ( ) ( ) ( )� , ,PEN
B X p L D Q w L X Q X� �= ⋅ − + ⋅ + ⋅  

Calculation of first order derivative: 

( ) ( ) ( ) ( ) ( )( ),

� ,
1

PEN
B

S X Q

X L X Q
w w F z

X X
� � � �

∂ ∂
= − + ⋅ + = − + ⋅ − +

∂ ∂
 

and 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

� , ,

, ,

PEN
B X dQ X L D Q L X Q dQ X

p w
Q dX Q Q dX

dQ X
p M D Q w M X Q

dX

�

�

∂ 
 ∂ ∂ �
⋅ = ⋅ − + ⋅ ⋅� 
∂ ∂ ∂� �

= ⋅ − + ⋅ ⋅

 

with ( ),L X Q X∂ ∂  from (25), ( ),L D Q Q∂ ∂  from (7) and ( ),L X Q Q∂ ∂  from (18). Hence, we get the 

total first order derivative in (55) as 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
,

�
1 , ,

PEN
B

S X Q

d X dQ X
w F z p M D Q w M X Q

dX dX
� � �= − + ⋅ − + + ⋅ − + ⋅ ⋅  
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