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Abstract

Supply chain coordination is enabled by adequately designed contracts so that decision making by
multiple actors avoids efficiency losses in the supply chain. From literature it is known that in
newsvendor type settings with random demand and deterministic supply the activities in supply
chains can be coordinated by sophisticated contracts while the simple wholesale price contract fails
to achieve coordination due to the double marginalization effect. Advanced contracts are typically
characterized by risk sharing mechanisms between the actors, which have the potential to
coordinate the supply chain. Regarding the opposite setting with random supply and deterministic
demand, literature offers a considerably smaller spectrum of solution schemes. While contract types
for the well-known stochastically proportional yield have been analyzed under different settings,
other vyield distributions have not received much attention in literature so far. However, practice
shows that yield distributions strongly depend on the industry and the production process that is
considered.

This paper analyzes a buyer-supplier supply chain in a random vyield, deterministic demand setting. It
is shown how under binomially distributed yields risk sharing contracts can be used to coordinate
buyer’s ordering and supplier’s production decision. Both parties are exposed to risks of over-
production and under-delivery. In contrast to settings with stochastically proportional yield,
however, the impact of yield uncertainty can be quite different in the binomial yield case. Under
binomial yield, the output uncertainty decreases with larger production quantities while it is
independent from lot sizes under stochastically proportional yield. Consequently, the results from
previous contract analyses on other yield types may not hold any longer. The current study reveals
that, like under stochastically proportional yield, coordination is impeded by double marginalization
if a simple wholesale price contract is applied. However, more sophisticated contracts which penalize
or reward the supplier can change the risk distribution so that supply chain coordination is possible
under binomial yield. Thus, even though risk diminishes with larger lot sizes, the supply chain
benefits from advanced risk sharing contracts because they trigger coordinated behavior.

Key words: Supply chain coordination, contracts, binomial yield, risk sharing
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1. Introduction

Uncertainties are widely spread in supply chains with demand and supply uncertainties being the
most common types. Regarding the supply side, business risks primarily result from yield uncertainty
which is typical for a variety of business sectors. It frequently occurs in the agricultural sector or in
the chemical, electronic and mechanical manufacturing industries (see Gurnani et al. (2000), Jones et
al. (2001), Kazaz (2004), Nahmias (2009)). Here, random supply can appear due to different reasons
such as weather conditions, production process risks or imperfect input material. In a supply chain
context, yield or supply randomness obviously affects the risk position of the actors and, therefore,
has an effect on the buyer-supplier relationship in a supply chain. The question that arises is to what
extent random yields affect the decisions of the single supply chain actors and the performance of
the whole supply chain. In this study we limit ourselves to a problem setting with deterministic
demand. This is to focus the risk analysis of contracting on the random vyield aspect which is of
practical relevance for production planning in some industries (see Bassok et al. (2002)). Except for
papers that address disruption risks (e.g. Asian (2014), Hou et al (2010)), all contributions in the field
of contract analysis under yield randomness restrict to situations where the yield type is
characterized by stochastically proportional random vyields. This also holds for a prior work of
Inderfurth and Clemens (2014) which considers the coordination properties of various risk sharing
contracts under this type of yield randomness. In practice, however, also other yield types are found
(see Yano and Lee (1995)) which need to be considered in decision making and contract analysis. A
specifically important one is the type of binomially distributed yield which is observed if the
defectiveness of items within a production lot is independent from unit to unit. This is found if
failures in manufacturing operations or material defectives occur independently in a production
process. This paper addresses the analysis of coordination by contracts under such yield conditions
and investigates to which extent the results for stochastically proportional yields in Inderfurth and
Clemens (2014) carry over to a situation where yields are binomially distributed.

In this context, the main purpose of this paper is to study how contracts can be used in order to
diminish profit losses which are driven by uncoordinated behavior. Therefore, three different
contracts are applied and analyzed regarding their coordination ability, namely the simple wholesale
price contract, a reward contract (over-production risk sharing contract, first introduced by He and
Zhang (2008)) and a penalty contract (compare Gurnani and Gerchak (2007)). Comparable to the
newsvendor setting with stochastic demand but reliable supply, the double marginalization effect of
the wholesale price contract is found in our setting. Both advanced contract types can be shown to
facilitate supply chain coordination if contract parameters are chosen appropriately.

The rest of this paper is organized as follows. In section 2 the supply chain model and the yield
distribution are introduced. In part 3 the centralized supply chain is analyzed and benchmark
decision and profit are derived for the following contract analyses. Section 4 describes and analyzes
the above mentioned contract designs with respect to their supply chain coordination potential.
Section 5 summarizes main results and suggests aspects of further research.

2. Model and assumptions

This paper considers a basic single-period interaction within a serial supply chain with one buyer

(indicated by B) and one supplier (indicated by S). It is assumed that all cost, price, and yield

information is common knowledge. In contrast to that, deterministic end customer demand is not
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common knowledge but only known to the buyer. As the supplier decision is totally independent
from end customer demand, this is a reasonable assumption. This setting connects to the field of
contracting in a principal-agent context with information asymmetry (see Corbett and Tang (1999) or
Burnetas et al. (2007)) where the principal (buyer) is better informed than the agent (supplier).
Nevertheless, this property has no effect on the agent’s profit because it is not a direct function of
the principal’s information on demand (compare Maskin and Tirole (1990)). The supply chain and the
course of interaction (explained below) are depicted in Figure 1.

Supplier Order €<—— Buyer S a‘l‘e;"":_ customer

Production INPUT

Delivery
Uncertainty

Production OUTPUT
|

Figure 1: Serial supply chain and course of interaction

Assume the above two-member supply chain (indexed by SC). End customer demand is denoted by
D. The buyer orders from the supplier an amount of X units. However, the production process of the
supplier underlies risks which lead to random production yields, i.e. given identical input quantities,
the amount of output in a specific production run is uncertain. The supplier can, due to production
lead times, realize only a single production run.

In the following, production yield is denoted by Y(Q) where Q is the production input chosen by the
supplier. The quantity delivered to the buyer is the minimum of order quantity and production
output. Hence, the risk of losing sales is evident to the supplier. However, it is a reasonable
assumption that, given a simple wholesale price contract, the supplier is not further penalized (in
addition to losing potential revenue) if end customer demand cannot be satisfied due to under-
delivery. In typical business transactions the supplying side is usually measured in terms of its ability
to deliver to the buyer and not to the end customer. As the mechanism to satisfy end customer
demand is not in the control of the supplier, she cannot be held responsible for potential sales losses.
However, both actors face the risk of lost sales because under-delivery by the supplier can cause
unsatisfied demand at the buyer as stated above. Consequently, both parties may have incentives to
inflate demand (from the buyer’s perspective) or order quantity (from the supplier’s perspective) in
order to account for the yield risk and avoid lost sales. In case production output is larger than order
guantity, excess units are worthless and cannot generate any revenue even though they incurred
production cost. Sales at the buyer are the minimum of delivery quantity and end customer demand.
If the buyer’s order and delivery quantity exceed demand, excess units are also of no value and
cannot be turned into revenues.

Production yields are assumed to be binomially distributed, i.e. a unit turns out ‘good’ (or usable)
with success probability 8 (0<6<1) and it is unusable with the counter probability 1-6 . Mean
production yield under binomially distributed yield amounts to

Hyq =0-Q (1)



with a standard deviation of
Oy =+0-(1-0)-Q. (2)

Note that the coefficient of variation (ay(a)/,uy(a) ) decreases as the input quantity grows, i.e. the risk

diminishes with increasing production quantity. This is different to the situation in Inderfurth and
Clemens (2014) where production vyield is a fraction of production input and neither mean nor
variance of the yield rate depend on the lot size. Now, a reasonable conjecture is that under
binomially distributed vyields, the risk position of the single actors is different than under
stochastically proportional yields. Hence, contract schemes with different risk sharing mechanisms
may perform differently when the lot size influences the “amount of risk” in the supply chain and
may change the proposed contract types’ coordination efficiency. The subsequent analyses will shed
light on this issue.

For large values of demand and the respective production quantity (i.e. if the sample of the binomial
distribution is large) according to the De Moivre-Laplace theorem?, the binomial distribution can be
approximated through the Normal distribution which is done in the following.? This deviation from
the exact binomial distribution is motivated by the fact that it facilitates the contract analysis by
modeling the decision problem with continuous instead of discrete variables so that general analytic
results with closed-form expressions can be derived. Furthermore, the respective numerical results
are very close to optimal under fairly high demand levels. Further notation is as follows:

c production cost [per unit]

w wholesale price [per unit]

p retail price [per unit]

A pdf of standard normal distribution

cdf of standard normal distribution
fra () pdf of random variable Y(Q) (yield)
) cdf of random variable Y(Q) (yield)

The problem which arises is how to determine quantities for ordering on the one hand (by the buyer)
and choosing a production input quantity on the other hand (by the supplier) given the risks
mentioned above. The general underlying assumption in this analysis is that profitability of the
business for both parties is assured, i.e. the retail price exceeds the wholesale price which in turn
exceeds the expected production costs, i.e. p>w>c/0.

3. Analysis for a centralized supply chain

Under centralized decision making, the planner has only one decision to make, namely the
production input quantity Q. Revenues are generated from selling to the end customer the available

2 Compare Feller (1968) pp. 174 ff.

> The condition which justifies the use of the Normal distribution is the following: Q~9~(1—<9)>5 for
0.1<6<0.9 (compare Evans et al. (2000) p. 45). In later sections, numerical examples will be conducted with
success probabilities of 0.25<60<0.75. In those cases, the Normal approximation is feasible if Q=26.67 which

holds for all our examples as shown later.
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quantity, i.e. the minimum of production output and demand. Production cost, however, is incurred
for every produced unit. Thus, the total supply chain profit is given by

Ny (Q)=p-E[min(D,Y(Q))]-c-Q (3)

The first part describes the expected revenue from selling usable units; the second part constitutes
the costs which are incurred by the respective production quantity. For deriving the optimal decision
on production input, two cases have to be analyzed separately: Q<Dand Q>D.

Case SC(I)
Under case SC(I) (Q<D) it is obvious that Y(Q) <Q<D, dueto 0<6<1. Thus, the supply chain profit

transforms to
N (Q)=p-E[¥(Q)]-c-Q=(p-0-c)-Q.
Taking the first order derivative yields

dnSC(Q):p.e_c >0 forp>c/0
le[0] <0 else

For case SC(l), it follows that the supply chain produces the following

D forp>c/0
Qe = 0 else (4)

If the condition for profitability of the business holds, i.e. p>c/#8, is has to be evaluated whether an

input quantity Q=D is preferable.

Case SC(11)
In this case (Q=D) the supply chain profit to maximize is the one in (3), namely

Ny (Q)=p-£[ min(D,¥(Q)) |-¢-Q
with the sales quantity denoted by L(D,Q) ::E[min(D,Y(Q))]:D—J.(D—y).fy(a) (v)dy

0

Transforming yields*

L(D,Q)=D-0,4 ~(FS (zD'Q )~leQ +f, (zD,Q )) (5)

D_
We define z, , :zﬂ (Note that z,, depends on demand D as well as on production input Q
Oy

through mean and standard deviation of the yield Y(Q)). Finally, the supply chain profit transforms to

nsc(Q):p'I‘(D'Q)_C'Q (6)

* For details on the transformation see Appendix Al.



Taking the first order derivative yields®

e (@)_ (0,0)
dQ 2Q
0 %)
=p-=.|2.F _ . —
o ]

Utilizing the first order condition d,, (Q)/dQ =0 , the optimal input decision for case SC(II) results

from the optimality condition below

0 s,
%:E'{Z'Fs(zo,a)_ﬂ'fs(ZD,Q)J

Y(Q)

and is denoted by Q- We define

oL(D,
m(D,Q) zzg{z"'—s(zo,a)_M'fg(zm)jz—(aao) o)
Y(Q)

and z,, as above. Hence, the optimality condition for Q. ,, can be re-formulated as

%: M(D' Qscu/)) (8)

Overall solution
Since the solution from (4) is contained in (8) for p>c/#, the production decision of the supply

chain as a whole is given by

. {QSC(,,) forp>c/6 ()

Q =
0 else

The corresponding optimal profit of the supply chain results from (6) and takes the following form:
n;c =M (Q*):p'D_p'(Fs (z;,a)'(D_/u;(Q))"'O-;(Q) fs (ZZ,Q))_C'Q*
D-uyq

* .

O-Y(Q)

with Hyigy = Hyigyr Ovia) = Oy gy 7 and z,,=

Inserting

* * * * 2'C *
Oy(q fs (ZD,Q) :Z'Fs (ZD,Q)'ﬂY(Q) _ﬁ'ﬂy(t))
(which is given from (7) and (8)) into (6) yields the optimal supply chain profit:
Me=p-(1-F(2,0))-D—(p-0-F(2,0) —¢)-Q (10)

® For a detailed analysis of dL(D,Q)/0Q see Appendix A2.
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Concavity of the profit function is proven by showing that the second order derivative is negative as
done below:®

an, (@)’ _ am(0,q)

) p-0° '(D+ﬂy(o)+Uv(a>)'(D+/‘Y(a)_”V(o))
d’Q 0Q

4

AL <0 (11)

2
Oyia) " H v(a)

In order to analyze the relation between production quantity and demand, the derivative dQ(D)/dD

is evaluated. The relation between Q and D is given by’

= >0 (12)
0- (ﬂy(o) +D+ Uv(a))(”»’(a) +D _UY(Q))

da(b)  am(p,Q) /aM(D,Q) 2ty (v +D)

a0 oD / dQ

which shows that larger demand leads to larger production quantities which is intuitive. Interestingly,
the production quantity—-demand ratio (Q/D) converges to a constant the larger demand gets.
Assuming that demand approaches infinity, it can be shown that the production decision approaches
demand multiplied by 1/8, i.e. there will be no further adjustment of demand to account for the

risk. This is reasonable as binomially distributed yields decrease in risk as the input quantity rises

li =0). i :
(from Qm(ay(a)/yy(a)) ). Generally, we formulate the following Lemma

Lemma: If demand approaches infinity, the inflation factor of demand for the production process, i.e.
Q/D, approaches1/6 .2

However, there is no distinct way how the Q/D -ratio is developing as demand grows. Rather, it
depends on demand, costs, prices, and success probability whether the ratio is increasing from below
1/6, decreasing from above 1/6 or takes a combination of both. Thus, distinct monotony cannot

be proven. Figure 2 illustrates three exemplary curves for the Q/ D -ratio with increasing demand.

2,06 . 2,00
2,05 | 2,00 | ———— — —— ———— —— — ———— —
. * ™ . o . . . /8
2,04 ® 1,9 e
.
2,03 | 1,9
Q * Q ¢
T 202 g L%
-
2,01 1,9
* ® % e e e e e e s r
2,00 .—————————————1‘;9 1,50
1,99 1,8
1,98 1,8 |
0 5000 10000 15000 20000 25000 30000 15000 0 5000 10000 15000 2000 25000 30000 35000
Demand D Demand 2
(a) Data: c=1;p=6 (b) Data: c=1; p=2.5

®For 0M(D,Q)/9Q see Appendix A3.

" For dM(D,Q)/ 9D see Appendix A3.
® The proof of the Lemma is provided in Appendix A4.
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Figure 2: Three exemplary developments for production input/demand-ratio
for 50% success probability which approaches 1/6

It is evident from the different curves that there is no monotony in the Q/ D -ratio. Yet, the results in
(a) and (b) are comparable with typical newsvendor settings where the critical ratio (here it is given
by ¢/ p) determines whether optimal production quantities are below or above expected demand
(which corresponds to production yield in our setting). The major difference is that, in addition to
prices and costs, also demand has an influence on the production decision as the production risk
decreases with increasing quantity. A high margin (as in (a)) causes Q/D -ratios above 1/6 while
low margins (compare (b)) lead to production inputs below the expected yield. Yet, the shape of the
curve in (c) is quite interesting. The changes in Q/D are minor with increasing demand, however, at
one point the curve intersects with 1/6 (which is at D=50). For illustrative purpose, the segment

0<D<1000 from curve (c) is extracted in Figure 3.

2,0030
2,005
2,002 .

o 2,001

a/

2,001
2,0005
2,000 e ——— 1/8

1,999
0 100 200 300 400 500 600 700 800 S00 1000 1100
Demand [

Figure 3: Extraction from Figure 2 part (c)

The intersection with 1/6 raises the question whether there exist parameter combinations which
always guarantee an inflation of demand in the amount of 1/6. Figure 4 part (a) answers this

question by illustrating the ¢/ p ratio which resultsin Q/D=1/6 for increasing demand.
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(b) Demand range 0<D <1000

Figure 4: Critical parameter ratio (c / p) which guaranteesa Q/D-ratioof 1/0

Part (b) of the above figure extracts the range 0<D <1000 from part (a). Comparing this illustration
with Figure 3, the point Q/D=1/6 at D=50 corresponds to the starting point of the curve in

Figure 4 (b) which is at ¢/p=1/4.17=0.24.

4. Contract analysis for a decentralized supply chain

A decentralized supply chain consists of more than one decision maker. In our setting, a single buyer
decides on the order quantity to fill end customer demand and a single supplier produces in order to
satisfy the order from the buyer as described in the beginning. The decentralized supply chain is
modelled as a Stackelberg game with the buyer being the leader and the supplier being the follower,
i.e. the buyer anticipates the production decision by the supplier in reaction to his order.

4.1. Wholesale price contract

Under a simple wholesale price (WHP) contract the supplier produces the quantity Q and delivers to
the buyer at a per unit wholesale price w (which is assumed to be exogenously given). The buyer’s
order is satisfied in the scope of the production output (at maximum). In the following, the decisions
made by the supplier and by the buyer are analyzed separately.

Supplier decision
Given the buyer’s order quantity X, the supplier optimizes the following profit:’
My™ (@l x) =w-E[ min(X,¥(Q))|-c-Q (13)

The first part describes the expected revenue from selling usable units to the buyer; the second part
is the corresponding production cost. Again, two cases have to be considered separately.

Case S(l1)
Under case S(I) (Q< X ) it holds that Y(Q)<Q<X dueto 0<# <1 and the supplier faces a profit of
ne” (aQx)=w-£[y(Q)]-c-a=(w-0-c)-Q (14)

The first order derivative

°The following analysis is identical to the centralized case with X instead of D and w instead of p.
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an” (Q|x)
dQ

=w-0-c

is positive if w>c /60 and negative otherwise. Thus, it implies the following production decision

X forw>c/0
Qi (0= s)

0 else

If the condition for profitability of the business holds, i.e. w>c/#@, it has to be evaluated whether
Q=X is preferable for the supplier.

Case S(11)
In this case (Q= X ) the supplier’s profit to maximize is the one in (13) and after transformation given
by

Ny (Q|x)=w-L(x,Q)-c-Q (16)
We define the delivery quantity from the supplier to the buyer as™

L(X,Q)=X=0,(F(250) 2xa+ fs (244)) (17)

X_
and z,, :z% (Note that z,, depends on order quantity X as well as on production input Q
v(Q)

through mean and standard deviation of the yield Y(Q)). Analogously, the optimal production input

for case S(ll) results from the first order condition below:

dang™ (a|x) LoLxa)

= cC = O
dQ Q
with
a(x,q) o Oy(q)
——t = 2-F(z,,)- f(z =M(X,Q (18)
aQ 2 [ S( X,Q) e fs( X,Q) ( )

which is independent from any cost or price parameter.™ The optimal input quantity under case S(I1)

is denoted by Q/;7 and satisfies the optimality condition below

%:M(X,Q_‘g’fﬂf) (19)
Theoretically, the supplier can choose a production quantity which is smaller than the order quantity
and generate positive profits. However, in this case the optimization will follow case S(I) the solution
of which is included in the solution space of S(Il). Summarizing, the supplier’s production decision
under the simple WHP contract is given by

% For details on the transformation of the supplier’s delivery quantity, recall Appendix Al.
" For the first order derivative dL(X,Q)/0Q recall Appendix A2.

10



WHP
Qg forw>c/0

(20)
0 else

QWHP (X) :{
The supplier’s profit is concave as the second order derivative is negative: *2

dn*” (a|x )’ _,.M(x.0)
d’Q 0Q

w6 (X+ 0t 0v@) (X + 0 = 0via)
4

<0

:_fs(zx_Q)'

2
Oyia) " Hya)

Analogously to the supply chain analysis, the relation between Q and X is given by™

dQ(X):_aM(X,Q) aM(X’Q): Z’NV(Q)'(IUY(Q)—FX) >0 (21)
dx X Q 0 (i) + X +0yq) ) (Hyi0)+ X =0y

Buyer decision
The buyer as the leader in this Stackelberg game anticipates the decision made by the supplier from
(20). As the first mover, the buyer’s profit to maximize under a simple WHP contract is the following:

Ny (X)=p-E[min(D,X,Y(Q))]|-w-E[min(X,¥(Q))] (22)

The first part of the profit function is the expected revenue from selling to the end customer; the
second part describes the expected cost from procuring units from the supplier. In the following, it
has to be evaluated whether it is preferable for the buyer to order below or above demand.

Case B(l1)
Under case B(l) ( X<D) the buyer’s profit is given by

ny"* (X):(p—w)-E[min(X,Y(Q))]:(p—w)-L(X,Q) (23)

The first order derivative is rather complex as the buyer is the leader in this Stackelberg game and
accounts for the supplier’s reaction to his decision, i.e. Q=Q"" (X) . Therefore, the total first order
derivative of this function includes the relation dQ(X)/dx from (21) which describes the change in
production input given a change in order quantity. The total first order derivative is given by

dng™ (X) _ong™ (X) . any™ (X) da(x)

(24)
dx ox aQ dx

Given the first order derivative BL(X,Q)/BX (with L(X,Q) from (17)) as

aL(X,Q)
ox

1
=1l-0,4 [fs (Zx,a)'zx,o '7(0)"":5 (Zx,a)'T(Q)_

fs(zm).zm.%{)]:1_@(@,0) (25)
v(Q

the total first order derivative of the buyer’s profit is derived below

e (o) D o) (16, 1,0)

2 The result is identical to (11) with X instead of D and w instead of p.
3 The result is identical to (12) with X instead of D.
11



o™ (x) da(x) aL(x,Q) da(x) da(X)
@ o P Tag Tax CemwIMA T

with BL(X,Q)/BQ from (18). Finally, the total first order derivative is given by

drny™ (X)
dx

da(X)
ax

=(p—w)-<1—F5(ZXlQ)>+(p—W)-M(X,Q)~ (26)

Due to M(X,Q)>0, dQ(X)/dX>0, and the profitability assumption p>w it follows that X" =D

because

dny™ (x) (>0 forp>w
dx <0 else

The order decision under case B(l) is formulated below

whp _ D forp>w
B0 0 else

Case B(ll)
Analyzing the second case B(ll) (X>D), the buyer’s profit is given by

Ny (X)=p-E[min(D,v(Q))]-w-E[min(X,¥(Q))]
Ny (X)=p-L(D,Q)-w-L(X,Q) (27)
As under case B(l), the first order derivative is calculated by

dng™ (Xx) o™ (X) . o, (X) _ da(x)

ax ox Q ax

As such, the single parts are given below

anmy™ (X)) aL(x,Q)
Bax =W — =—w-(1—FS (zm))

Iy (x) da(x) _(p_ op,Q) aL(X,Q)J. da(X)

dQ ax 0Q 0Q dx
dq(X
- (-m(0,0)-w-m(x,@))- 22

with aL(X,Q)/BX from (25) and aL(X,Q)/E)Q from (18). Finally, the total first order derivative is
given by

dny™ (X)
dx

dQ(X)

=_W'(1_Fs(zx,o)>+(p'M(D'Q)_W'M(X'Q))' (28)

12



The buyer decision under case B(ll) is denoted by meand is derived from the first order condition

dI‘IZVHP (X)/dXio. Hence, as the order decision under case B(ll) includes the solution of case B(l), the

overall order decision under the WHP contract is formulated below
e _ Xguy  forp>w 29)
0 else

Interaction of buyer and supplier

In order to evaluate the coordination ability of the WHP contract it has to be analyzed whether a
wholesale price value exists which induces the supplier to produce the supply chain optimal quantity.
From the supply chain’s and the supplier’s optimality conditions in (8) and (19) we know that

£=M(D,Q*) and i:M(X,QWHP), respectively, if p>w>c/0.
p w

Coordination is achieved if Q"""

=Q . Obviously, this is guaranteed if the following two conditions

WHP

hold: (i) the buyer orders at demand level (X"*" =D ) which yields M(x,Q"*")=m(D,Q") and (ii) the

wholesale price is equal to the retail price which guarantees that C/p=C/W. Given w=p, the effect

on the buyer’s profit has to be evaluated. Given case B(ll) (X>D), the first order derivative of the
buyer profit in (28) transforms to

ﬂ?n(l—&(zx,a))+[P~5—P'£]'dQ(X)Z‘p'(l—Fs(zx,o))w

dx p P

Thus, for all values of the buyer’s order in the range X=>D, his marginal profit is negative.
Consequently, the buyer will not order above end customer demand. Evaluating the decision
spectrum X <D, the buyer profit from (23), given w=p, turns out to be zero:

;" (x)=(p~p)-L(X,Q"")=0.

Because the buyer’s profit is zero for any order quantity below end customer demand, he is
indifferent between all values from 0 to D . Assuming that the buyer orders X"** =D units and given
w=p, it follows from the supply chain’s and the supplier’s profits in (6) and (16) that

n?/Hp (QWHP‘XWHP :D)=p~L(D,Q)—C'Q:nsc (Q)

Thus, the supplier receives the total supply chain profit while the buyer does not generate any profit
when ordering D units. Hence, the buyer does not agree on the contract. Ordering zero units results
in the business to not take place at all. Consequently, coordination cannot be enabled by the simple
wholesale price contract if the two above conditions hold. The buyer only participates in the business
if the wholesale price is below the retail price. However, in this case it holds that ¢/p<c/w and

consequently M(X,QW”P)> M(D,Q*). As 8M(X,Q)/BQ< 0, it follows that the supplier’s production

guantity is too low to coordinate the supply chain. Only a wholesale price value as large as the retail
price incentivizes the supplier to produce the supply chain optimal quantity. Nevertheless, a low
wholesale price may induce the buyer to order larger amounts which compensate the unwillingness
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of the supplier to inflate the order enough to reach the supply chain optimum. For that reason,
another extreme case for the wholesale price is evaluated.

If the supplier sells at her expected production cost to the buyer (w=c/6), it is obvious that a
production quantity larger than the order quantity makes no sense. Thus, case S(I) Q<X must be

analyzed with the profit function from (14). Setting w =c/ 6 yields
WHP c
0 (@)=[ £ 0-c|-a=0.

Because the supplier’s profit is zero for all possible production choices, she is indifferent between all

WHP WHP. _ yWHP

values from 0to X" . That being the case, it will be assumed that the supplier produces Q

units. Anticipating this behavior, the buyer maximizes his profit for case B(ll) X >D in (27)
My (X)=p-L(D,Q)-w-L(X,Q)

Given Q" =X"" it follows that F,(z,,)=1 and f;(z,,)=0." Thus, the buyer’s profit function

transforms to

e (X5 =X =p.1(0,0) ~c-= (0)

because according to (5) w-L(X,Q)=—-L(X,Q)=—-Q+ -(1-(Q—6-Q)+o—y(a)~O)=c~Q.

| o

< <
6 0

As X" =Q"™ and Ty (X""|Q"" =x"")=N,(Q), obviously it follows that X"*=Q" and

n:/HP (XWHP)=|-|SC (Q*) .

It can be shown that given w=c /@, coordination of the supply chain will be enabled with the buyer
ordering the supply chain optimal production quantity and the supplier producing the exact order
guantity. However, as the supplier is left with no profit, her participation constraint is violated and
she does not agree on the contract. Thus, coordination of the supply chain is impeded by violating
the supplier’s participation constraint.

Summarizing, each case violates the participation constraint of one actor in the supply chain (
My (X)=0forw=p and M (Q|X)=0forw=c/0) and, thus, terminates the interaction. The
numerical examples in the following section provide insight that apart from the extreme values, no
wholesale price in the range ¢/0<w<p can enable supply chain coordination. Thus, it is concluded

that the simple WHP contract fails to coordinate the supply chain.
Numerical examples

The insights become more evident when the results of the preceding analysis are demonstrated by
means of a numerical example. We set the parameters as follows: c=1, p=14 and D=100. The

binomially distributed yield is approximated by the normal distribution with mean and standard

' For the proof see Appendix A5.
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deviation from (1) and (2). For Q=D =100 this approximation is feasible for 0.06 <§<0.94 because

for these values the condition Q-6-(1-60)>5 is satisfied.”

In this numerical example, we calculate the impact of different values of the wholesale price (in the
interval ¢/6<w<p) on the profit split in the supply chain for different values of success probability

6 . The benchmarks (supply chain optimal decision and profit) are also given in each table.

w Q' Q" X e nes e n,.  Q"/b
419 419 419 0 958 958 958 4,19
5 419 412 111 99 858 957 958 4,12
6 419 407 106 193 763 955 958 4,07
12 419 413 100 762 196 957 958 4,13
13 419 416 100 860 98 958 958 4,16
14 419 419 100 958 0 958 958 4,19

Table 1: Effect of wholesale price on profit distribution for 25% success probability

w Q' Q" X e mwse e e M. Q" /p
2 215 215 215 0 1177 1177 1177 2,15
3 215 211 109 101 1075 1176 1177 2,11
4 215 207 104 196 977 1173 1177 2,07
5 215 205 101 289 881 1170 1177 2,05
6 215 205 100 384 787 1171 1177 2,05
12 215 213 100 978 199 1177 1177 2,13
13 215 214 100 1078 99 1177 1177 2,14
14 215 215 100 1177 0 1177 1177 2,15

Table 2: Effect of wholesale price on profit distribution for 50% success probability

> com pare chapter 3 (Analysis for a centralized supply chain).
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W Q Q" XWHP wHP wHP AP 4 P I-I* QWHP /D

s 8 s B sc

1,33 142 142 142 0 1254 1254 1254 1,42
2 142 141 108 68 1186 1254 1254 1,41

3 142 138 103 166 1086 1252 1254 1,38

4 142 137 101 262 989 1251 1254 1,37

5 142 137 100 358 892 1250 1254 1,37

6 142 138 100 458 794 1252 1254 1,38

13 142 142 100 1154 100 1254 1254 1,42
14 142 142 100 1254 0 1254 1254 1,42

Table 3: Effect of wholesale price on profit distribution for 75% success probability

From all tables the interplay of production and order sizes for different wholesale price levels
becomes visible, and it is illustrated how the supply chain loses efficiency if the supply chain internal
price deviates from both its minimum and maximum feasible levels.'®

4.2.0ver-production risk sharing contract

Under the over-production risk sharing (ORS) contract the risk of producing too many units (i.e. those
units which exceed the order quantity) is shared among the two parties. Thus, the supplier bears less
risk and is motivated to respond to the buyer’s order with a higher production quantity. Under this
contract, the buyer commits to pay for all units produced by the supplier. While he pays the
wholesale price w per unit for deliveries up to his actual order volume, quantities that exceed this
amount are compensated at a lower price w, . In order to exclude situations where the supplier will
generate unlimited profits from over-production the following parameter restrictions are set:
w,<c/0<w. As the supplier is able to generate revenue for every produced unit she has an
incentive to produce a larger lot compared to the situation under the simple WHP contract. This
increase might provide the potential to align the supplier’s production decision with the supply chain
optimal one.

In this context two contract variants have to be distinguished depending on the way a possible over-
production is handled by the parties. Under the first variant the buyer just financially compensates
the supplier for over-production without physically receiving deliveries that exceed his order size.
This Pull-ORS contract leaves him in a different risk position as when the parties agree that the

' None of the decisions outside the limiting values of the wholesale price coordinate the supply chain.
Apparently optimal decisions and profits result from rounding and can be shown to be suboptimal in decimal
places.
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supplier will deliver the whole production output irrespective of the buyer’s order. This variant is
denoted a Push-ORS contract.

Supplier decision
The profit to optimize by the supplier is identical for both contract variants. It now also includes the
compensation for over-production and is given by

™ (Qlx) =w-E[min(X,¥(Q)) [+w, -E| ((Q)-X)' |-c-a (30)

In the following, two cases are analyzed separately, S(I) (Q<D )and S(ll) (Q=D ).

Case S(1)
From case S(I) (Q< D) it results that Y(Q)< Q<D and the supplier’s profit transforms to

Y™ (Q|x)=w-E[Y(Q)]+w,-0-c-Q=(w-0-c)-Q (31)
For the first order derivative it holds that

dne® (Q|x) >0 forw>c/0
——— 2 =w-0-c
dQ <0 else

From that, the optimal input decision under case S(l) is given by

X forw>c/0
Qi (-1 @2

0 else

Consequently, it has to be evaluated whether case S(ll) (Q>D) is preferable for the supplier.

Case S(11)
In this case, the supplier profit is given by

ng™ (Q|X)=w-E[ min(X,¥(Q)) |+w,-E[¥(Q)-min(X,¥(Q))]-c-Q
=(W—WO)'E[min(X,Y(Q))}-f-WO E[Y(Q)]-cQ
M5 (@) = (w=w, )-L(X,Q) +Wo -1, —-Q 33

with L(X,Q) from (17). The first order derivative of the supplier’s profit is given by

dng® (Q|x)
dQ

() Q).

w,-0-c=(w-w,)-M(X,Q)+w, -0—c (34)

with aL(X,Q)/aQ from (18). It results the optimality condition for the supplier’s production quantity

under case S(I1), Q2" , from the first order condition dn® (Q|X)/dQ£0 :

(17

c—w,-0

w—w, =M(X,Qf(”)) (35)
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Thus, the supplier’s production decision under an ORS contract can be formulated as

Qs ifw>c/6

36
0 else (36)

Q™ (x)={

Note that for w, =0 the optimal decision is identical to that under a WHP contract.

The supplier’s profit is concave as the second order derivative is negative: *’

dn?RS(Q|X)2 oo oM(X,Q) (w-w,)-¢" _(X+/‘v(o)+0v(a))'(x+:“v(a)_5v(o))
) =(w-w,) a fs(zx,a) ) o 2 <0
via) Hra

Since M(X,Q) in (35) is a constant like for the WHP contract, the first-order derivative dQ”™ (X)/dx
is identical to that in (21).

Buyer decision

The buyer’s profit function depends on the specific type of ORS contract that is applied. Under a Pull-
ORS type (exclusion of over-delivery) the buyer maximizes a profit which compared to the WHP
contract is reduced by the supplier’s compensation for over-produced items

2™ (X) =p-E[ min(D,X,¥(Q)) |-w-E[ min(X,Y(Q)) |-w, -E[(Y(Q) —x)ﬂ (37)

As for the supplier, they buyer analysis considers two separate cases.

Case B(l)
Under case B(l) (X <D), the buyer’s profit is given by

(p—w)-E[min(X,Y(Q))]—WO -E[(Y(Q)—X)j
(p—W-I—WO)-E[min(X,Y(Q))]—WO E[v(Q)]

™ (X)

Mo (X)=(p—w+w,)-L(X,Q)=W, - fty g (38)
with L(X,Q) from (17). The total first order derivative of (38) is given by™®

dng® (X)
dx

(o, )-(1F, (210)) (w0, (x,0) -, ). 222 9

with M(X,Q) from (18) and dQ(X)/dX from (21). Depending on whether the first order derivative

is positive or negative, the order quantity under case B(l), X2

s1) » Fanges from zero up to demand D.

Case B(1l)
For case B(ll) (X =D ) the buyer maximizes the following profit

" ForoM(X,Q)/9Q see Appendix A3.

'8 A detailed analysis of the first order derivative is given in Appendix 6.1.
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ne™ (X)=p-E[min(D,¥(Q)) |- (w-w,)-E[ min(X,¥(Q))]|-w,-E[¥(Q)]
ng"” (X)=p'L(D'Q)_(W_Wo)'L(X'Q)_Wo “Hy(q) (40)

with £(D,Q) from (5) and L(X,Q) from (17). The profit maximizing order quantity for case B(ll), Xg

, results from the first order derivative below®

dn;” (X) da(X)

ax

=_(W_Wo)'(1_Fs(zx,o))+(p'M(D'Q)_(W_WO)'M(X'Q)_Wo'0)' (41)

with M(D,Q) and M(X,Q) from (7) and (18), respectively, by setting dﬂgRs(X)/dXEO.

Interaction of buyer and supplier

As under the WHP contract, it has to be analyzed whether there exists a combination of contract
parameters which guarantees that the total supply chain profit is maximized while both, supplier and
buyer accept the contract. Coordination is achieved if the optimality conditions of supply chain and
supplier under an ORS contract are identical. They are given from (8) and (35), respectively:

w, -0

£-m(p,Q) and ~Fo 7

_ ORS
; v =M(Xx,Q°%).

This condition is fulfilled if (i) the buyer orders at demand level, i.e. if X°* =D and (ii) if

M (D,Q* ) =M (X,Q"’“) holds, i.e. if the following condition for the contract parameters is satisfied

c-(w—w,)=p-(c—w,-0) (42)

which  ensures that ¢/p=(c-w,-0)/(w-w,). This condition also implies that

p=(w-w,)-c/(c—w,-0)>w-w,.

Given the condition for setting the parameters, the supplier’s marginal profit under case S(Il) in (34)
turns out to be

XORS — D)

ORS [ AORS _ A*
dn?® (@™ =a (e )‘(c—woﬂ)
o

+w,-0—c=0.
daq (w-w,) ot

The supplier’s marginal profit being zero, shows that the supplier actually chooses the respective
guantity. As the buyer anticipates this behavior, it can be evaluated which order decision maximizes

the buyer’s profit. Under case B(ll) (X=D), for Q” =Q" the buyer’s marginal profit from (41)

transforms to

W=—(W—WO).[1—F5(zD'Q):|+[p.%_(W_WO)_[ﬁJ_W‘J 'QJ-d(i’E(X)
:_(W_WO)'[l_Fs(ZD,a)]JF(C—C)’diﬁ(X)z‘(W‘Wo)’[l—FS(zD,a)]<o

'® For more details on the derivative, see Appendix 6.1.
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Due to the first-order derivative being negative, the buyer will not order above demand. Assuming an
order quantity of X°® =D and the coordinating parameter setting from (42), the buyer maximizes
the profit under case B(l) (X<D) in (38) according to

Mg (X7 =D)=(p-w+w,)-L(D,Q ) =W, -ty -
Rearranging the above profit yields:

Me™(x°® =D)=p-L(D,Q")—c-Q +c-Q —(w-w,)-L(D,Q ) -w,-6-Q
=My —(w-w,)-L(D,Q")+(c-w,-0)-Q

*

. . - I,
=M _(W_Wo)'L(D'Q )+%'(W+Wo)'a =Ny _(W_Wo)'f
I_IgRS (XORS :D) :nf;c .(1_ W_pWoJ (43)

Due to (42) it holds that p>w—w, and thus, I'IZRS(XORS :D) >0 . Utilizing the first order condition of

the above profit, the optimal order quantity is determined. The relation in (43) allows us to conclude
that dng™ (X)/dx >0 if d;. (X)/dX >0 (with M (X)=M;, for D=X)and thus, X** =D :*

drg. (X)
ax

dQ(X)
dx

=p-(1-F(20))+(p-M(X,Q)—c)- (44)

Given M(D,Q")=M(X,Q%"), it follows that

dr. (X) c ) da(x)
TZP'(].—FS (ZX,Q))+ p‘;—C 'TZP-(].—FS (ZX,Q))>0
Due to dMy. (X)/dX >0, itis inferred that dMg™ (X)/dX >0 and the buyer actually orders at demand

level. So, both conditions for coordination are fulfilled which proves that the Pull-ORS contract can
enable supply chain coordination, because the buyer incentives the supplier to produce the supply
chain optimal amount by ordering at demand level if the contract parameters are fixed
appropriately.

If the actors agree on a Push-ORS contract the situation changes. In case all produced items are
physically delivered, the buyer’s sales are not restricted by his own order and his profit turns out to
be identical for the cases B(l) and B(ll), i.e. for X<D and X>D, and is given from (40):

HZRS (X)ZP'L(D'Q)_(W_WO)'L(X'Q)_WO':“v(a)'

From the previous analysis of the interaction between supplier and buyer, it is given that
coordination requests X°* =D and c-(w-w,)=p-(c—w,-0). These conditions result in the

following marginal profit for the buyer:

%% For more details on the first order derivative, see Appendix 6.1.
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~—

dny™ (X)
dx

:—(W—WO)-(l—Fs (zm))+ p.%_(w_wo).w_wo .ej_ dC;E(X

w-w,

As the buyer’s marginal profit is negative (given w, <w ), it is no option for the buyer to order at
demand level. Through the design of the contract, orders below demand may be optimal. As the
delivered quantity can exceed the order or even end customer demand, the buyer can still meet
demand by ‘under-ordering’. Assuming the buyer orders below demand, there may be combinations
of w and w, which incentivize the supplier to produce the supply chain optimal quantity (obviously,
a larger wholesale price or a higher compensation for over-stock is necessary). However, higher
prices are less profitable for the buyer who would further reduce his order quantity. This downward
trend continues until nothing is ordered at all. Yet, the Push-ORS contract cannot coordinate the
supply chain.

Numerical examples

The data for the numerical study were introduced in the section of the WHP contract. In order to
fulfil the optimality condition for the contract parameters in (42), the following has to hold:

. _c(p-w) 14-w
p-O—c 14-0-1"

o

The tables below show the impact of the changing contract parameters on the split of profits
between the buyer and the supplier in the supply chain for various success probabilities 6 . Again, a
normal approximation to the binomial distribution is applied. All examples show that the condition
Q-0-(1-0)>5 is satisfied as production quantities are larger than 100.%

w w, Q®=qQ x*®=bp ¥ n*  n®+n®*=n, Q™/D
4 4 419 100 0 958 958 4,19
5 3,6 419 100 96 862 958 4,19
6 3,2 419 100 192 766 958 4,19
7 2,8 419 100 287 671 958 4,19
8 2,4 419 100 383 575 958 4,19
12 0,8 419 100 766 192 958 4,19
13 0,4 419 100 862 96 958 4,19
14 0 419 100 958 0 958 4,19

Table 4: Effect of changing values for w and w, on profit distribution for 25% success probability

! Recall chapter 3 of the paper (Analysis for a centralized supply chain)
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wo ow,  Q®=q X*®=p M B m*+n%®=m, ™/
2 2 215 100 0 1177 1177 2,15
3 1,83 215 100 98 1079 1177 2,15
4 1,67 215 100 196 981 1177 2,15
5 1,50 215 100 294 883 1177 2,15
6 1,33 215 100 392 785 1177 2,15
12 0,33 215 100 981 196 1177 2,15
13 0,17 215 100 1079 98 1177 2,15
14 0 215 100 1177 0 1177 2,15

Table 5: Effect of changing values for w and w, on profit distribution for 50% success probability

w w, Q™=@ Xx®™=p nF¥ m*  n*+nd®=n, Q*/p
133 1,33 142 100 0 1254 1254 1,42
2 1,26 142 100 66 1188 1254 1,42
3 1,16 142 100 165 1089 1254 1,42
4 1,05 142 100 264 990 1254 1,42
5 0,95 142 100 363 891 1254 1,42
12 0,21 142 100 1056 198 1254 1,42
13 0,11 142 100 1155 99 1254 1,42
14 0 142 100 1254 0 1254 1,42

Table 6: Effect of changing values for w and w, on profit distribution for 75% success probability

4.3.Penalty contract

If a penalty (PEN) contract is applied the supplier will bear a higher risk than under a simple WHP
contract since she will be punished for under-delivery. The supplier is penalized by the buyer (in the
amount of x) for each unit ordered that cannot be delivered because of insufficient production
yield. Given the potential penalty the supplier has an incentive to produce more than under the
simple WHP contract which might be sufficient to achieve coordination of the supply chain.
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Supplier decision
Under the PEN contract, the profit to optimize by the supplier includes the wholesale price as well as
a penalty for under-delivery and is given by

nif”(a|x)=w~E[min(x,v(a))]—n-E[(x—v(a))*}—c-a (45)

In the following, the two cases S(I) (Q< X ) and S(lI) (Q=> X ) are, again, analyzed separately.

Case S(1)
Given case S(I) (Q< X ) the supplier’s profit simplifies to

me™ (Q|x)=w-E[v(Q)]-7-(x-E[¥(Q)])-c-Q=((w+r)-0-c)-Q—m-X (46)
From the first order derivative of (46) which is given by

dri™ (Q|x)

m =(w+m)-0—c

it follows that the supplier produces either zero or the ordered amount depending on the parameter
constellation as formulated below

d™ (QX) |>0 forw+7r>CtTﬁ
dQ <0 else

Note that if Q=X then FI?EN(Q|X)=((W+7r)-0—c—7r)-x which constitutes the parameter condition

PEN

. » is formulated as follows

above. Finally, the production quantity under case S(l), Q

c+m
X forw+z>——

Q) (X)= 0 (47)
0 else

Case S(11)
Assuming that w+z>(c+7)/0 holds, case S(Il) (Q> X ) has to be evaluated. The profit generated by

the supplier is according to (45)

M (QX)=w-E[min(X,¥(Q)) |- 7-E[ X—min(X,¥(Q)) |-c-Q

™ (Q)X)=(w+r)-L(X,Q) -7 X—c-Q (48)
with L(X,Q) from (17). Taking the first order derivative yields

dni™ (Qlx)
dQ

oL(X,Q)

=(W+7l')~ 2Q

—c=(w+r)-M(X,Q)—c (49)
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with dL(X,Q)/9Q from (18). Hence, from dri;™ (Q|X)/dQ£O the optimal production input under

case S(Il), Q¢ , satisfies the following equation

C

=M(X,Q*" 50
el 60

Hence, the supplier’s production policy under a PEN contract is the following

c+m

PEN
Qg forw+rm>

QPEN (X)= (51)

0 else

Note that for 7 =0 the optimal decision is identical to that under a WHP contract.

The supplier’s profit is concave as the second order derivative is negative:*

dni (Q|x)

Q | :(W+7r)~—aM(X'Q)=— s(Zx,Q)-(W"'”)'ez (X+ 0 +9va) (X + g =0va)

. 5 <0
4 Oy(q) " Hy(q)

Since M(X,Q) in (50) is a constant like for the WHP contract, the first-order derivative dQ™ (X)/dX
is identical to that in (21).

Buyer decision
The buyer under a PEN contract is compensated for missing units by the penalty rate. The profit the
buyer generates is the following

M (X)=p-€[min(D, (@) | -w-£[min(x,Y(@)) | +-£| (x-¥(@)’

The two cases B(l) (X<D) and B(ll) (X =D ) are evaluated in the next section.

Case B(l)
The buyer’s profit in case B(l) (X <D ) transforms to

M (X) (p—w)~E[min(x,Y(Q))]+n-E[(x—Y(Q))+J=(p—w—n)f[min(x,Y(Q))]m-x

M (X)=(p—w-x)-L(X,Q)+7- X (52)

with L(X,Q) from (17). Taking the first order derivative yields the expression below?®

dmy™ (X)
dax

da(x)
dx

=(p—w—1)-(1-F(z.0))+7+(p-w—7)-M(X,Q)- (53)

* For 0M(X,Q)/0Q see Appendix A3.

%> For more details on the derivative, see Appendix 6.2
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with M(X,Q) from (18) and dQ(X)/dX from (21). The optimal order quantity under case B(l), X,

B(I) *

PEN

then results from drl; (X)/dXio. Nevertheless, it might be preferable to raise the order quantity

above demand (X=D).

Case B(1l)
Under case B(ll), the buyer maximizes the subsequent profit

Me™ (X)=p-E[min(D,Y(Q)) |- (w+x)-E[min(X,¥(Q) |+7- X
i (X)=p-L(D,Q)—(w+m)-L(X,Q)+7-X (54)
with L(D,Q) from (5) and L(X,Q) from (17). The buyer’s decision under case B(ll), Xy, is derived

from taking the first order condition d,™ (X)/dX=0 from the derivative below **

da(x)

=—(w+n)-(1—F5(zm))+7z+(p~M(D,Q)—(w+7z)~/\/I(X,Q))- —

(55)

with M(D,Q) from (7), M(X,Q) from (18) and dQ(X)/dX from (21).

Interaction of buyer and supplier

As under the ORS contract, it has to be analyzed whether there exists a combination of contract
parameters which guarantees that total supply chain profit is maximized while both, supplier and
buyer, accept the contract. In order to coordinate the supply chain, the optimality conditions of
supply chain and supplier under a PEN contract have to be identical. They are given from (8) and (50),
respectively:

€ =m(p,q") and
p W+

=M<X’QPEN)'

This condition is fulfilled if the buyer orders at demand level, i.e. if X =D and if
M (D,Q* ) =M (X,QPEN ) ,i.e. if the following condition for the contract parameters is satisfied

p=w+r (56)

which ensures that c/p=c/(w+7r). Given the parameter condition, the supplier’'s marginal profit in

(49) turns out to be zero:

—-c=0.

ot ab)_
lo[0] w4+

As the supplier’s marginal profit is zero, she actually choses the corresponding input quantity.
Because the buyer anticipates this behavior, it can be evaluated which order decision maximizes his
profit. Under case B(ll) (X=D), the buyer’s marginal profit from (55) in combination with the
parameter condition in (56), transforms to

** For more details, see Appendix 6.2.
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—dn’;;’;(x) :—(w+7r)-(1—FS (zX'Q))+7r+[(W+7r)~ (i) —(w+7n)- w+7r} d(fjﬁ(x)
W:—Wﬂwﬂr)-@ (2y0) (57)

B

For proving that dn®®" (X)/dX <0, it has to be shown that the penalty 7 must not be too large. Thus,

the determination of the penalty needs particular analysis. Under coordination (given p=w + 7z and

X" =D which leads to Q"™ =Q"), and using the supply chain profit from (6), the supplier’s and the

buyer’s profits from (48) and (54) can be expressed as follows

ey (QPEN‘XPEN :D):(W+7T)'L(D,QPEN)—E'D_C-QPEN :p-[_(D,Q*)—C-Q*_E'D:nsc(Q*)—ﬂ'-D

S

and

nPEN(XPEN:D)ZTL_.D.

B

Consequently, in order for the supplier’s participation constraint to hold, i.e. to generate a non-

negative profit, the maximum penalty 7" that results in ;™" (QPEN‘XPEN :D):O, is given by

= (58)

From I, (Q*):p.(l—FS (z;'Q)).D—(p.H.FS (z;'Q)—c)-Q* in (10) we get:

v<r =p(1-F ()| (0 F (2r) <)

Given the coordinating parameter constellation p=w + 7, the restriction 7z <z" transforms to

w<(wm) (1-F (230))~(p-0 F (0) ~) >
From that we further get

(59)

(w+m)-F (z:,‘a)—w<—(p~9-FS (z;'Q)—c)~%

PEN

Under case B(ll), from (57), the optimal buyer decision of X" =D is only given if

dny (X)

X =—w+(w+m)-F(z

)<0

X,Q
According to (59) this holds if p-0-F (z, ,)-c>0.
From (7) and (8) we know that
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. o, .
F (ZD,Q):?CQ'FZ_:;;) £ (ZD,Q)

<o that P'Q'FS(ZZ,Q)—C:P'Q‘ na) _fs(z;o)>0.
“Hyq)

Thus, if the participation constraint for the supplier is fulfilled and if the penalty i is restricted to be
=D in case B(ll). Since for X<D the

first-order derivative in (55) reduces to dI'IZEN(X)/dX:n>O the contract coordinating parameter

lower that 7", the buyer’s optimal order quantity will be XN

condition p=w+7 also initiates X" =D in case B(l). Thus, analogously to the ORS contract, the PEN

contract can enable supply chain coordination because the buyer incentivizes the supplier to produce
the supply chain optimal amount by ordering at demand level while the contract parameters are
fixed appropriately, i.e.if p=w+7r.

Numerical examples

The data for the numerical study were introduced in the section of the WHP contract. The tables
below show the coordinating ability of the PEN contract as well as the impact of changing contract
parameters on the split of profits between the buyer and the supplier in the supply chain. As for the
two previous contract analyses, the binomial distribution is approximated by a normal distribution
which is feasible as orders and production quantities exceed the critical value of 26.67 which
guarantees that the condition Q-0-(1-6)>5 holds for success probabilities of 0.25<6<0.75 2 The

examples below also incorporate the restriction for © from (58).

w n Q™=q x™=p " Y ™ =n, aQ*/p
4,42 9,58 419 100 0 958 958 4,19
5 9 419 100 58 900 958 4,19
6 8 419 100 158 800 958 4,19
7 7 419 100 258 700 958 4,19
8 6 419 100 358 600 958 4,19
12 2 419 100 758 200 958 4,19
13 1 419 100 858 100 958 4,19
14 0 419 100 958 0 958 4,19

Table 7: Effect of changing values for w and z on profit distribution for 25% success probability

*> Recall chapter 3 of the paper (Analysis for a centralized supply chain)
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w T QPEN — Q* XPEN =D n:EN I_IZEN anN +I-|ZEN =|-|;C QPEN/D

2,23 11,77 215 100 0 1177 1177 2,15
3 11 215 100 77 1100 1177 2,15
4 10 215 100 177 1000 1177 2,15
5 9 215 100 277 900 1177 2,15
6 8 215 100 377 800 1177 2,15
12 2 215 100 977 200 1177 2,15
13 1 215 100 1077 100 1177 2,15
14 0 215 100 1177 0 1177 2,15

Table 8: Effect changing values for w and 7 on profit distribution for 50% success probability

w n Q= x™=p " Y v+ =n, Q™/p
1,46 12,54 142 100 0 1254 1254 1,42
2 12 142 100 54 1200 1254 1,42
3 11 142 100 154 1100 1254 1,42
4 10 142 100 254 1000 1254 1,42
5 9 142 100 354 900 1254 1,42
12 2 142 100 1054 200 1254 1,42
13 1 142 100 1154 100 1254 1,42
14 0 142 100 1254 0 1254 1,42

Table 9: Effect of changing values for w and z on profit distribution for 75% success probability

5. Conclusion and outlook

The analyses in this paper revealed interesting insights into the area of supply chain coordination
through contracts in the case of binomially distributed production yields and deterministic demand.
The simple WHP contract fails to coordinate the supply due to double marginalization, while contract
types with reward or penalty scheme enable coordinated behavior in the supply chain without
violating the actors’ participation constraints. However, the ORS contract’s ability to coordinate a
supply chain depends on the variant that is applied. If a Pull type contract (without the delivery of
excess units) is used, coordination can be achieved. However, if physical delivery of overstock is
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allowed (Push variant), the contract loses its coordination power. For the PEN contract, however, it
can be shown that the design enables SC coordination and, depending on the parameter setting
(including a maximum penalty restriction), guarantees an arbitrary profit split. Numerical examples
confirmed the analytical findings and where used to illustrate each contract’s efficiency to coordinate
the supply chain as well as the profit split depending on various parameter combinations.

Compared to the results from Inderfurth and Clemens (2014) for stochastically proportional yields, it
is revealed that all contract designs retain their ability or disability to trigger coordination. For the
coordinating contract types, Pull-ORS and PEN, it furthermore holds that only in cases where the
buyer orders exactly at demand level coordination is achieved. Regarding the production decisions, it
is found that, as in Inderfurth and Clemens (2014), production input is a multiple of the order size.
However, the multiplier is not a constant any longer. Due to the characteristic of binomial yields to
decrease in risk as the input size rises, the multiplier changes in every instance of adjusting demand
or order sizes (which determine production input decisions). Nevertheless, whether the multiplier
increases, decreases or alternates, depends on the critical ratio of contract parameters and demand.
In terms of the numerical examples, the supply chain generates a larger maximum profit under
binomial (BI) yield than under uniformly distributed stochastically proportional (SP) yield (data as

given in section 4.1, mean SP yield rate and Bl success probability #,=0=0,5: I'I?'C:1177 and
M, =871, see Inderfurth and Clemens (2014) p. 544). However, the distribution of profits between

buyer and supplier is almost the same for all contracts, apart from medium values for the penalty
under the PEN contract where the supplier benefits from the higher total supply chain profit under
binomial yields.

Further research should focus on extending the supply chain to an emergency option for procuring
extra units in case of under-delivery. This option was introduced by Inderfurth and Clemens (2014)
and it was shown to coordinate the supply chain by applying the WHP contract (given that only the
supplier is utilizing the emergency source). In the current setting, this option may reveal a similar
performance. Besides, the setting can also be adjusted with respect to supply chain structure. An
important aspect in this context is the extension from a serial to a converging supply chain.
Concentrating on further types of yield uncertainty, the all-or-nothing type of yield realization, also
known as disruption risk (see Xia et al. (2011)), has hardly received any attention in literature so far.
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Appendix

Al. Details on transformation of delivery/sales quantity L

We arrive at the final form of the supply chain’s sales quantity L(D,Q) in (5) as shown below.
Definition: L(D,Q):= E[min(D,Y (Q))]

Rearranging yields the following
D

(D,Q) =D [(D=y) o (¥)dy =D~D-Fq (D) [ fy ()

0

D D
For normal approximation of binomially distributed yield it holds that jy-fy(a) (y)dy= _[y-fy(a)(y)dy .
0 —c0

For normally distributed random variables the following relationship can be utilized to further
transform the above expression:*®

a D—u D—pu
@ (@
.[y’fv(a)(y)dy:/‘v(m'FSE o YQ]‘”V(Q)'fSE -

v(Q) Oy(q)

—oo

Replacing the integral and further rearranging yields

D—- DES D—-
L(D,Q)= D-0,q | F, Hya | Hyq) +f, Hy(q)
Oy(q) Oy(a Oy(q

=D—o0yq '(Fs (ZD,Q ) Zpot S (ZD,Q ))

with £, (-) and £, () as cdf and pdf of the standard normal distribution and z, , := (D~ tt,(q) ) /0y (q) -

The delivery quantity in a decentralized supply chain is identical with the above expression with X
instead of D and w instead of p . The term is the following

L(X,Q)=E[min(X,Y (Q)) [=X =0y (Fs (200) 20+ fs (200))

A2. First order derivatives of sales/delivery quantity L

In this section the first order derivatives are given for the sales quantity of the supply chain L(D,Q)
in (5) and for the delivery quantity of the supplier to the buyer L(X,Q) in (17) with respect to

production quantity Q as well as order quantity X. x4, ando,, are given from (1) and (2).

Definition: L(D'Q) =D-o0yq '(Fs <zD,Q )'ZD,Q + <zD,Q )) :D_(Fs (ZD,Q )'(D_:uv(a) ) 0y s <ZD,Q ))

2 Compare Chopra and Meindl (2012) p. 404.
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2 :_(%[Fs (ZD,Q)'(D_’UY(Q’ )J+%[0y(o) g (ZD'Q )])

aQ
with

azo,o _ 9'(D+/‘V(O))
aQ 2:0yq My

9 (20) _dk(2) 9254
Q dz  dQ

2:0yq) " Hy(q)

s (20,0) dfs() Zba _ _ Zoa (2 ),[_0'<D+/‘V(o))]

9Q dz  0Q 2:0yq " Hria
_ £5(250) _ 0-(D+ttyq) (P=ta)
2 Ova My

dﬂv(a)
dQ

=0

Thus, we get

de(a): 0-(1-0) _1 9’(1_9)'Q:0v(0)
aa  2./9-(1-0)-Q 2 Q 2-Q
_%af
2 fy(q)

2 (2o (0-0)] = aﬂ‘zm)-<o—um)>+a<zD,Q>-%<o—W

9Q 9Q
O-(D+u
z_fs(zD,Q).ﬁ( D )+ (2) (-
_ f(2,4)0 (D+1yq))-(D- ,uy(Q)) F(20)0
_ , .
2 Hy(q) %(a)

J do, dfs 25
_[UV(Q)'fs(ZD,Q)]ZM'JCS(ZD,Q)‘FUV(Q) dE ). %0

0Q dQ oQ
_%a 0 i (200)+ 0y fs (ZD,O).6'(D+/‘2v(a))'(D_/‘v(a))
2 fly l 2 Oyq) " Hy(q
sz(zD,O)'a, o +<D+/‘V(a))'(D_:“v<a))
2 fy(q) ne Oy(q)
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Summarizing, this yields

oL(D,Q) :_[_ fs (ZD,Q)'9 . (D"'P‘V(Q))'(D_r”v(o))_
Q

(ZDQ)'0+M' o +(D+NY(Q)).(D_WQ))H

2+ fly(q) Oy(q) 2 fly(q) Oy (q)

oL(D,Q) fi(2,4)0
2 :_[ Z(xuj) 'G”Q’_FS(ZD’Q)H]

:%.(2./-'5 (200)- v g (zm)]

Hy(q)

For the delivery quantity from the supplier to the buyer, the analysis is identical with X instead of D
and w instead of p. Thus, the delivery quantity and its first order derivative are given as follows

L(x,Q)= X=0y4 -(Fs (zX_Q)-zX,Q + (zm))

a(x.Q) o
s |

2'Fs (zx,a)_m'fs (zx,a)]

ﬂY(Q)

A3. First order derivatives of M
In this section the first order derivatives are given for the right-hand-sides of the supply chain’s and
the supplier’s optimality conditions, respectively, namely M(D,Q) and M(X,Q). tq and o, are

given from (1) and (2).

D—
Definition: M(D’Q):Q' 2'F5<ZD,Q)_UY(Q) 'fs(ZD,Q) with z,, ="t
2 Hria 1)
oM (D,
Calculating ﬂ
#z_. 2& pa Y Y(Q)'fs(zp,a)
Q 2 dz  9Q  dQ| pyq
dF. %) d, o d d
with 5(2) %o ) #:(2) 920 , v g 229 f6m section A2 in the Appendix.

dz Q dz 0Q dQ

The second part of the derivative is given by

0
i{m(u) (200 )}:i(ay(a) ]'fs (200)+ oy dfs(2) 0254
Q| Hyq dQ\ fyq) My dz 0Q
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with

doyq N ‘d,uv(o)
d [ V(a)] da """ "9 4q
day u, ﬂf(q)
ay(a)ﬂ
“Hyq) Oy -0
=2':uv(a) _ Iy 0
2 2
Hy(q) 2 ly(q)

which results in

Oyia) fs (ZD,Q ) ) 9'(D_/“‘V(a))'(D+:“v(a))

2 ) [ 2 )

2
Hy(q) 2: '“v Hyia 2 Ov(a) My(a)
2
s (ZD,Q). ‘(D_:“V(a))'(D+/‘Y(Q))_UV(Q)
- 2
2 Hyq Oy

The total first order derivative BM(D,Q)/BQ is given by

Q 2 2

MD,Q _0 [ £ (200) 0-(D+tyey) f5(2a) _ 0-(0~tty))(D+ ) = )
Oyq) " Hyq) 2 ”3(0) Oy(q)

9. f5(20.0)-0 2ty '(D"'/‘Y(o))"‘(D_/‘Y(a))'(Dﬂ‘v(o))_03(0)

2 2 :”5(0) “Oyq)
_ 6 (D"':“wa)+‘7v(a))'(D+NV(a)_Uv(a))
‘_fs(zo,a)'j' .
Hy(q) " Oy(q)

It is obvious that the above derivative is negative if 1,y >0y -

Proof: For #-Q>1 (which coincides with the condition for validity of the Normal approximation and

holds for all numerical examples throughout the paper)

i@ =0-Q>0-Q>0-(1-0)-Q=0,

M(D,Q)
aD

Calculating

am(D,Q) Q_[z.d’:s(z)_azo,a % dfs() DQJ
2 d

oD z dD pyy dz 0D
with
dF,(z) oz 1
S( ) D,Q _fg(zD,Q)
dz dD Oy
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and

df; (2) 0z, 1 D—tiyq
[ S = =7 . V4 —_— = zZ — T
dz oD D,Q fS( D,O) @ fS( D.Q) 5(0)

The total first order derivative oM (D,Q)/dD is given by

aM(D,Q) :Q-(Z- fs (ZD,Q) _M{_fs (ZDIQ). D—ZﬂY(Q) ]]zg fs (Zo,a) .[2+D—ﬂv(a)j
0,

aD 2

Oy Hyq) 70 Oy(q Hy(q)
_Q.fS(zD,O). 142
2 0, Hy(q)

As all terms in the above derivative are positive, it follows that BM(D,Q)/8D>0.

The above analysis can again be used for calculating the first order derivatives of the supplier’s right

hand side of the production decision’s optimality conditions with X instead of D and w instead of
p . The results are shown below:

M(X,Q):=§-£2-FS (ZX,Q)_M'fs (zx,a)] with 2,y = X—,Uv(Q)

v(Q)

aM(X,Q)_ 6? (X+Ny(a)+0v(a))’(x+/‘v(a)_JY(Q))
——_fs(zx,a)'_' > <0
0Q 4 Hyiq) " Oyiq
M (X
oM ( ’Q):Q.f5<z"'0).(1+ X J>O
oX 2 oy Hyq)

A4. Proof of Lemma

1
Proof that Ll)im —g = with Q from optimality condition in (8): £:M(D,Q)
—>o0 p

0 o D—pu
Recall M(D,Q)I=E~(2'FS(zD,Q)_luV(Q) 'fs(zn,a)]; Z,q :=G—V‘Q) and 1,4 and o, from (1) and (2).
Y(Q) Y(Q)

EZQ.[Z.FS[D_ﬂY(Q)j_UV(Q).fS(D_:uV(Q)J]
p 2 Oy(a) Hy(q) Oy
4 pD-0-Q | 0-(1-0)-Q D-6-Q
=—-12-F - -f,
2 Jo-(1-6)-q 0-Q Jo-1-0)-a

Proving the validity of the above condition for D —co can be done in two steps:

0-(1-0)-Q D—6-
(1-9) f a_|_,.
0-Q 0-(1-6)-Q

Step 1) Proving that [IJim
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e-(1—9)-a'f D-0-Q | 0 1 D-6-Q
0-a | Jo-(1-0)a NG 0-(1-6)-Q

From (12) we know that dQ /dD>O and hence, limQ=. Consequently, I|m i_o If that

D—seo ~=.JqQ

holds, the expression under Step 1) approaches zero since fs(zD_Q) is bounded from above:

: 91 Dea_

c D-6-
Step 2) Proving that —=6-F, [ ; Q
p

s| ———=——=—= | only holds if Iimgz1 holds:
(1-0)-Q o=p 0

D-6-Q
Considering ——————= from the above expression and dividing by D yields

6-(1-0)-Q

(p-0-q)-1 _ 1-0-9]

Thus,

~=0-F, :

p Q/ . 0-(1-0) —
. Jo( NG

Further transforming yields
_p.Q
1-0 /D :Fl( c j
S
Q/ . lo.(1-0 2L
T g

p-0

1-6.Q

—A:Fsl[Lj' 9.(1_9) i
p-0

A Ja

From Step 1) above we know that lim Q= and lim ——O. Consequently, the right hand side of

D—oo D—oo [

the above equation is zero if D approaches infinity. In order for the left hand side to approach zero,

the following condition has to hold:

1_9.%=

D 0
Hence, it is proven that if D approaches infinity, the production quantity Q approaches D'%.
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A5. Characteristics of distribution and density function of standard normal

distribution
Considering the cumulated distribution function (cdf) of the standard normal distribution, for Q=X
it follows

X—- —-0- _
Fs(ZX,Q):FS IUY(Q) :Fs Q 0 Q :F_g QQ )
Oyq) 0~(1—9)‘Q 0

The cdf of the standard normal distribution ranges from —eo to +co. However, intersecting the

ordinate at 0.5 (i.e F, (O)=O.5 ), it approaches 1 quickly. For values as low as 4, it is approximately 1 (
’:5(4)20-9999727)- Considering our numerical examples with success probabilities in 0.25<6<0.75,

the assumption holds for production quantities of Q >48 which is given for all our examples.

The probability density function (pdf) of the standard normal distribution can be analyzed
analogously. For Q= X, it holds that

a1 el

Again, it can be shown that for large values, the pdf takes an extreme value, in this case zero. Given

f;(4)=0.00013, production quantities larger than 48 allow us to assume that the pdf approaches
zero if Q=X holds.

A6. Detailed analyses of first order derivatives of selected profit functions
under ORS and PEN contract

6.1 ORS contract

The general form for calculating the first order derivative is given by
dy® (X)  ong®(X) . g™ (X) dQ(x)

= ith dQ(X)/dX f 21).
dX ox Q dax v a )/ rom (21)

Case B(l)
From (38) the buyer’s profit is given by

5™ (X)=(p—w+w, ) L(X,Q)~wo s

Calculation of first order derivative:

ang™ (X)
ox

oL(X,Q)

:(p—W+WO)‘(1_Fs (zx,o))

and

?’ Consult tables of standard normal distribution or Excel worksheet function.
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ang’”(x)'da(x)z[(p_w+w ).8L(X,Q)_W -Hj-da(x)
0Q dx ? ¢
da(X)

=((p—w+WO)~M(X,Q)—WO-9)- dX

with 8L(X,Q)/E)X from (25) and aL(X,Q)/E)Q from (18). Finally, the total first order derivative in (39)
is given by

dl'lg;;(x) =(P—W+Wo)-(1—/"s (Zx,Q))+((p—W+W0).M(X’Q)_WO 0). dC(ZjE(X)
Case B(ll)

From (40) the buyer’s profit is given by
m™ (X)zp'L(D'Q)_(W_Wo)'L(X'Q)_Wo “Hy(q)

Calculation of first order derivative:

p gRs aL(X,
T () D () (18, 2,)
any® (x) da(x) aL(D,Q) aL(Xx,Q) da(x)
o ax Z(p' W) 5 _W"'GJ' X
:(p-M(D,Q)—(W—WO)-M(X,Q)—wo-0)~d35(x)

with dL(X,Q)/oX from (25), dL(D,Q)/0Q from (7) and dL(X,Q)/0Q from (18). Finally, the total first
order derivative in (41) is given by

e (x)
aX

da(Xx)

=_(W_Wo)'(1_":5(ZX,Q))+(p'M(D'Q)_(W_Wo)'M(X'Q)_Wo '9)' X

Interaction of buyer and supplier
M (X)=p-L(X,Q")-c-@

M (X)_ M (X) 3t (X) da(x)

aX X 2Q X
oMy, aL(X,

na)gx)zp_ L(;(Q):p.(l—@(zx‘a))

My (X) da(x) ( a(x,@) ) da(x)_ a0
aax _(P' G —cJ. dX —(P'M(X,Q)—c)- -
dnj:lc—)EX):p'(l_FS(zx,a))+(P'/\/l(X,Q)_c).d‘zg(x)

with 9L(X,Q)/ox from (25) and dL(X,Q)/0Q from (18).
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6.2 PEN contract
The general form for calculating the first order derivative is given by
d™ (Xx)  om™ (X) N I (X) da(x)

= with dQ(X)/dX from (21).
dax ox aQ ax ( )/ (21)

Case B(l)
From (52) the buyer’s profit is given by

™ (X)=(p-w—7)-L(X,Q)+7 X

Calculation of first order derivative:

o™ (X)
oX

oL(X,Q)
oX

=(p-w-m)- +7r:(p—w—7r)-(1—l-'$(lea))+7r
o™ (x) da(X)

aL(x,Q) da(X)
aQ X \PTwem) '

Q dX
da(x)
dx

=(p-w—7)-M(X,Q)-

with 8L(X,Q)/8X from (25) and aL(X,Q)/BQ from (18). Finally, the total first order derivative in (53)

is given by

— da(x
%:(p—w—n)-(l—/'}(ZX,Q))+”+(p_w_”)'M(XlQ)' dg( )
Case B(ll)

From (54) the buyer’s profit is given by
M (X)=p-L(D,Q)—(w+m)-L(X,Q)+7-X

Calculation of first order derivative:

WZ—(W+E)'8L(B)§(’Q)+7T=—(W+7L’)'(1—FS(ZX’Q))+7T
and
o™ (x) da(x) ( dL(D,Q) aL(x,Q)) da(x)
Q  dx _(p' o o j dx
=(p~M(D,Q)—(W+7r)-M(X,Q))-%

with dL(X,Q)/dX from (25), oL(D,Q)/dQ from (7) and dL(X,Q)/0Q from (18). Hence, we get the

total first order derivative in (55) as

an;™ ()
ax

da(X)

=—(W+7r)-(1—F5(zXIQ))+7r+<p~M(D,Q)—(W+7r)~M(X,Q))~ —
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